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ONE–SIDED STAR PARTIAL ORDERS
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Abstract. We compare some recent approaches to transferring the notions of left- and right-
star partial order, introduced for complex matrices in early 90-ies, to bounded linear Hilbert
space operators, and discuss a new version of these orders. The main results state that every
initial segment of B(H) under the (new) left-star order is a complete orthomodular sublattice
isomorphic to an initial segment of the lattice of closed subspaces of the underlying Hilbert space
H . We also associate a certain orthogonality relation with the order.

The so called logical order on the set of all self-adjoint operators, introduced by S. Gudder
in 2006, turns out to be the restriction of any of both one-sided star orders. Various known results
concerning the logical order, in particular, characterizations of the join and meet operations, are
extended to the left-star order on B(H) .

1. Introduction

In [11], the so called logical order � was introduced on the set S (H) of all self-
adjoint operators on a complex Hilbert space H. It was further studied in [14, 4]; see
also [7] and references in [4, 7]. According to Lemma 4.3 of [11],

A � B iff AB = A2 iff A = BP, (1)

where P is the projection operator onto the closed range of A ; also some other charac-
teristics of the logical order were given in [11]. It is noticed by various authors that the
logical order is the restriction of the star order, which is defined on B(H) , the set of
all bounded linear operators over H , by

A � B iff A∗A = A∗B and AA∗ = BA∗ ;

see [1, 8, 10]. In fact, the logical order is a restriction also of the so called left- and
right-star orders. We shall return to this point later, and discuss now various definitions
of these orders.

One-sided star orders for m×n complex matrices were introduced in [2] (see also
[13]) and have been intensively studied. The corresponding definitions for the left-,
resp., right-star order are
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A∗�B iff A∗A = A∗B and M (A) ⊆ M (B) (2)

A �∗ B iff AA∗ = BA∗ and M (A∗) ⊆ M (B∗), (3)

where M (X) stands for the column span (known also as the column space, or range)
of a matrix X . Both orders have also been transferred to bounded linear Hilbert space
operators. For example, the definitions assumed in [8] are direct analogues of those for
the matrix case (to unify notations, we borrow here, and in the sequel, those introduced
in [11, Sect. 4] and used also in [4, 14]: let ranA , ranA and nullA stand for the range,
the closed range and the nullspace of an operator A , respectively):

A∗�B iff A∗A = A∗B and ranA ⊆ ranB, (4)

A �∗ B iff AA∗ = BA∗ and ranA∗ ⊆ ranB∗. (5)

These orders are not independent: evidently, A �∗ B if and only if A∗ ∗� B∗ . As
observed in Theorem 2.2 of [8], A ∗� B if and only if there are invertible operators
E,F such that EAF �∗ EBF . It is known well that range inclusion of operators in a
Hilbert space can be characterized algebraically:

ranA ⊆ ranB iff there is an operator C such that A = BC

(see, e.g. [8, Lemma 2.1]). Therefore, the definitions (4) and (5) can be given a form

A∗�B iff A∗A = A∗B and A = BC for some C,

A �∗ B iff AA∗ = BA∗ and A = CB for some C

suitable for immediate transferring to rings with involution—see [6].
In [9], the left-star order for operators is defined as follows:

A∗�B iff ranP = ranA,nullA = nullQ,PA = PB,AQ = BQ (6)
for some appropriate projection operator P and
idempotent operator Q;

it is then proved that the defined relation is a partial order indeed and that this definition
is equivalent to (4). The right-star order �∗ is introduced there similarly, by the same
condition (6) with P idempotent and Q a projection. See also [12].

We note that still another extension of (2) and (3) to B(H) is possible, and intro-
duce two other relations, �∗ and ∗� (see [6]):

A∗�B iff A∗A = A∗B and ranA ⊆ ranB, (7)

A�∗B iff AA∗ = BA∗ and ranA∗ ⊆ ranB∗. (8)

It will be demonstrated later that they both are order relations. Generally, they are
stronger than ∗� and �∗ ; however, the difference disappears if the underlaying Hilbert
space is finite dimensional. In the infinite-dimensional case, an operator in B(H) has
a closed range if and only if it is regular (has the Moore-Penrose inverse); therefore,
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both versions of one-sided star orders coincide on regular operators. From this point
of view, both (4) and (7) are equally appropriate generalizations of the matrix ordering
(2), and the same concerns also (5), (8) and (3).

The logical order � is actually a restriction of all orders ∗�,�∗,∗�,�∗ . For
example, (4) implies that, for A,B ∈ S (H) , A∗�B iff A2 = AB and ranA ⊆ ranB iff
A2 = AB (in virtue of (1), A2 = AB implies that ranA = ran(BP)⊆ ranB). On the other
hand, it is known that the star partial order � is an intersection of ∗� and �∗ in the
sense that A � B iff A ∗�B and A �∗ B . Of course, then it is also an intersection of
∗� and �∗ .

In this paper, we study the structure of B(H) under the partial order ∗� . We
fix in the next section notation and basic algebraic facts concerning projection oper-
ators on a Hilbert space. In Section 3, several equivalent definitions of the relations
∗� and �∗ are derived. We also prove here that they are partial orders, and state
some other elementary properties of these relations. Furthermore, we show that every
nonempty subset of B(H) has the greatest upper bound (equivalently, every subset
bounded above has the least upper bound). A stronger result, which says that every
initial segment of B(H) is an orthomodular lattice isomorphic to an initial segment of
the lattice of projection operators is stated in Section 4. Explicit descriptions of joins
and meets in B(H) under the ordering ∗� also are obtained here. Most results in these
two sections are more or less similar to results obtained in [11, 14, 4] for the logical or-
der, and the main tool is the observation that B(H) is order isomorphic to a certain set
of partial functions (in fact, resrictions of operators from B(H)) naturally ordered by
set inclusion. In Section 5, we introduce orthogonality relations ∗⊥ and ⊥∗ on B(H)
associated in a sense with the left-, resp., right-star order, and discuss the relation ∗⊥
more closely.

2. Preliminaries: projection operators

We fix in this section notation and remind a number of basic algebraic properties
of Hilbert space projection operators (i.e., idempotent self-adjoint operators), which
will be frequently used below, mostly without explicit references.

An ortholattice is a bounded lattice with orthocomplementation, i.e., with a unary
operation ⊥ such that (i) x⊥⊥ = x , (ii) x � y only if y⊥ � x⊥ , and (iii) x∧ x⊥ =
0. An orthomodular lattice is an ortholatice satisfying the weak modularity law (iv)
if x � y , then y = x∨ (y∧ x⊥) . Every initial segment [0,x] of an orthomodular lattice
is a sublattice which also is orthomodular, with the (relative) orthocomplementation ⊥

x
given by a⊥x := a⊥∧ x .

Let H be a Hilbert space. The set P(H) of its projection operators, or just pro-
jections, is known to be a (complete) orthomodular lattice isomorphic to the lattice of
closed subspaces of H (by the transfer P 	→ ranP); in particular, the corresponding
partial ordering � on P(H) is given by

P � Q iff PQ = P iff QP = P .

We let O and I stand for the the zero, resp., unit operator, and denote the join and
meet of projections P,Q , by P∧Q and P∨Q , respectively. The orthocomplement of a
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projection P in B(H) (i.e., the projection corresponding to the nullspace of P) will be
denoted by P⊥, and its orthocomplement Q∧P⊥ in the sublattice [O,Q] , which also is
orthomodular, by P⊥

Q .
Recall that the product PQ of projections P and Q belong to P(H) if and only

if they commute. If this is the case, then

P∧Q = PQ and P∨Q = P+Q−PQ.

Projections P and Q are said to be orthogonal (in symbols, P⊥Q) if the corresponding
subspaces are orthogonal: P ⊥ Q iff ranP ⊆ nullQ iff ranQ ⊆ nullP or, equivalently,

P ⊥ Q iff PQ = O iff QP = O .

Moreover

P⊥ = I−P, P � Q iff P ⊥ Q⊥, P ⊥ Q iff Q � P⊥.

At last, if P ⊥ Q , then P∧Q = O and P∨Q = P+Q .

Given an operator X , let as denote by PX the projection onto ranX , the closure
of ranX , and by QX , that onto ranX∗ ; then PA

⊥ is the projection onto nullA∗ , while
QA

⊥ is the projection onto nullA .
Most properties of projections in the subsequent proposition can easily be verified

by translation of them into terms of closed ranges.

PROPOSITION 2.1 In B(H) ,

(a) PAA = A = AQA ,

(b) PA
⊥A = O = AQA

⊥ ,

(c) APB = O iff AB = O, QAB = O iff AB = O,

(d) PAB = O iff PA ⊥ PB iff PBA = O, AQB = O iff QA ⊥ QB iff BQA = O,

(e) PAB � PA , QAB � QB ,

(f) PAB = PAPB , QAB = QQAB ,

(g) if P � PA , then PPA = P, if Q � QA , then QAQ = Q.

Proof. We shall consider only the “left” case.
(c) As ranB ⊆ nullA iff ranB ⊆ nullA .
(d) By (c).
(e) As ran(AB) ⊆ ranA .
(f) By (a) and (e), PAB = PAPBB � PAPB . On the other hand, PAPB � PAB , as this

inequality holds iff (PAB)⊥PAPB = O iff (PAB)⊥APB = O iff (PAB)⊥AB = O—see (c)
and (b).

(g) By (f). �
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3. Order structure of B(H)

Notice that the defining conditions (7), (8) of ∗� and �∗ also can be rewritten
purely in terms of operators, as the lattice of closed subspaces of H is isomorphic to
that of projection operators:

A∗�B iff A∗A = A∗B and PA � PB, (9)

A�∗B iff AA∗ = BA∗ and QA � QB. (10)

By the way, this form of definitions allows us to transfer them naturally to Rickart *-
rings, see [6] (also [5, Remark 2]). The relations �∗ and ∗� can be given also other
characterizations.

LEMMA 3.1 Let A,B ∈ B(H) . Then

(a) A∗A = A∗B iff A = PAB iff A = PB for some P ∈ P(H) ,
AA∗ = BA∗ iff A = BQA iff A = BQ for some Q ∈ P(H) ,

(b) PA � PB iff A = PBA, QA � QB iff A = AQB ,

Proof. (a) This is Proposition 2.3 in [1].
(b) In virtue of Proposition 2.1(c), PBA = A iff (PB)⊥A = O iff (PB)⊥PA = O iff

PBPA = PA iff PA � PB . �

THEOREM 3.2 For all A,B ∈ B(H) ,

(a) A∗�B iff PAB = A and PA � PB iff PAB = A = PBA iff A = (PA∧PB)B,

(b) A�∗B iff BQA = A and QA � QB iff BQA = A = AQB iff A = B(QA ∧QB) .

Proof. Equivalence of the first three conditions in (a) (and in (b)) follows from
the previous lemma. Further, the second and the fourth condition also are equivalent.
If A = (PA ∧PB)B , then, by Proposition 2.1(f), PA = P(PA∧PB)PB

= PPA∧PB = PA ∧PB ,
whence A = PAB and PA � PB . The converse implication is evident. �

THEOREM 3.3 The relations ∗� and �∗ are partial orders on B(H) .

Proof. We shall use Theorem 3.2. Evidently, both relations are reflexive. They are
transitive: for example, if A∗�B and B∗�C , then PA � PB � PC and PAC = PAPBC =
PAB = A ; thus, A ∗�C . They are also antisymmetric: if A ∗�B and B ∗�A , then
PA = PB and B = PBA = PAA = A . �

It follows from (9) and (10) that A�∗B iff A∗ ∗�B∗ . In view of the preceding
theorem, this observation immediately yields the following duality result.

PROPOSITION 3.4 The map A 	→A∗ is an order isomorphism of the poset (B(H),∗�)
onto (B(H),�∗) , and also conversely.
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We list some elementary properties of ∗� and �∗ similar to those of the logical
order on S (H) [11].

LEMMA 3.5 In B(H) ,

(a) O is the least operator w.r.t. both ∗� and �∗ ,

(b) both orders agree on P(H) with the usual order of projections,

(c) A ∈ P(H) if and only if A∗� I if and only if A�∗ I,

(d) every right-invertible (resp., left-invertible) operator is maximal w.r.t. ∗� , resp.,
�∗ .

Proof. Items (a) and (b) are evident.
(c) A � I iff A = PA iff A ∈ P(H) .
(d) If AX = I , then I = PAX � PA and PA = I (Proposition 2.1). Thus, if A∗�Y ,

then PY = I and Y = A by Theorem 3.2(a). �
It was demonstrated in Section 3 of [4] that every self-adjoint operator A ∈ S (H)

is completely determined by its restriction to ranA and that the set SH of such restric-
tions can be characterized as follows:

SH = {B| ranC : B| ranC = A| ranA for some A ∈ S (H)}
= {B| ranC : PC = PA for some A ∈ S (H) with A � B} = {B| ranA : A � B}.

Thus, the transformation A 	→ A| ranA is a bijective mapping from S (H) onto SH .
This observation was not further developed in [4]. We now take up this idea and show
that there is even an order isomorphism between (B(H),∗�) , resp., (B(H),�∗) , and
a similar set BH of restrictions of bounded operators ordered by set inclusion—the
restricted operators on H being considered as partial functions H → H , i.e., as sets of
ordered pairs (x,y) ∈ H2 , where y is the value of the operator at x . It turns out to be
convenient first to investigate the order structure of BH , and then transfer the results to
B(H) .

The definition of BH will be based on the subsequent theorem.

THEOREM 3.6 Suppose that A,B ∈ B(H) . Then

(a) A∗�B iff A∗| ranA ⊆ B∗| ranB,

(b) A�∗B iff A| ranA∗ ⊆ B| ranB∗ .

Proof. Notice that the inclusion A| ranA∗ ⊆ B| ranB∗ means the following: for
every x ∈ ranA∗ , there is y ∈ ranB∗ such that (x,Ax) = (y,By) .

Recall that QA � QB iff ranA∗ ⊆ ranB∗ . Further,

A = BQA iff A| ranA∗ = B| ranA∗ . (11)

Indeed, if the right-side equality holds, then, for every x , A(QA(x))= B(QA(x)) , whence
A = AQA = BQA in virtue of Proposition 2.1(a). Conversely, if A = BQA , then, for ar-
bitrary y ∈ ranA∗ , y = QA(y) and A(y) = B(QA(y)) = B(y) .
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Now Theorem 3.2(b) yields the equivalence

A�∗B iff ranA∗ ⊆ ranB∗ and A| ranA∗ = B| ranA∗ ,

which is evidently a variant of (b). The item (a) is dual to (b). �
We conclude that

A = B iff A| ranA∗ = B| ranB∗ , (12)

i.e., every operator A in B(H) is completely determined by its restriction to ranA∗ .
Let A� and A� stand for the partial operators A∗| ranA and A| ranA∗ , respec-

tively. We denote by BH the set of all partial operators of the form A� (or, what
amounts to the same, of the form A� ), and consider it as partially ordered by ⊆ . The
transformations A 	→ A� and A 	→ A� are injective (see (12)) and, by the selection of
BH , even bijective; moreover, in view of Theorem 3.6, both transformations are or-
der isomorphisms of the posets (B(H),∗�) , resp., (B(H),�∗) onto BH . We have
obtained the following result.

PROPOSITION 3.7 The posets (B(H),∗�) and (B(H),�∗) are order isomorphic to
BH .

The set BH can be given also another description.

LEMMA 3.8 BH = {B| ranA∗ : A = BQA} .

Proof. By the definition of BH , B| ranC∗ ∈BH iff B| ranC∗ = A| ranA∗ for some
A ∈ B(H) . But

B| ranC∗ = A| ranA∗ iff ranC∗ = ranA∗ and A| ranA∗ = B| ranA∗
iff QC = QA and A = BQA (see (11)).

Thus, BH = {B| ranC∗ : QC = QA and A = BQA for some A ∈ B(H)} , whence the de-
sired identity follows. �

Notice that QC = QA and A = BQA iff QC = QA and A = BQC . Therefore,
B| ranC∗ ∈ BH iff QC = QBQC iff QC = QQBQC (by Proposition 2.1(f)). In particular,
evidently

if ranC∗ ⊆ ranB∗, then B| ranC∗ ∈ BH . (13)

We shall denote by f ,g,h arbitrary elements of BH , and by o , the least element
O|{0} in BH . Let the notation dom f stand for the domain of f . Evidently, if f ⊆ h ,
then dom f ⊆ domh . Observe also that

f ⊆ h iff f = h|dom f iff f = h|G , (14)

where G is a (unique) closed subspace of domh .
For F ⊆ BH , we denote by

⋂
F the intersection of all functions f ∈ F . As

usual, the intersection of an empty subset should be the maximum element of BH .
However, Lemma 3.5 implies (as I is invertible) that A is the greatest element of B(H)
if and only if A = I , i.e., B(H) = P(H) . Therefore,

⋂
∅ generally does not exist in

BH . However, any other intersection does exist.
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LEMMA 3.9 The set BH is closed under arbitrary nonempty intersections.

Proof. Let F be a nonempty subset of BH . Then

(x,y) ∈ ⋂
F iff x ∈ ⋂

(dom f : f ∈ F ) and f (x) = y for all f ∈ F

iff x ∈ ⋂
(dom f : f ∈ F )∩{ f (x)− f ′(x) = 0 for all f , f ′ ∈ F} and f0(x) = y ,

where f0 is any element of F . There is a unique nonempty subset C of B(H) such
that F = C � = {C| ranC∗ : C ∈ C } ; so

⋂
F =

⋂
C � and (x,y) ∈ ⋂

C � iff

x ∈ ⋂
(ranC∗ : C ∈ C )∩⋂

(null(C−C′) : C,C′ ∈ C ) and C0(x) = y ,

where (C0)� = f0 . Let

G :=
⋂

(ranC∗ : C ∈ C )∩⋂
(null(C−C′) : C,C′ ∈ C ) ;

thus,
⋂

C � = C0|G . As G is evidently a closed subspace of ranC∗
0 , (13) implies that⋂

C � ∈ BH . �
It follows that intersection of F is the greatest lower bound of this subset in BH .

A poset is said to be bounded complete if every its subset bounded above has the join
(i.e., the least upper bound) or, equivalently, every its nonempty subset has the meet
(the greatest lower bound). Therefore, the poset BH is bounded complete.

The next result, which immediately follows due to the Proposition 3.7, is an ana-
logue of that obtained in [14, Corollary 3.6] for the logical order on S (H) .

THEOREM 3.10 The posets (B(H),∗�) and (B(H),�∗) are bounded complete.

The union of elements of BH may be not a partial function on H at all. Generally,
BH is not closed under existing unions. For example, the domain of a partial function
f ∪ g is dom f ∪ domg , and the latter union is not necessary a closed subspace of H .
Even if it is, f ∪g may not be a member of BH .

Let
⊔

F stand for the join of F in BH when it exists. We already know that this
is the case if and only if F is bounded from above. Also, if G is a system of subspaces
of H , let

⊔
G stand for the least closed subspace including all members of G .

LEMMA 3.11 Let F be a subset of BH , and let h be its upper bound in BH . Then

(a)
⊔

F = h|⊔(dom f : f ∈ F ) ,

(b)
⋂

F = h|⋂(dom f : f ∈ F ) .

Proof. Suppose that F and h satisfy the assumption of the lemma. Then f =
h|dom f for every f ∈ F . Clearly,

⊔
F ⊆ h and dom

⊔
F =

⊔
(dom f : f ∈ F ) ⊆

domh . Likewise,
⋂

F ⊆ h and dom
⋂

F =
⋂

(dom f : f ∈ F ) . �
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4. Lattice operations in B(H)

In this section we shall deal explicitly only with the left-star order, and regard
B(H) as ordered by ∗� .

By a sublattice of B(H) we mean a subset L of B(H) such that every pair of ele-
ments of L have a meet and a join (in B(H)) which belong to L . A complete sublattice
of B(H) is defined similarly. Theorem 3.10 now implies the following observation.

PROPOSITION 4.1 Every initial segment of B(H) is a complete sublattice of B(H) .

Lemma 3.5(b,c) further implies that, in particular, P(H) is a complete sublattice
of B(H) . The subsequent refinement of the above proposition is a counterpart of
Theorem 4.12 of [11] for S (H) .

THEOREM 4.2 Every segment [O,X ] of B(H) is isomorphic to [O,PX ]; in particular,
it is an orthomodular lattice.

Proof. By (14), the mapping f 	→ dom f transforms one-to-one any initial seg-
ment [o,h] of BH onto the set CSh of closed subspaces of domh (also naturally or-
dered by set inclusion) and is even an order isomorphism, with G 	→ h|G the inverse
isomorphism.

Now let X be any operator in B(H) and h := X� = X∗| ranX . Then the segment
[O,PX ] of P(H) is isomorphic to the poset CSh . On the other hand, the order isomor-
phism � : B(H) → BH maps [O,X ] onto [o,h] . Indeed, if A∗�X , then A� ⊆ h , and
if f ⊆ h , i.e., f = h| ranP with ranP ⊆ ranX = ranPX , then

f = X∗| ranP = X∗P| ranP = (PX)∗| ranP = (PX)�

(in view of Proposition 2.1(g), ran(PX) = ranP) and (PX)� ⊂ X� , i.e., PX ∗�X , as
needed. So, the restriction of the inverse isomorphism A� 	→ A to [o,h] is an order
isomorphism of [o,h] onto [O,X ] . It follows that the chain of isomorphisms [O,PX ] →
CSh → [o,h]→ [O,X ] :

P 	→ ranP 	→ X∗| ranP = (PX)� 	→ PX

realizes an order isomorphism [O,PX ]→ [O,X ] . Hence, it preserves all joins and meets
and, being bijective, naturally induces an orthocomplementation on [O,X ] , making the
lattice [O,X ] orthomodular. �

Let us denote by ψX the isomorphism P 	→ PX of [O,PX ] onto [O,X ] described
in the proof. The mapping φX : [O,X ]→ [O,PX ] which takes every operator A ∈ [O,X ]
into the projection PA is the inverse of ψX . Indeed, if A ∗�X , then φX (A) � PX and
ψX(φX (A)) = A (Theorem 3.2(a)), and if P � PX , then φX (ψX(P)) = P (Proposition
2.1(g)). Thus, φX also is an order isomorphism, and therefore preserves arbitrary meets,
joins, and also orthocomplements. Moreover,

[O,X ] = {PX : P � PX}, [O,PX ] = {PA : A∗�X ].
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REMARK 1. To prove that [O,X ] and [O,PX ] are isomorphic, it actually is not
necessary to know in advance that each [O,X ] is a lattice. We saw at the end of the
proof that the constructed mapping (which was afterwards denoted by ψX ), transfers
orthocomplementation from [O,PX ] to [O,X ] , and it could likewise transfer also lattice
operations. Nevertheless, Theorem 4.2 does not imply Proposition 4.1, in distinction to
what could now seem. The point is that the joins induced by ψX in the segment [O,X ]
are really local (i.e., provide suprema in [O,X ]), and the question if they agree with
those existing in the whole poset B(H) anyway requires a separate consideration.

We are now in position to obtain explicit descriptions of meets and joins also in
B(H) . They turn out to be formally the same as for the logical order on S (H) ;
cf. Section 4 in [4]. We denote the meet (join) of operators A and B by A∗�B (resp.,
A∗�B) when it exists. The notation ∗⊥X stands for the orthocomplementation in [O,X ] .

COROLLARY 4.3 If A,B∗�X, then

(a) A∗�B = (PA ∨PB)X ,

(b) A∗�B = (PA ∧PB)X ,

(c) A∗⊥X = (PX −PA)X = X −A.

More generally, if C ⊆ B(H) and X is an upper bound of C , then likewise

(d) (
∨

(PC : C ∈ C ))X is the least upper bound of C ,

(e) (
∧

(PC : C ∈ C ))X is the greatest lower bound of C .

Proof. As to (a) and (b), notice that A ∗� B = ψX (φX (A)∨ φX (B)) and A ∗�
B = ψX (φX (A)∧ φX(B)) . Further, recall that the orthocomplement PX −PA of PA in
[O,PX ] is preserved by the order isomorphism ψX . So, A∗⊥X = ψX((φX (A))⊥φX (X)) =
ψX(φX (X)−φX(A)) . This proves the first equality in (c); the other one then follows by
Proposition 2.1(a) and Theorem 3.2(a). Items (d) and (e) are proved similarly (or either
using Lemma 3.11). �

Theorem 4.2 has also several other useful consequences.

COROLLARY 4.4 Suppose that A and B have an upper bound. Then

(a) PA∗�B = PA ∧PB , PA∗�B = PA ∨PB ,

(b) (PA∧PB)A = A∗�B = (PA ∧PB)B.

If, moreover, PA ⊥ PB , then

(c) A∗�B = O, A∗�B = A+B,

(d) PA+B = PA +PB .
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Proof. Assume that A,B∗�X .
(a) As φX is a lattice isomorphism.
(b) For example, (a) and Theorem 3.2(a) imply that (PA∧PB)A = PA∗�B A = A∗�

B .
(c) If PA ⊥ PB , then PA and PB commute and, by (a), A ∗� B = (PA ∧PB)X =

PAPBX = O and A∗�B = (PA∨PB)X =(PA+PB)X = PAX +PBX = A+B (see Theorem
3.2(a)).

(d) By (c) and (a), PA+B = PA∗�B = PA ∨PB = PA +PB . �
Notice also that, as φ preserves orthocomplements,

if A∗�X , then PA∗⊥X = PX−A = PX −PA (15)

by Corollaries 4.3(c) and 4.4(d).
Finally, we derive also two characterizations of meets of arbitrary pairs of elements

of B(H) . Item (b) below is a close analogue of Corollary 7 in [4] for self-adjoint
operators; it can also be obtained by an application of Corollary 4.3(d) to the set of all
lower bounds of the pair {A,B} .

THEOREM 4.5 For arbitrary A,B ∈ B(H) ,

(a) A∗�B = (PA ∧PB∧ (PA−B)⊥)A = (PA ∧PB∧ (PA−B)⊥)B,

(b) A∗�B = max(PC : C ∗�A and C ∗�B)A = max(PC : C ∗�A and C ∗�B)B.

Proof. (a) Let us specify the equality
⋂

C � =C0|G derived in the proof of Lemma
3.9 by setting C := {A,B} and C0 := A :

A� ∩B� = A|((ranA∗ ∩ ranB∗)∩null(A−B))

= A|( ranA∗ ∩ ranB∗ ∩ (ran(A−B)∗)⊥
)

= A| ran(QA ∧QB ∧ (I−QA−B))

= A(QA ∧QB ∧ (QA−B)⊥)| ran(QA ∧QB ∧ (QA−B)⊥).

But (see Proposition 2.1(f) and the definition of QX )

ran(QA ∧QB ∧ (QA−B)⊥) = ranQ(QA∧QB∧(QA−B)⊥) = ranQQA(QA∧QB∧(QA−B)⊥)

= ranQA(QA∧QB∧(QA−B)⊥) = ran(A(QA ∧QB ∧ (QA−B)⊥))∗.

Thus, for all A,B ∈ B(H) , A� ∩B� = (A(QA ∧QB ∧ (QA−B)⊥))� . Substituting A∗
for A and B∗ for B , we obtain the dual identity, A� ∩B� = ((PA ∧PB∧ (PA−B)⊥)A)� ,
which leads us to the first description of A∗�B ; the other one is obtained similarly.

(b) Notice that

{PC : C ∗�A and C ∗�B} = {P : P � PA∧PB ∧ (I−PA−B)}.
Indeed, if C∗�A,B , then PCA =C = PCB , PC(A−B)= O and PC ⊥ PA−B (Proposition
2.1(c)). Moreover, PC � PA,PB , and PC belongs to the set at the right. On the other
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hand, if P belongs to the set, then P ⊥ PA−B , whence P(A− B) = O (Proposition
2.1(c)) and PA = PB =:C . As also P � PA , we get from Proposition 2.1(g) that P = PC .
Consequently, PCA =C and PC � PA , i.e., C∗�A (Theorem 3.2(a)). Likewise C∗�B ,
and P belongs to the set at the left. �

5. Orthogonality on B(H) for one-sided star orders

Let us say that operators A and B are left-star, resp., right-star orthogonal (in
symbols, A ∗⊥ B , resp., A ⊥∗ B), if

A ∗⊥ B :≡ A∗�A+B, resp., A ⊥∗ B :≡ A�∗A+B. (16)

Adapting the term introduced in [3, Definition 3] in the context of orthomodular groups,
we could therefore say that the relations ∗� and ∗⊥ , as well as �∗ and ⊥∗ , are
associated. It is easily seen that the relationships (16) are equivalent to

A∗�B iff A ∗⊥ B−A, resp., A�∗B iff A ⊥∗ B−A.

For example, A ∗⊥ B−A iff [A∗(B−A) = O and PA � PB−A+A ] iff A∗�B . The two
equivalences obtained from (16) may further be rewritten as

A∗�B iff B = A+C for some C with C ∗⊥ A, (17)

A�∗B iff B = A+C for some C with C ⊥∗ A. (18)

Observe that if A,B ∈ S (H) , then A ∗⊥ B iff A2 = A(A+B) iff AB = O . There-
fore, ∗⊥ agrees on S (H) with the orthogonality asumed in [11], and then the equiv-
alence (17) reduces to the initial definition of the logical order in [11]. Of course, the
same concerns ⊥∗ and (18).

We shall discuss in detail only the left-star orthogonality. Let us first expand the
defining condition of ∗⊥ .

PROPOSITION 5.1 For all A,B ∈ B(H) ,

A ∗⊥ B iff PA ⊥ PB and PA � PA+B. (19)

Proof. By (16) and (9), A ∗⊥ B iff A∗A = A∗(A+B) and PA � PA+B . But

A∗A = A∗(A+B) iff A∗B = O , PA(A+B) = A iff PAB = O .

By virtue of Lemma 3.1(a), we conclude that A∗B = O iff PAB = O , and then Proposi-
tion 2.1(d) yields that

PA ⊥ PB iff A∗B = O iff B∗A = O. (20)

Now (19) follows. �
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LEMMA 5.2 In B(H) ,

(a) O ∗⊥ A,

(b) if A ∗⊥ A, then A = O,

(c) if A ∗⊥ B, then B ∗⊥ A,

(d) if A,B∗�C and PA ⊥ PB , then A ∗⊥ B,

(e) if A∗�B and B ∗⊥C, then A ∗⊥C,

(f) if A ∗⊥ B, then A∗�B = A+B,

(g) if A ∗⊥ B, then A∗�B = 0 ,

(h) if A ∗⊥ B,C and B∗�A∗�C, then B∗�C.

Proof. Assume that A,B ∈ B(H) .
(a) Evident.
(b) As A∗A = O implies that A = O .
(c) Assume that PA ⊥ PB and PA � PA+B . By Proposition 2.1(d), then PAB = O ,

which implies (in virtue of Proposition 2.1(b)) that B = (PA)⊥A+(PA)⊥B = (PA)⊥(A+
B) . Consequently, PB = P(PA)⊥(A+B) = P(PA)⊥PA+B

(see Proposition 2.1(f)). Now observe
that PA+B commutes with PA (by the second supposition) and, therefore, also with
(PA)⊥ . Hence, (PA)⊥PA+B is a projection, and PB = (PA)⊥PA+B = (PA)⊥PA+B

� PA+B .
By (19), now B ∗⊥ A .

(d) Assume that A,B∗�C and PA ⊥ PB . Then PA+B = PA∗�B = PA∨PB by Corol-
lary 4.4(c,a), whence PA � PA+B . So, A ∗⊥ B by (19).

(e) Assume that A ∗�B and B ∗⊥C , i.e., B ∗�B+C . Then PA � PB , PB ⊥ PC

and, consequently, PAPC = PAPBPC = O . On the other hand, C ∗�B+C by (c); so A
and C have an upper bound B+C . Now, A ∗⊥C by (d).

(f) Assume that A ∗⊥ B . In virtue of (c), then A+B is an upper bound of A and
B . As PA ⊥ PB , Corollary 4.4(c) implies that A∗�B = A+B .

(g) Follows from Corollary 4.4(c), since A+B is an upper bound of A and B .
(h) If A ∗⊥ B , then PA ⊥ PB , i.e., PBA = O and PAB = O (Proposition 2.1(d)). If

also A ∗⊥C and B ∗�A ∗�C , then A,C ∗�A+C , B ∗�A+C (see (f)) and, further,
PBC = PB(A +C) = B = PA+CB = (PA + PC)B = PCB by Corollary 4.4(d). See also
Theorem 3.2(a). �

REMARK 2. By (17), A∗�B implies that B = A+C for some C such that C ∗⊥
A . Together with items (c), (e), (a), (f), (h) of the lemma, this allows us to conclude that
the system (B(H),∗�,∗⊥) is a quasi-orthomodular nearsemilattice (even nearlattice)
in the sense of [4, Definition 1]. Then Theorem 9 of [4] provides another proof for the
result that every initial segment of B(H) is an orthomodular lattice which is a sublattice
of B(H) (see Proposition 4.1 and Theorem 4.2 above); this proof does not rest on
properties of P(H) and any analogue of Theorem 3.10. Moreover, Theorem 11 of [4]
allows us to conclude that, like S (H) ([11, Theorem 4.2]), the system (B(H),⊕,O) ,
where A⊕B = C iff A+B = C and A ∗⊥ B , is a generalized orthoalgebra (see [11, 4]
for a definition). Notice that ran(A⊕B) = ranA⊕ ranB .
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We failed to generalize to B(H) Theorem 4.3 of [14], which states that S (H) is
a weak generalized orthomodular poset. The missing link here is the condition

if A ∗⊥ B,C and B ∗⊥C , then A ∗⊥ (B∗�C );

which seemingly does not hold true in any B(H) .

Our last theorem shows, in particular, that the orthogonality relation ∗⊥ agrees
on every segment [O,X ] with the orthogonality induced in this segment by the corre-
sponding orthocomplementation ∗⊥X (see Corollary 4.3(c)).

THEOREM 5.3 The following conditions on operators A,B ∈ B(H) are equivalent:

(a) A ∗⊥ B,

(b) there is an operator X ∈ B(H) such that A∗�X and B∗�X −A,

(c) the pair A,B is bounded from above and PA ⊥ PB .

Proof. Suppose that A,B ∈ B(H) .
(a)→(b) If A ∗⊥ B , then the inequalities in (b) are fulfilled for X := A+B .
(b)→(c) If A ∗�X and B ∗�X −A , then PA � PX , PB � PX−A = PX −PA (see

(15)), and, consequently, PAPB = PA(PX −PA)PB = O . On the other hand, X −A∗�X
in virtue of Corollary 4.3(c).

(c)→(a) See Lemma 5.2(d). �
It follows from (b) that, for P,Q ∈ P(H) ,

P ∗⊥ Q iff P ⊥ Q.

Item (c) implies that an orthogonality on BH corresponding to ∗⊥ under the isomor-
phism � can be introduced by the condition

f ⊥ g iff dom f ⊥ domg and f ,g ⊆ h for some h.

Acknowledgement. The author thanks the anonymous referee for the careful read-
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