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Abstract. In this paper we introduce the notion of multiplier of a Hilbert pro-C∗ -bimodule and
we investigate the structure of the multiplier bimodule of a Hilbert pro-C∗ -bimodule. We also
investigate the relationship between the crossed product A×X Z of a pro-C∗ -algebra A by a
Hilbert pro-C∗ -bimodule X over A , the crossed product M(A)×M(X) Z of the multiplier algebra
M(A) of A by the multiplier bimodule M(X) of X and the multiplier algebra M(A×X Z) of
A×X Z .

1. Introduction

The notion of a Hilbert C∗ -module is a generalization of that of a Hilbert space
in which the inner product takes its values in a C∗ -algebra rather than in the field of
complex numbers, but the theory of Hilbert C∗ -modules is different from the theory
of Hilbert spaces (for example, not every Hilbert C∗ -submodule is complemented). In
1953, Kaplansky first used Hilbert C∗ -modules over commutative C∗ -algebras to prove
that derivations of type I AW ∗ -algebras are inner. In 1973, the theory was extended
independently by Paschke and Rieffel to non-commutative C∗ -algebras and the lat-
ter author used it to construct the theory of “induced representations of C∗ -algebras”.
Moreover, Hilbert C∗ -modules gave the right context for the extension of the notion
of Morita equivalence to C∗ -algebras and have played a crucial role in Kasparov’s
KK -theory. Finally, they may be considered as a generalization of vector bundles to
non-commutative ∗ -algebras, therefore they play a significant role in non-commutative
geometry and, in particular, in C∗ -algebraic quantum group theory and groupoid C∗ -
algebras. The extension of such a rich in results concept, to the case of pro-C∗ -algebras
could not be disregarded.

In [17], Zarakas introduced the notion of a Hilbert pro-C∗ -bimodule over a pro-
C∗ -algebra and studied its structure. In [8], Joiţa investigated the structure of the mul-
tiplier module of a Hilbert pro-C∗ -module. In this paper we introduce the notion of
multiplier of a Hilbert pro-C∗ -bimodule and we investigate the structure of the multi-
plier bimodule of a Hilbert pro-C∗ -bimodule.

In [11], Joiţa and Zarakas extended the construction of Abadie, Eilers and Exel [2]
in the context of pro-C∗ -algebras and associated to a Hilbert pro-C∗ -bimodule (X ,A)
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a pro-C∗ -algebra A×X Z , called the crossed product of A by X . It is natural to ask
what is the relationship between the pro-C∗ -algebras associated to a Hilbert pro-C∗ -
bimodule (X ,A) and its multiplier bimodule (M(X),M(A)) .

The organization of this paper is as follows. In Section 2, we recall some notations
and definitions. Section 3 is devoted to investigate multipliers of a Hilbert pro-C∗ -
bimodule. Given a Hilbert pro-C∗ -bimodule X , we show that the Hilbert pro-C∗ -
bimodule structure on X extends to a Hilbert pro-C∗ -bimodule structure on the mul-
tiplier bimodule M(X) of X . Also we define the strict topology on M(X) and show
that X can be identified with a Hilbert pro-C∗ -sub-bimodule of M(X) which is dense
in M(X) with respect to the strict topology. We introduce the notion of morphism of
Hilbert pro-C∗ -bimodules, and show that a nondegenerate morphism between Hilbert
pro-C∗ -bimodules is continuous with respect to the strict topology and it extends to a
unique morphism between the multiplier bimodules. Finally, as in the case of Hilbert
C∗ -bimodules [15], we show that (M(X),M(A)) can be regarded as a maximal exten-
sion of (X ,A) . Section 4 is devoted to investigate the relationship between the crossed
product A×X Z of a pro-C∗ -algebra A by a Hilbert pro-C∗ -bimodule X over A , the
crossed product M(A)×M(X) Z of the multiplier algebra M(A) of A by the multiplier
bimodule M(X)of X and the multiplier algebra M(A×X Z) of A×X Z . We show that
the crossed product associated to a full Hilbert pro-C∗ -bimodule (X ,A) can be iden-
tified with a pro-C∗ -subalgebra of the crossed product associated to (M(X),M(A))
and the crossed product associated to (M(X),M(A)) can be identified with a pro-
C∗ -subalgebra of the multiplier algebra of the crossed product associated to (X ,A) .
Crossed products by Hilbert pro-C∗ -bimodules are generalizations of crossed prod-
ucts of pro-C∗ -algebras by inverse limit automorphism [11]. As an application, we
prove that given an inverse limit automorphism α of a nonunital pro-C∗ -algebra A ,
the crossed product of M(A) by α , the extension of α to M(A) , can be identified with
a pro-C∗ -subalgebra of the multiplier algebra M(A×α Z) of A×α Z .

2. Preliminaries

A complete Hausdorff topological ∗ -algebra A whose topology is given by a
directed family of C∗ -seminorms {pλ ;λ ∈ Λ} is called a pro-C∗ -algebra. Other
terms used in the literature for pro-C∗ -algebras are: locally C∗ -algebras (A. Inoue,
M. Fragoulopoulou, A. Mallios, etc.), LMC∗ -algebras (G. Lassner, K. Schmüdgen),
b∗ -algebras (C. Apostol).

Let A be a pro-C∗ -algebra with the topology given by Γ = {pλ ;λ ∈ Λ} and let B
be a pro-C∗ -algebra with the topology given by Γ′ = {qδ ;δ ∈ Δ} .

An approximate unit of A is a net {ei}i∈I of positive elements in A such that
pλ (ei) � 1 for all i ∈ I and for all λ ∈ Λ and the nets {eib}i∈I and {bei}i∈I converge
to b for all b ∈ A .

A pro-C∗ -morphism is a continuous ∗ -morphism ϕ : A→ B (that is, ϕ is linear,
ϕ (ab) = ϕ(a)ϕ(b) and ϕ(a∗) = ϕ(a)∗ for all a,b ∈ A and for each qδ ∈ Γ′ , there is
pλ ∈ Γ such that qδ (ϕ(a)) � pλ (a) for all a ∈ A). An invertible pro-C∗ -morphism
ϕ : A→ B is a pro-C∗ -isomorphism if ϕ−1 is also pro-C∗ -morphism.
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{
(
Aλ ,‖·‖Aλ

)
;πλ μ}λ�μ,λ ,μ∈Λ is an inverse system of C∗ -algebras, then lim

←λ
Aλ

with the topology given by the family of C∗ -seminorms {pλ}λ∈Λ, with pλ

((
aμ

)
μ∈Λ

)
= ‖aλ‖Aλ

for all λ ∈ Λ , is a pro-C∗ -algebra.
Let A be a pro-C∗ -algebra with the topology given by Γ = {pλ ;λ ∈ Λ} . For

λ ∈ Λ , ker pλ is a closed ∗ -bilateral ideal and Aλ = A/ker pλ is a C∗ -algebra in the
C∗ -norm ‖·‖pλ

induced by pλ (that is, ‖a+kerpλ‖pλ
= pλ (a), for all a ∈ A). The

canonical map from A to Aλ is denoted by πA
λ , πA

λ (a) = a + ker pλ for all a ∈ A .
For λ ,μ ∈ Λ with μ � λ there is a surjective C∗ -morphism πA

λ μ : Aλ → Aμ such that

πA
λ μ (a+ker pλ ) = a + ker pμ , and then {Aλ ;πA

λ μ}λ ,μ∈Λ is an inverse system of C∗ -
algebras. Moreover, the pro-C∗ -algebras A and lim

←λ
Aλ are isomorphic (Arens-Michael

decomposition). For further information on pro-C∗ -algebras we refer the reader to
[6, 13, 14].

Here we recall some basic facts from [7] and [17] regarding Hilbert pro-C∗ -
modules and Hilbert pro-C∗ -bimodules respectively.

Let A be a pro-C∗ -algebra whose topology is given by the family of C∗ -seminorms
Γ = {pλ ;λ ∈ Λ} .

A right Hilbert pro-C∗ -module over A (or just Hilbert A-module), is a linear space
X that is also a right A-module equipped with a right A-valued inner product 〈·, ·〉A ,
that is C- and A-linear in the second variable and conjugate linear in the first variable,
with the following properties:

1. 〈x,x〉A � 0 and 〈x,x〉A = 0 if and only if x = 0;

2. (〈x,y〉A)∗ = 〈y,x〉A
and which is complete with respect to the topology given by the family of semi-

norms {pA
λ}λ∈Λ, with pA

λ (x) = pλ (〈x,x〉A)
1
2 ,x ∈ X . A Hilbert A-module X is full if

the pro-C∗ - subalgebra of A generated by {〈x,y〉A ;x,y ∈ X} coincides with A .
A left Hilbert pro-C∗ -module X over a pro-C∗ -algebra A is defined in the same

way, where for instance the completeness is requested with respect to the family of

seminorms {Apλ}λ∈Λ , where Apλ (x) = pλ (A 〈x,x〉)
1
2 ,x ∈ X .

In the case X is a left Hilbert pro-C∗ -module over (A,{pλ}λ∈Λ) and a right
Hilbert pro-C∗ -module over (B,{qλ}λ∈Λ) , such that the following relations hold:

• A 〈x,y〉z = x〈y,z〉B for all x,y,z ∈ X ,

• qB
λ (ax) � pλ (a)qB

λ (x) and Apλ (xb) � qλ (b)Apλ (x) for all x ∈ X , a ∈ A, b ∈ B
and for all λ ∈ Λ ,

then we say that X is a Hilbert A−B pro-C∗ -bimodule.
A Hilbert A− B pro-C∗ -bimodule X is full if it is full as a right and as a left

Hilbert pro-C∗ -module. Throughout the paper we use the notation (X ,A) to denote a
Hilbert A−A (pro-) C∗ -bimodule X .

Let Λ be an upward directed set and {Aλ ;Bλ ;Xλ ;πλ μ ;χλ μ ;σλ μ ;λ ,μ ∈Λ,λ � μ}
an inverse system of Hilbert C∗ -bimodules, that is:
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• {Aλ ;πλ μ ;λ ,μ ∈Λ,λ � μ} and {Bλ ;χλ μ ;λ ,μ ∈Λ,λ � μ} are inverse systems
of C∗ -algebras;

• {Xλ ;σλ μ ;λ ,μ ∈ Λ,λ � μ} is an inverse system of Banach spaces;

• for each λ ∈ Λ, Xλ is a Hilbert Aλ −Bλ C∗ -bimodule;

• 〈
σλ μ (x) ,σλ μ (y)

〉
Bμ

= χλ μ

(
〈x,y〉Bλ

)
and Aμ

〈
σλ μ (x) ,σλ μ (y)

〉
= πλ μ

(
Aλ 〈x,y〉

)
for all x,y ∈ Xλ and for all λ ,μ ∈ Λ with λ � μ .

• σλ μ(x)χλ μ(b) = σλ μ(xb), πλ μ(a)σλ μ(x) = σλ μ(ax) for all x∈ Xλ , a∈ Aλ , b∈
Bλ and for all λ ,μ ∈ Λ with λ � μ .

Let A = lim
←λ

Aλ , B = lim
←λ

Bλ and X = lim
←λ

Xλ . Then X has a structure of a Hilbert

A−B pro-C∗ -bimodule with

(xλ )λ∈Λ (bλ )λ∈Λ = (xλ bλ )λ∈Λ and
〈
(xλ )λ∈Λ ,(yλ )λ∈Λ

〉
B =

(
〈xλ ,yλ 〉Bλ

)
λ∈Λ

and
(aλ )λ∈Λ (xλ )λ∈Λ = (aλ xλ )λ∈Λ and A

〈
(xλ )λ∈Λ ,(yλ )λ∈Λ

〉
=

(
Aλ 〈xλ ,yλ 〉

)
λ∈Λ .

Let X be a Hilbert A−B pro-C∗ -bimodule. Then, for each λ ∈ Λ, Apλ (x) =
qB

λ (x) for all x ∈ X , and the normed space Xλ = X/NB
λ , where NB

λ = {x ∈ X ;qB
λ (x) =

0} , is complete in the norm ||x+NB
λ ||Xλ = qB

λ (x),x ∈ X . Moreover, Xλ has a canoni-
cal structure of a Hilbert Aλ− Bλ C∗ -bimodule with

〈
x+NB

λ ,y+NB
λ
〉
Bλ

= 〈x,y〉B +

kerqλ and Aλ

〈
x+NB

λ ,y+NB
λ
〉

=A 〈x,y〉+ ker pλ for all x,y ∈ X . The canonical sur-
jection from X to Xλ is denoted by σX

λ . For λ ,μ ∈Λ with λ � μ , there is a canonical
surjective linear map σX

λ μ : Xλ → Xμ such that σX
λ μ

(
x+NB

λ
)

= x+NB
μ for all x ∈ X .

Then {Aλ ;Bλ ;Xλ ;πA
λ μ ;πB

λ μ ;σX
λ μ ;λ ,μ ∈Λ,λ � μ} is an inverse system of Hilbert C∗ -

bimodules in the above sense.
Let X and Y be Hilbert pro-C∗ -modules over B . A morphism T : X→ Y of right

modules is adjointable if there is another morphism of modules T ∗ : Y → X such that
〈Tx,y〉B = 〈x,T ∗y〉B for all x ∈ X ,y ∈ Y . The vector space LB(X ,Y ) of all adjointable
module morphisms from X to Y has a structure of locally convex space under the
topology given by the family of seminorms {qλ ,LB(X ,Y )}λ∈Λ , where qλ ,LB(X ,Y ) (T ) =

sup{qB
λ (Tx);x ∈ X ,qB

λ (x) � 1} . Moreover, {LBλ (Xλ ,Yλ );χLB(X ,Y )
λ μ ;λ ,μ ∈ Λ,λ � μ}

where χLB(X ,Y )
λ μ : LBλ (Xλ ,Yλ ) → LBμ (Xμ ,Yμ) is given by χLB(X ,Y )

λ μ (T )
(
σX

μ (x)
)

=
σY

λ μ
(
T (σX

λ (x))
)
, is an inverse system of Banach spaces and LB(X ,Y )= lim

←λ
LBλ (Xλ ,Yλ )

up to an isomorphism of locally convex spaces. The canonical projections χLB(X ,Y )
λ :

LB(X ,Y )→ LBλ (Xλ ,Yλ ), λ ∈ Λ are given by χLB(X ,Y )
λ (T )

(
σX

λ (x)
)

= σY
λ (T (x)) for

all x ∈ X . For x ∈ X and y ∈ Y , the map θy,x : X → Y given by θy,x (z) = y〈x,z〉B
is an adjointable module morphism and the closed subspace of LB(X ,Y ) generated by
{θy,x;x∈X and y∈Y} is denoted by KB(X ,Y ) , whose elements are usually called com-
pact operators. For Y = X , LB(X) = LB(X ,X) is a pro-C∗ -algebra with (LB(X))λ =
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LBλ (Xλ ) for each λ ∈ Λ , and KB(X) = KB(X ,X) is a closed two-sided ∗ -ideal of
LB(X) with (KB(X))λ = KBλ (Xλ ) for each λ ∈ Λ .

A pro-C∗ -algebra A has a natural structure of Hilbert pro-C∗ -module, and the
multiplier algebra M(A) has a structure of pro-C∗ -algebra which is isomorphic to
LA(A) [14]. Moreover, pro-C∗ -algebras A and KA (A) are isomorphic and A is a closed
bilateral ideal of M(A) which is dense in M(A) with respect to the strict topology. The
strict topology on M(A) is given by the family of seminorms {p(λ ,a)}(λ ,a)∈Λ×A, where
p(λ ,a) (b) = pλ (ab)+ pλ (ba) for all b ∈M(A) .

A pro-C∗ -morphism ϕ : A → M(B) is nondegenerate if [ϕ (A)B] = B , where
[ϕ (A)B] denotes the closed subspace of B generated by {ϕ (a)b;a ∈ A,b ∈ B} . A
nondegenerate pro-C∗ -morphism ϕ : A→M(B) extends to a unique pro-C∗ -morphism
ϕ : M(A)→M(B) which is strictly continuous on bounded sets.

Throughout this paper, A and B will denote two pro-C∗ -algebras whose topolo-
gies are given by the families of C∗ -seminorms Γ = {pλ ;λ ∈ Λ} , respectively Γ′ =
{qδ ;δ ∈ Δ}.

3. Multipliers of Hilbert pro-C∗ -bimodules

Let X and Y be two Hilbert pro-C∗ -modules over A .

PROPOSITION 3.1. The vector space LA(X ,Y ) of all adjointable module maps
from X to Y has a natural structure of Hilbert LA(Y )−LA(X) pro-C∗ -bimodule with
the bimodule structure given by

S ·T = S ◦T and T ·R = T ◦R
for all T ∈ LA(X ,Y ),S ∈ LA(Y ) and R ∈ LA(X) and the inner products given by

LA(Y ) 〈T1,T2〉= T1 ◦T ∗2 and 〈T1,T2〉LA(X) = T ∗1 ◦T2

for all T1,T2 ∈ LA(X ,Y ) .

Proof. It is a simple calculation to verify that LA(X ,Y ) has a structure of pre-right
Hilbert LA(X)-pro-C∗ -module with

T ·R = T ◦R and 〈T1,T2〉LA(X) = T ∗1 ◦T2

and LA(X ,Y ) has a structure of pre-left Hilbert LA(Y )-pro-C∗ -module with

S ·T = S ◦T and LA(Y ) 〈T1,T2〉= T1 ◦T ∗2 .

Moreover,

pLA(X)
λ (T )2 = pλ ,LA(X)

(
〈T,T 〉LA(X)

)
= pλ ,LA(X) (T

∗ ◦T )

=
∥∥∥χLA(X ,Y )

λ
(T )∗ χLA(X ,Y )

λ
(T )

∥∥∥
LAλ (Xλ )

(see, for example, the proof of Proposition 1.10 [5])

=
∥∥∥χLA(X ,Y )

λ
(T )

∥∥∥2

LAλ (Xλ ,Yλ )
= pλ .LA(X ,Y ) (T )2



930 M. JOIŢA, R.-B. MUNTEANU AND I. ZARAKAS

and

LA(Y )pλ (T )2 = pλ ,LA(Y )
(
LA(Y ) 〈T,T 〉) = pλ ,LA(Y ) (T ◦T ∗)

=
∥∥∥χLA(X ,Y )

λ
(T )χLA(X ,Y )

λ
(T )∗

∥∥∥
LAλ (Yλ )

=
∥∥∥χLA(X ,Y )

λ
(T )∗

∥∥∥2

LAλ
(Yλ ,Xλ )

(see, for example, the proof of Proposition 1.10 [5])

=
∥∥∥χLA(X ,Y )

λ
(T )

∥∥∥2

LAλ
(Xλ ,Yλ )

= pλ .LA(X ,Y ) (T )2

for all T ∈ LA(X ,Y ) and for all λ ∈ Λ . Therefore, LA(X ,Y ) is a left Hilbert LA(Y )-
module and a right Hilbert LA(X)-module.

Also it is easy to check that LA(Y ) 〈T1,T2〉 ·T3 = T1 · 〈T2,T3〉LA(X) for all T1,T2,T3 ∈
LA(X ,Y ) , and since pLA(X)

λ (T )= LA(Y )pλ (T )= pλ .LA(X ,Y ) (T ) for all T ∈LA(X ,Y ) and
for all λ ∈Λ , LA(X ,Y ) has a structure of Hilbert LA(Y )−LA(X) pro-C∗ -bimodule. �

REMARK 3.2. Suppose that (X ,A) is a full Hilbert pro-C∗ -bimodule. Then there
is a pro-C∗ -isomorphism ΦA : A→ KA(X) given by ΦA (a)(x) = a ·x which extends to
a pro-C∗ -isomorphism ΦA : M(A)→ LA(X) . Moreover, pλ ,LA(X) (ΦA (a)) = pλ (a) for
all a ∈ A and λ ∈ Λ . Identifying M(A) with LA(A) and using Proposition 3.1 and
[15, Proposition 2.5], we obtain a natural structure of Hilbert M(A)−M(A) pro–C∗ -
bimodule on LA(A,X) with

m ·T = ΦA (m)◦T and M(A) 〈T1,T2〉= Φ−1
A (T1 ◦T ∗2 )

and

T ·m = T ◦m and 〈T1,T2〉M(A) = T ∗1 ◦T2

for all T,T1,T2 ∈ LA(A,X) and m ∈M(A) .

DEFINITION 3.3. Let (X ,A) be a full Hilbert pro-C∗ -bimodule. The Hilbert
M(A)−M(A) pro-C∗ -bimodule LA(A,X) is called the multiplier bimodule of X and it
is denoted by M(X) .

The following definition is a generalization of [5, Definition 1.25].

DEFINITION 3.4. The strict topology on M(X) is given by the family of semi-

norms {p(λ ,a)}(λ ,a)∈Λ×A , where p(λ ,a) (T ) = pM(A)
λ (T ·a)+ pM(A)

λ (a ·T) for all T ∈
M(X) and a ∈ A .

REMARK 3.5. Let {Tn}n be a sequence in M(X).
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1. If {Tn}n is strictly convergent, then it is bounded. Indeed, if {Tn}n converges
strictly to T ∈M(X) , then for each λ ∈ Λ , since

∥∥∥χM(X)
λ (Tn)πA

λ (a)− χM(X)
λ (T )πA

λ (a)
∥∥∥

Xλ
= pA

λ (Tn (a)−T (a))

= pM(A)
λ (Tn ·a−T ·a) ,

the sequence {χM(X)
λ (Tn)πA

λ (a)}n converges to χM(X)
λ (T )πA

λ (a) for all a ∈ A
and by the Banach-Steinhaus theorem there is Mλ > 0 such that

pM(A)
λ (Tn) = pλ ,LA(A,X) (Tn) =

∥∥∥χM(X)
λ (Tn)

∥∥∥
LAλ (Aλ ,Xλ )

� Mλ

for all n ∈ N .

2. If {Tn}n converges strictly to 0, then the sequences {〈Tn,Tn〉M(A)}n and
{M(A)〈Tn,Tn〉}n are strictly convergent to 0 in M(A) .

Suppose that X is a Hilbert pro-C∗ -module over A . In [8, Definition 3.2], the strict
topology on LA(A,X) is given by the family of seminorms {p(λ ,a,x)}(λ ,a,x)∈Λ×A×X ,
where p(λ ,a,x)(T )= pA

λ (T (a))+ pλ (T ∗(x)) . We will show that this definition coincides
with the above definition of the strict topology on M(X) on bounded subsets when X
is a full Hilbert A−A pro-C∗ -bimodule. To show this, we will use the following result.

LEMMA 3.6. Let X be a Hilbert pro-C∗ -module over A. For each x in X there
is a unique element y in X such that x = y〈y,y〉A .

Proof. Let x ∈ X . For each λ ∈ Λ , there is a unique element yλ ∈ Xλ such that
σX

λ (x) = yλ 〈yλ ,yλ 〉Aλ
(see, for example, [16, Proposition 2.31]). Let λ ,μ ∈ Λ with

λ � μ . From

σX
μ (x) = σX

λ μ(σX
λ (x)) = σX

λ μ (yλ )
〈

σX
λ μ (yλ ) ,σX

λ μ (yλ )
〉

Aμ

and [16, Proposition 2.31], we deduce that σX
λ μ (yλ ) = yμ . Therefore, there exists y∈X

such that σX
λ (y) = yλ for all λ ∈ Λ and x = y〈y,y〉A . Moreover, y is unique with this

property. �

PROPOSITION 3.7. Let (X ,A) be a full Hilbert pro-C∗ -bimodule and {Ti}i∈I a
net in M(X) .

1. If {Ti}i∈I converges strictly to 0 , then {p(λ ,a,x)(Ti)}i∈I converges to 0 for all
a ∈ A, for all x ∈ X and for all λ ∈ Λ.

2. If {Ti}i∈I is bounded and {p(λ ,a,x)(Ti)}i∈I converges to 0 for all a ∈ A, for all
x ∈ X and for all λ ∈ Λ, then {Ti}i∈I converges strictly to 0.
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Proof. (1) If the net {Ti}i∈I converges strictly to 0, then {pA
λ (Ti(a))}i∈I con-

verges to 0 for all a ∈ A and λ ∈Λ . Let x ∈ X and λ ∈Λ . Then, by Lemma 3.6, there
is y ∈ X such that x = y〈y,y〉A = θy,y (y) . From

pλ (T ∗i (x)) = pλ (T ∗i (θy,y (y))) � pλ ,LA(X ,A) (T
∗
i ◦θy,y) pA

λ (y)

= pλ ,LA(A,X) (θy,y ◦Ti) pA
λ (y) = pM(A)

λ (θy,y ◦Ti) pA
λ (y) ,

we deduce that the net {pλ (T ∗i (x))}i∈I converges to 0.
(2) If {p(λ ,a,x) (Ti)}i∈I converges to 0 for all a ∈ A, x ∈ X and λ ∈ Λ , then

{pA
λ (Ti(a))}i∈I converges to 0 for all a ∈ A and λ ∈ Λ . Let S ∈ KA(X) , λ ∈ Λ and

ε > 0. Then there is
n
∑

k=1
θxk ,yk such that pλ ,LA(X)

(
S− n

∑
k=1

θxk ,yk

)
< ε, and since {Ti}i∈I

is bounded, there is Mλ > 0 such that pM(A)
λ (Ti) � Mλ for all i ∈ I . From

pM(A)
λ (S ◦Ti) � pλ ,LA(X)

(
S−

n
∑

k=1
θxk ,yk

)
pM(A)

λ (Ti)+ pM(A)
λ

(
n
∑

k=1
θxk,yk ◦Ti

)

� εMλ + pλ ,LA(A,X)

(
n
∑

k=1
θxk,T

∗
i (yk)

)

� εMλ +
n
∑

k=1
pA

λ (xk) pλ (T ∗i (yk))

we deduce that {pM(A)
λ (S ◦Ti)}i∈I converges to 0. �

Let (X ,A) and (Y,B) be two Hilbert pro-C∗ -bimodules.

DEFINITION 3.8. A morphism of Hilbert pro-C∗ -bimodules from (X ,A) to (Y,B)
is a pair (Φ,ϕ) consisting of a pro-C∗ -morphism ϕ : A→B and a map Φ : X→Y such
that:

1. Φ(xa) = Φ(x)ϕ (a) for all x ∈ X and for all a ∈ A;

2. Φ(ax) = ϕ (a)Φ(x) for all x ∈ X and for all a ∈ A;

3. 〈Φ(x) ,Φ(y)〉B = ϕ (〈x,y〉A) for all x,y ∈ X ;

4. B 〈Φ(x) ,Φ(y)〉= ϕ (A 〈x,y〉) for all x,y ∈ X .

The relation (3) implies the relation (1) and the relation (4) implies (2) .
If (Φ,ϕ) : (X ,A) → (Y,B) is a morphism of Hilbert pro-C∗ -bimodules, then Φ

is continuous, since for each δ ∈ Δ, there is λ ∈ Λ such that

qB
δ (Φ(x))2 = qδ (〈Φ(x) ,Φ(x)〉B) = qδ (ϕ (〈x,x〉A)) � pλ (〈x,x〉A) = pA

λ (x)2

for all x ∈ X . It is easy to check that if ϕ is injective, then Φ is injective, and if (X ,A)
is full and Φ is injective, then ϕ is injective.
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DEFINITION 3.9. An isomorphism of Hilbert pro-C∗ -bimodules is a morphism of
Hilbert pro-C∗ -bimodules (Φ,ϕ) such that ϕ is a pro-C∗ -isomorphism and the map
Φ is bijective.

The Hilbert pro-C∗ -bimodules (X ,A) and (Y,B) are isomorphic if there is an
isomorphism of Hilbert pro-C∗ -bimodules (Φ,ϕ) : (X ,A)→ (Y,B) .

DEFINITION 3.10. A morphism of Hilbert pro-C∗ -bimodules (Φ,ϕ) : (X ,A) →
(M(Y ),M(B)) is nondegenerate if ϕ is nondegenerate and [Φ(X)B] = Y .

REMARK 3.11. If (Φ,ϕ) : (X ,A) → (M(Y ),M(B)) is nondegenerate and (X ,A)
is full, then (Φ,ϕ) is nondegenerate in the sense of [9, Definition 3.1], since

[
Φ(X)∗Y

]
=

[
Φ(X)∗Φ(X)B

]
=

[
〈Φ(X) ,Φ(X)〉M(B) B

]
= [ϕ (〈X ,X〉A)B] = [ϕ (A)B] = B.

LEMMA 3.12. Let (X ,A) be a full Hilbert pro-C∗ -bimodule. Then the maps

(
χLA(A,X)

λ ,πM(A)
λ

)
: (M(X),M(A))→ (M(Xλ ),M(Aλ )) ,λ ∈ Λ,

where πM(A)
λ = χLA(A)

λ , and

(
χLA(A,X)

λ μ ,πM(A)
λ μ

)
: (M(Xλ ),M(Aλ ))→ (

M(Xμ),M(Aμ)
)
,λ ,μ ∈ Λ with λ � μ

where πM(A)
λ μ = χLA(A)

λ μ , are all strictly continuous morphisms of Hilbert bimodules.

Proof. Let λ ,μ ∈ Λ with λ � μ . For T1,T2 ∈M(Xλ ) we have

〈
χLA(A,X)

λ μ (T1) ,χLA(A,X)
λ μ (T2)

〉
M(Aμ )

= χLA(A,X)
λ μ (T1)

∗ ◦ χLA(A,X)
λ μ (T2)

= χLA(X ,A)
λ μ (T ∗1 )◦ χLA(A,X)

λ μ (T2)

= χLA(A)
λ μ (T ∗1 ◦T2) = πM(A)

λ μ

(
〈T1,T2〉M(Aλ )

)

and

M(Aμ )

〈
χLA(A,X)

λ μ (T1) ,χLA(A,X)
λ μ (T2)

〉
= Φ−1

Aμ

(
χLA(A,X)

λ μ (T1)◦ χLA(A,X)
λ μ (T2)

∗)

= Φ−1
Aμ

(
χLA(A,X)

λ μ (T1)◦ χLA(X ,A)
λ μ (T ∗2 )

)

= Φ−1
Aμ

(
χLA(X)

λ μ (T1 ◦T ∗2 )
)

= χLA(A)
λ μ

(
Φ−1

Aλ
(T1 ◦T ∗2 )

)

= πM(A)
λ μ

(
M(Aλ ) 〈T1,T2〉

)
.
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Therefore,
(

χLA(A,X)
λ μ ,πM(A)

λ μ

)
is a morphism of Hilbert C∗ -bimodules.

Let {Ti}i∈I be a net in M(Xλ ) which converges strictly to 0. From∥∥∥χLA(A,X)
λ μ (Ti)πA

μ (a)
∥∥∥

Xμ
=

∥∥∥χLA(A,X)
λ μ (Ti)πM(A)

λ μ
(
πA

λ (a)
)∥∥∥

Xμ

=
∥∥∥σX

λ μ
(
Ti

(
πA

λ (a)
))∥∥∥

Xμ
�

∥∥Ti
(
πA

λ (a)
)∥∥

Xλ

for all a ∈ A , and∥∥∥χLA(X)
μ (S)◦ χLA(A,X)

λ μ (Ti)
∥∥∥

M(Xμ )
=

∥∥∥χLA(X)
λ μ

(
χLA(X)

λ (S)
)
◦ χLA(A,X)

λ μ (Ti)
∥∥∥

LAμ (Aμ ,Xμ )

=
∥∥∥χLA(A,X)

λ μ

(
χLA(X)

λ (S)◦Ti

)∥∥∥
LAμ (Aμ ,Xμ )

�
∥∥∥χLA(X)

λ (S)◦Ti

∥∥∥
LAλ

(Aλ ,Xλ )

for all S ∈ KA(X) , and taking into account that KAμ (Xμ) = χLA(X)
μ (KA(X)) , we deduce

that the net {χM(X)
λ μ (Ti)}i∈I converges strictly to 0.

In a similar way, we show that the maps
(

χLA(A,X)
λ ,πM(A)

λ

)
: (M(X),M(A)) →

(M(Xλ ),M(Aλ )) ,λ ∈Λ are all strictly continuousmorphisms of Hilbert bimodules. �

THEOREM 3.13. Let (X ,A) be a full Hilbert pro-C∗ -bimodule.

1. M(X) is complete with respect to the strict topology;

2. (ιX , ιA) : (X ,A) → (M(X),M(A)) , where ιX (x)(a) = xa and ιA (b)(a) = ba
for all x ∈ X and a,b ∈ A, is a nondegenerate morphism of Hilbert pro-C∗ -
bimodules;

3. X can be identified with a closed M(A)−M(A) pro-C∗ -sub-bimodule of M(X)
which is dense in M(X) with respect to the strict topology.

Proof. (1) For each λ ∈Λ, M(Xλ ) has a structure of Hilbert M(Aλ )− M(Aλ ) C∗ -
bimodule (see, [5, Proposition 1.10]). It is easy to check that

{M(Aλ );M(Xλ );πM(A)
λ μ ;χM(X)

λ μ ;λ ,μ ∈ Λ,λ � μ},

where χM(X)
λ μ = χLA(A,X)

λ μ for all λ ,μ ∈ Λ with λ � μ , is an inverse system of Hilbert
C∗ -bimodules. Then lim

←λ
M(Xλ ) has a structure of Hilbert lim

←λ
M(Aλ )− lim

←λ
M(Aλ )

pro-C∗ -bimodule. Moreover, by Lemma 3.12 the maps χM(X)
λ μ : M(Xλ )→ M(Xμ) ,

λ ,μ ∈ Λ,λ � μ are all strictly continuous.
Consider, the maps:

Φ : M(X)→ lim
←λ

M(Xλ ),Φ(T ) =
(

χM(X)
λ (T )

)
λ
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and
ϕ : M(A)→ lim

←λ
M(Aλ ),ϕ (m) =

(
πM(A)

λ (m)
)

λ
.

It is easy to check that (Φ,ϕ) is a morphism of Hilbert pro-C∗ -bimodules. Moreover,
Φ is bijective, and since ϕ is a pro-C∗ -isomorphism, (Φ,ϕ) is an isomorphism of
Hilbert pro-C∗ -bimodules. Clearly, a net {Ti}i∈I in M(X) converges strictly to 0 in
M(X) if and only if the net {Φ(Ti)}i∈I converges strictly to 0 in lim

←λ
M(Xλ ) . There-

fore, the strict topology on M(X) can be identified with the inverse limit of the strict
topologies on M(Xλ ), λ ∈ Λ, and since M(Xλ ), λ ∈ Λ , are complete with respect to
the strict topology [5, Proposition 1.27], M(X) is complete with respect to the strict
topology.

(2) Let λ ∈Λ . By [5],
(
ιXλ , ιAλ

)
: (Xλ ,Aλ )→ (M(Xλ ),M(Aλ )) , where ιXλ

(
σX

λ (x)
)

(
πA

λ (a)
)

= σX
λ (xa) and ιAλ

(
πA

λ (b)
)

πA
λ (a) = πA

λ (ba) for all x ∈ X and a,b ∈ A , is a
morphism of Hilbert C∗ -bimodules. Since

χM(X)
λ μ ◦ ιXλ = ιXμ ◦σX

λ μ and πM(A)
λ μ ◦ ιAλ = ιAμ ◦πA

λ μ

for all λ ,μ ∈ Λ with λ � μ , there is a morphism of Hilbert pro-C∗ -bimodules(
lim
←λ

ιXλ , lim
←λ

ιAλ

)
:

(
lim
←λ

Xλ , lim
←λ

Aλ

)
→

(
lim
←λ

M(Xλ ), lim
←λ

M(Aλ )
)

.

Identifying X with lim
←λ

Xλ and A with lim
←λ

Aλ , and using (1) , we obtain a morphism

of Hilbert pro-C∗ -bimodules (ιX , ιA) : (X ,A)→ (M(X),M(A)) , where ιX (x) (a) = xa
and ιA (b)(a) = ba for all x ∈ X and a,b ∈ A . We know that ιA is nondegenerate and
XA is dense in X , therefore (ιX , ιA) is nondegenerate.

(3) Since, for each λ ∈ Λ,

pM(A)
λ (ιX (x)) =

∥∥ιXλ

(
σX

λ (x)
)∥∥

M(Xλ ) =
∥∥σX

λ (x)
∥∥

Xλ
= pA

λ (x)

for all x ∈ X , X can be identified with a closed M(A)−M(A) pro–C∗ -sub-bimodule
of M(X) . Using (1)− (2) and [13, Chapter III, Theorem 3.1], we have

ιX (X)
str

= lim
←λ

χM(X)
λ (ιX (X))

str
= lim
←λ

ιXλ

(
σX

λ (X)
)str

= lim
←λ

ιXλ (Xλ )
str

= lim
←λ

M(Xλ ) = M(X),

where Z
str

denotes the closure with respect to the strict topology of the Hilbert sub-
bimodule Z of a Hilbert bimodule Y . Therefore, X can be identified with a closed
M(A)−M(A) pro–C∗ -sub-bimodule of M(X) which is dense in M(X) with respect to
the strict topology. �

REMARK 3.14. Let (X ,A) be a full Hilbert pro-C∗ -bimodule.

1. A net {xi}i∈I in X converges strictly to 0 if and only if the nets {pA
λ (xia)}i∈I

and {pA
λ (axi)}i∈I converge to 0 for all a ∈ A and λ ∈ Λ .
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2. The morphism of Hilbert pro-C∗ -bimodules (ιX , ιA) : (X ,A)→ (M(X),M(A)) is
strictly continuous.

LEMMA 3.15. Let (X ,A) be a full Hilbert pro-C∗ -bimodule, let {ei}i∈I be an
approximate unit for A and T ∈M(X). Then the net {T · ei}i∈I converges strictly to
T .

Proof. The net {T · ei}i∈I is bounded, since

pM(A)
λ (T · ei) � pM(A)

λ (T ) pλ ,LA(A) (ei) = pM(A)
λ (T ) pλ (ei) � pM(A)

λ (T )

for all i ∈ I and for all λ ∈ Λ . Moreover, we have that

pM(A)
λ ((T · ei−T )(a)) = pA

λ (T (eia−a)) � pλ ,LA(A,X) (T ) pλ (eia−a)

for all a ∈ A, i ∈ I, λ ∈ Λ , and

pλ
((

(T · ei)
∗ −T∗

)
(x)

)
= pλ (eiT

∗(x)−T ∗(x))

for all x ∈ X , i ∈ I, λ ∈ Λ . Based on Proposition 3.7 , and taking into account that
{ei}i∈I is an approximate unit for A , we conclude that {T · ei}i∈I converges strictly to
T . �

In the following theorem we show that any nondegenerate morphism of pro-C∗ -
bimodules is strictly continuous.

THEOREM 3.16. Let (X ,A) and (Y,B) be two full Hilbert pro-C∗ -bimodules and
let (Φ,ϕ) be a nondegenerate morphism of Hilbert pro-C∗ -bimodules from (X ,A) to
(M(Y ),M(B)) . Then (Φ,ϕ) extends to a unique nondegenerate morphism of Hilbert
pro-C∗ -bimodules

(
Φ,ϕ

)
from (M(X),M(A)) to (M(Y ),M(B)) . Moreover, Φ is

strictly continuous.

Proof. For each δ ∈ Δ , there is λ ∈ Λ such that qδ ,M(B) (ϕ (a)) � pλ (a) for

all a ∈ A and qM(B)
δ (Φ(x)) � pA

λ (x) for all x ∈ X . So there exists a C∗ -morphism

ϕ(λ ,δ ) : Aλ →M(Bδ ) such that ϕ(λ ,δ ) ◦πA
λ = πM(B)

δ ◦ϕ and a linear map Φ(λ ,δ ) : Xλ →
M(Yδ ) such that Φ(λ ,δ ) ◦σX

λ = χM(Y )
δ ◦Φ . It is easy to check that

(
Φ(λ ,δ ),ϕ(λ ,δ )

)
is

a morphism of Hilbert C∗ -bimodules from (Xλ ,Aλ ) to (M(Yδ ),M(Bδ )) . Moreover,(
Φ(λ ,δ ),ϕ(λ ,δ )

)
is nondegenerate, since

[
ϕ(λ ,δ ) (Aλ )Bδ

]
=

[
ϕ(λ ,δ )

(
πA

λ (A)
)
Bδ

]
=

[
πM(B)

δ (ϕ (A)B)
]

=
[
πM(B)

δ (B)
]

= Bδ

and
[
Φ(λ ,δ ) (Xλ )Bδ

]
=

[
Φ(λ ,δ )

(
σX

λ (X)
)

πM(B)
δ (B)

]
=

[
χM(Y)

δ (Φ(X)B)
]

=
[
σY

δ (Y )
]
= Yδ .
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Then, by [5, Theorem 1.30], Φ(λ ,δ ) is strictly continuous and
(
Φ(λ ,δ ),ϕ(λ ,δ )

)
extends to a unique nondegenerate morphism of Hilbert C∗ -modules

(
Φ(λ ,δ ),ϕ(λ ,δ )

)
from (M(Xλ ),M(Aλ )) to (M(Yδ ),M(Bδ )) . Let Φδ = Φ(λ ,δ )◦χM(X)

λ and ϕδ = ϕ(λ ,δ )◦
πM(A)

λ . Clearly,
(
Φδ ,ϕδ

)
is a morphism of pro-C∗ -bimodules from (M(X),M(A)) to

(M(Yδ ),M(Bδ )) . Moreover, Φδ is strictly continuous, since χM(X)
λ is strictly continuos

(see Lemma 3.12).
Let δ1,δ2 ∈ Δ with δ1 � δ2 . We have

Φδ1
(ιX (x)) =

(
Φ(λ1,δ1) ◦ χM(X)

λ1

)
(ιX (x)) = Φ(λ1,δ1)

(
ιXλ1

(σX
λ1

(x))
)

= Φ(λ1,δ1)(σ
X
λ1

(x)) = χM(Y )
δ1

(Φ(x))

for some λ1 ∈ Λ and for all x ∈ X . Then(
χM(Y )

δ1δ2
◦Φδ1

)
(ιX (x)) = χM(Y )

δ1δ2

(
χM(Y )

δ1
(Φ(x))

)
= χM(Y)

δ2
(Φ(x)) = Φδ2

(ιX (x))

for all x ∈ X . From these relations and taking into account that χM(Y )
δ1δ2

, Φδ1
, Φδ2

are
strictly continuous and X is dense in M(X) with respect to the strict topology, we

conclude that χM(Y )
δ1δ2
◦Φδ1

= Φδ2
. Therefore there is a strictly continuous linear map

Φ : M(X)→M(Y ) such that χM(Y )
δ ◦Φ = Φδ for all δ ∈ Δ , and Φ◦ ιX = Φ .

By [14, Proposition 3.15], there is a pro-C∗ -morphism ϕ : M(A)→ M(B) such

that πM(B)
δ ◦ϕ = ϕδ for all δ ∈ Δ and ϕ ◦ ιA = ϕ .

It is easy to check that
(
Φ,ϕ

)
is a morphism of Hilbert pro-C∗ -bimodules. Since

ϕ is nondegenerate [7, Proposition 6.1.4] and[
Φ(M(X))B

]
=

[
Φ(M(X))ϕ (A)B

]
=

[
Φ(M(X)A))B

]
= [Φ(X))B] = Y

the morphism of Hilbert pro-C∗ -bimodule
(
Φ ,ϕ

)
is nondegenerate.

Suppose that there is another morphism of Hilbert pro-C∗ -bimodules (Φ1,ϕ1) :
(M(X),M(A)) → (M(Y ),M(B)) such that Φ1 (ιX (x)) = Φ(x) for all x ∈ X and
ϕ1 (ιA (a)) = ϕ (a) for all a ∈ A . Let {ei}i∈I be a approximate unit for A . Then,
by Lemma 3.15 for each T ∈M(X) and m ∈M(A) , the nets {T ·ei}i∈I and {m ·ei}i∈I

are strictly convergent to T respectively m . Thus we have

Φ1 (T ) = str- lim
i

Φ1 (T · ei) = str- lim
i

Φ(T · ei) = Φ(T )

for all T ∈M(X) and

ϕ1 (m) = str- lim
i

ϕ1 (m · ei) = str- lim
i

ϕ (m · ei) = ϕ (m)

for all m ∈M(A) . �
Let X be a Hilbert A−A pro-C∗ -bimodule. For a closed two sided ideal I of

A we put I X =span{ax/a∈I ,x ∈ X} and XI =span{xa/a∈I ,x ∈ X} . By [12,
Lemma 3.7], I X and XI are closed Hilbert pro-C∗ -sub-bimodules of X .



938 M. JOIŢA, R.-B. MUNTEANU AND I. ZARAKAS

DEFINITION 3.17. Let (X ,A) and (Y,C) be two Hilbert pro-C∗ -bimodules. We
say that (Y,C) is an extension of (X ,A) if the following conditions are satisfied:

1. C contains A as an ideal;

2. there exists a morphism (ϕX ,ϕA) of Hilbert pro-C∗ -bimodules from (X ,A) to
(Y,C), such that ϕA : A→C is just the inclusion map;

3. ϕX (X) = ϕA (A)Y = YϕA (A) .

REMARK 3.18. If (Y,C) is an extension of (X ,A) , and if the topology on C is
given by the family of C∗ -seminorms {pλ ;λ ∈ Λ} , then the topology on A is given by
{pλ |A;λ ∈ Λ} , and pλ (ϕA (a)) = pλ (a) for all a ∈ A and for all λ ∈ Λ. Therefore,
pC

λ (ϕX (x)) = pA
λ (x) for all x ∈ X and for all λ ∈ Λ, and so, for each λ ∈ Λ , there is a

linear map ϕXλ : Xλ → Yλ such that σY
λ ◦ϕX = ϕXλ ◦σX

λ . Then ϕX = lim
←λ

ϕXλ , and for

each λ ∈Λ, (Yλ ,Cλ ) is an extension of (Xλ ,Aλ ) via the morphism
(
ϕXλ ,ϕAλ

)
, where

ϕAλ is the inclusion of Aλ into Cλ .

In the following proposition, we show that (M(X),M(A)) is a maximal extension
of (X ,A) in the sense that if (Y,C) is another extension of (X ,A) via a morphism
(ψX ,ψA), then there is a morphism of Hilbert pro-C∗ -bimodules (ϑY ,ϑC) : (Y,C)→
(M(X),M(A)) such that ϑY ◦ψX = ιX and ϑC ◦ψA = ιA (for the case of Hilbert C∗ -
modules, see [3,4]).

PROPOSITION 3.19. Let X be a full Hilbert pro-C∗ -bimodule over A. Then
(M(X),M(A)) is a maximal extension of (X ,A) .

Proof. Let (ιX , ιA) be the morphism of Theorem 3.13(2) between (X ,A) and
(M(X),M(A)) , where ιX (x)(a) = xa, ιA(a)(b) = ab, for x ∈ X , a,b ∈ A . From [15,
Corollary 3.3] we have that for every λ ∈Λ, M(Xλ )ιAλ (Aλ )= ιXλ (Xλ )= ιAλ (Aλ )M(Xλ ) .
Therefore, since from Theorem 3.13, we have that M(X) = lim

←λ
M(Xλ ) , ιX = lim

←λ
ιXλ ,

ιA = lim
←λ

ιAλ , and since both ιA(A)M(X),M(X)ιA(A) and ιX(X) are closed submodules

of M(X) , we deduce that ιA(A)M(X) = ιX (X) = M(X)ιA(A) . Hence (M(X),M(A)) is
an extension of (X ,A) .

To show that (M(X),M(A)) is a maximal extension, let (Y,C) be another exten-
sion of (X ,A) via a morphism (ψX ,ψA) . Then, by Remark 3.18, ψX = lim

←λ
ψXλ ,ψA =

lim
←λ

ψAλ , and for each λ ∈ Λ, (Yλ ,Cλ ) is an extension of (Xλ ,Aλ ) via the morphism(
ψXλ ,ψAλ

)
. By [15, Proposition 3.4], there exists a unique morphism (ϑYλ ,ϑCλ ) :

(Yλ ,Cλ )→ (M(Xλ ),M(Aλ )) such that ϑYλ ◦ψXλ = ιXλ and ϑCλ ◦ψAλ = ιAλ . More-
over,

ϑYλ

(
σY

λ (y)
)(

πA
λ (a)

)
= ψ−1

Xλ

(
σY

λ (y)ψAλ

(
πA

λ (a)
))

and
ϑCλ

(
πC

λ (c)
)(

πA
λ (a)

)
= ψ−1

Aλ

(
πC

λ (c)ψAλ

(
πA

λ (a)
))
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for all a∈A , for all c∈C and for all y∈Y . It is easy to check that
(
ϑYλ

)
λ is an inverse

system of linear maps,
(
ϑCλ

)
λ is an inverse system of C∗ -morphisms, and (ϑY ,ϑC) :

(Y,C)→ (M(X),M(A)) , where ϑY = lim
←λ

ϑYλ and ϑC = lim
←λ

ϑCλ , is a morphism of

Hilbert pro-C∗ -bimodules such that ϑY ◦ψX = ιX and ϑC ◦ψA = ιA . �

4. Crossed products by Hilbert pro-C∗ -modules

A covariant representation of a Hilbert pro-C∗ -bimodule (X ,A) on a pro-C∗ -
algebra B is a morphism of Hilbert pro-C∗ -bimodules from (X ,A) to the Hilbert pro-
C∗ -bimodule (B,B) .

The crossed product of A by a Hilbert pro-C∗ -bimodule (X ,A) is a pro-C∗ -
algebra, denoted by A×X Z , and a covariant representation (iX , iA) of (X ,A) on A×X Z

with the property that for any covariant representation (ϕX ,ϕA) of (X ,A) on a pro-C∗ -
algebra B , there is a unique pro-C∗ -morphism Φ : A×X Z→ B such that Φ◦ iX = ϕX

and Φ◦ iA = ϕA [11, Definition 3.3].

REMARK 4.1. If (Φ,ϕ) is a morphism of Hilbert pro-C∗ -bimodules from (X ,A)
to (Y,B) , then (iY ◦Φ, iB ◦ϕ) is a covariant representation of X on B×Y Z and by the
universal property of A×X Z there is a unique pro-C∗ -morphism Φ×ϕ from A×X Z

to B×Y Z such that (Φ×ϕ)◦ iA = iB ◦ϕ and (Φ×ϕ)◦ iX = iY ◦Φ .

LEMMA 4.2. Let (Φ,ϕ) be a a morphism of Hilbert pro-C∗ -bimodules from
(X ,A) to (Y,B) . If Γ and Γ′ have the same index set and ϕ = lim

←λ
ϕλ , then Φ = lim

←λ
Φλ ,

for each λ ∈ Λ,(Φλ ,ϕλ ) is a morphism of Hilbert C∗ -bimodules, (Φλ ×ϕλ )λ is an
inverse system of C∗ -morphisms and Φ×ϕ = lim

←λ
Φλ ×ϕλ . Moreover, if (Φ,ϕ) is an

isomorphism of Hilbert pro-C∗ -bimodules and ϕλ ,λ ∈ Λ are C∗ -isomorphisms, then
(Φλ ,ϕλ ) , λ ∈ Λ are isomorphisms of Hilbert C∗ -bimodules.

Proof. Let λ ∈ Λ . From

qB
λ (Φ(x))2 = qλ (ϕ (〈x,x〉)) � pλ (〈x,x〉) = pA

λ (x)2

for all x ∈ X , we deduce that there is a linear map Φλ : Xλ → Yλ such that Φλ ◦σX
λ =

σY
λ ◦Φ . It is easy to verify that (Φλ )λ is an inverse system of linear maps and Φ =

lim
←λ

Φλ . Moreover, for each λ ∈ Λ , (Φλ ,ϕλ ) is a morphism of Hilbert C∗ -bimodules.

Let Φλ ×ϕλ be the C∗ -morphism from Aλ ×Xλ Z to Bλ ×Yλ Z induced by (Φλ ,ϕλ ) .
From

πB×YZ

λ μ ◦ (Φλ ×ϕλ )◦ iAλ = πB×Y Z

λ μ ◦ iBλ ◦ϕλ = iBμ ◦πB
λ μ ◦ϕλ

= iBμ ◦ϕμ ◦πA
λ μ =

(
Φμ ×ϕμ

)◦πA×XZ

λ μ ◦ iAλ

and
πB×YZ

λ μ ◦ (Φλ ×ϕλ )◦ iXλ =
(
Φμ ×ϕμ

)◦πA×XZ

λ μ ◦ iXλ
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for all λ ,μ ∈ Λ with λ � μ and taking into account that iAλ (Aλ ) and iXλ (Xλ ) gen-
erate Aλ ×Xλ Z , we deduce that (Φλ ×ϕλ )λ is an inverse system of C∗ -morphisms.
Moreover, since

lim
←λ

(Φλ ×ϕλ )◦ lim
←λ

iAλ = lim
←λ

(Φλ ×ϕλ )◦ iAλ = lim
←λ

iBλ ◦ϕλ = lim
←λ

iBλ ◦ lim←λ
ϕλ

and

lim
←λ

(Φλ ×ϕλ )◦ lim
←λ

iXλ = lim
←λ

(Φλ ×ϕλ )◦ iXλ = lim
←λ

iYλ ◦Φλ = lim
←λ

iYλ ◦ lim←λ
Φλ ,

we obtain Φ×ϕ = lim
←λ

Φλ ×ϕλ .

Suppose that (Φ,ϕ) is an isomorphism of Hilbert pro-C∗ -bimodules and ϕλ ,λ ∈
Λ are C∗ -isomorphisms. Then, since ϕ−1 = lim

←λ
ϕ−1

λ , by the first part of the proof,

Φ−1 = lim
←λ

ψλ and
(
ψλ ,ϕ−1

λ
)

is a morphism of Hilbert C∗ -bimodules for all λ ∈ Λ .

Let λ ∈ Λ . From

ψλ ◦Φλ ◦σX
λ = ψλ ◦σY

λ ◦Φ = σX
λ ◦Φ−1 ◦Φ = σX

λ

and
Φλ ◦ψλ ◦σY

λ = Φλ ◦σX
λ ◦Φ−1 = σY

λ ◦Φ◦Φ−1 = σY
λ

and taking into account that σX
λ and σY

λ are surjective, we deduce that ψλ = Φ−1
λ . �

The following proposition gives the relation between the crossed product of A by
X and the crossed product of M(A) by M(X) .

PROPOSITION 4.3. Let (X ,A) be full Hilbert pro-C∗ -bimodule. Then A×X Z

can be embedded into M(A)×M(X) Z .

Proof. Let ιA be the embedding of A in M(A) and ιX the embedding of X in
M(X) . Then (ιX , ιA) is a morphism of Hilbert pro-C∗ -bimodules, and since ιA =
lim
←λ

ιAλ , by Lemma 4.2, ιX × ιA = lim
←λ

ιXλ × ιAλ is a pro-C∗ -morphism from A×X Z to

M(A)×M(X) Z . Moreover, since

pλ ,M(A)×M(X)Z
(ιX × ιA (c)) =

∥∥∥ιXλ × ιAλ

(
πA×XZ

λ (c)
)∥∥∥

M(Aλ )×M(Xλ )Z

[1, Remark 2.2]

=
∥∥∥πA×XZ

λ (c)
∥∥∥

Aλ×Xλ Z

= pλ ,A×XZ (c)

for all c∈A×X Z and for all λ ∈Λ , A×X Z can be identified with a pro-C∗ -subalgebra
of M(A)×M(X) Z . �

The following proposition is a generalization of [15, Proposition 4.7].
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PROPOSITION 4.4. Let (X ,A) be a full Hilbert pro-C∗ -bimodule. Then M(A)×M(X)
Z can be identified with a pro-C∗ -subalgebra of M(A×X Z) .

Proof. Since X is full, (iX , iA) is nondegenerate and iA = lim
←λ

iAλ and iX = lim
←λ

iXλ

[11, Propositions 3.4 and 3.5]. Then, by Theorem 3.16, (iX , iA) extends to a co-
variant representation

(
iX , iA

)
of (M(X),M(A)) on M(A×X Z) , and moreover, iA =

lim
←λ

iAλ and iX = lim
←λ

iXλ . It is easy to check
(
iXλ , iAλ

)
is a covariant representation of

(M(Xλ ),M(Aλ )) on M(Aλ ×Xλ Z) for each λ ∈ Λ . By [15, Proposition 4.7], for each
λ ∈Λ , there is an injective C∗ -morphism Φλ : M(Aλ )×M(Xλ ) Z →M(Aλ ×Xλ Z) such
that Φλ ◦ iM(Xλ ) = iXλ and Φλ ◦ iM(Aλ ) = iAλ . From

πM(A×XZ)
λ μ ◦Φλ ◦ iM(Xλ ) = πM(A×XZ)

λ μ ◦ iXλ = iXμ ◦ χM(X)
λ μ

= Φμ ◦ iM(Xμ ) ◦ χM(X)
λ μ = Φμ ◦πM(A×XZ)

λ μ ◦ iM(Xλ )

and

πM(A×XZ)
λ μ ◦Φλ ◦ iM(Aλ ) = πM(A×XZ)

λ μ ◦ iAλ = iAμ ◦πM(A)
λ μ

= Φμ ◦ iM(Aμ ) ◦πM(A)
λ μ = Φμ ◦πM(A×XZ)

λ μ ◦ iM(Aλ )

for all λ ,μ ∈ Λ , with λ � μ , and taking into account that iM(Xλ ) (M(Xλ )) and
iM(Aλ ) (M(Aλ )) generate M(Aλ ) ×M(Xλ )Z , we deduce that (Φλ )λ is an inverse system
of isometric C∗ -morphisms. Hence Φ = lim

←λ
Φλ is an injective pro-C∗ -morphism from

lim
←λ

M(Aλ ) ×M(Xλ )Z to lim
←λ

M(Aλ ×Xλ Z) such that pλ ,M(A×XZ) (Φ(c)) =

pλ ,M(A)×M(X)Z
(c) for all c∈M(A)×M(X) Z and for all λ ∈Λ . Therefore, M(A)×M(X) Z

can be identified with a pro-C∗ -subalgebra of M(A×X Z) . �
An automorphism α of a pro-C∗ -algebra A such that pλ (α(a)) = pλ (a) for all

a ∈ A and λ ∈ Λ′ , where Λ′ is a cofinal subset of Λ , is called an inverse limit au-
tomorphism. If α is an inverse limit automorphism of the pro-C∗ -algebra A , then
Xα = {ξx;x ∈ A} is a Hilbert A−A pro-C∗ -bimodule with the bimodule structure de-
fined as ξxa = ξxa , respectively aξx = ξα−1(a)x , and the inner products are defined as〈
ξx,ξy

〉
A = x∗y , respectively A

〈
ξx,ξy

〉
= α (xy∗) . The crossed product A×α Z of A

by α is isomorphic to the crossed product of A by Xα [11].

COROLLARY 4.5. If α is an inverse limit automorphism of a non unital pro-C∗ -
algebra A, then M(A)×α Z can be identified with a pro-C∗ -subalgebra of M(A×α Z) .
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