oerators
nd
atrices

Volume 9, Number 4 (2015), 925-942 doi:10.7153/0am-09-55

MULTIPLIERS OF HILBERT PRO-C*-BIMODULES AND
CROSSED PRODUCTS BY HILBERT PRO-C*-BIMODULES

MARIA JOITA, RADU-B. MUNTEANU AND IOANNIS ZARAKAS

(Communicated by H. Bercovici)

Abstract. In this paper we introduce the notion of multiplier of a Hilbert pro-C* -bimodule and
we investigate the structure of the multiplier bimodule of a Hilbert pro-C* -bimodule. We also
investigate the relationship between the crossed product A xx Z of a pro-C* -algebra A by a
Hilbert pro-C* -bimodule X over A, the crossed product M(A) X y;(x) Z of the multiplier algebra
M(A) of A by the multiplier bimodule M(X) of X and the multiplier algebra M(A xx Z) of
A X X Z.

1. Introduction

The notion of a Hilbert C*-module is a generalization of that of a Hilbert space
in which the inner product takes its values in a C*-algebra rather than in the field of
complex numbers, but the theory of Hilbert C*-modules is different from the theory
of Hilbert spaces (for example, not every Hilbert C*-submodule is complemented). In
1953, Kaplansky first used Hilbert C* -modules over commutative C* -algebras to prove
that derivations of type I AW™*-algebras are inner. In 1973, the theory was extended
independently by Paschke and Rieffel to non-commutative C*-algebras and the lat-
ter author used it to construct the theory of “induced representations of C*-algebras”.
Moreover, Hilbert C*-modules gave the right context for the extension of the notion
of Morita equivalence to C*-algebras and have played a crucial role in Kasparov’s
KK -theory. Finally, they may be considered as a generalization of vector bundles to
non-commutative x-algebras, therefore they play a significant role in non-commutative
geometry and, in particular, in C*-algebraic quantum group theory and groupoid C*-
algebras. The extension of such a rich in results concept, to the case of pro-C* -algebras
could not be disregarded.

In [17], Zarakas introduced the notion of a Hilbert pro-C*-bimodule over a pro-
C* -algebra and studied its structure. In [8], Joita investigated the structure of the mul-
tiplier module of a Hilbert pro-C*-module. In this paper we introduce the notion of
multiplier of a Hilbert pro-C*-bimodule and we investigate the structure of the multi-
plier bimodule of a Hilbert pro-C* -bimodule.

In[11], Joita and Zarakas extended the construction of Abadie, Eilers and Exel [2]
in the context of pro-C*-algebras and associated to a Hilbert pro-C*-bimodule (X,A)
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a pro-C*-algebra A xx Z, called the crossed product of A by X . It is natural to ask
what is the relationship between the pro-C*-algebras associated to a Hilbert pro-C*-
bimodule (X,A) and its multiplier bimodule (M (X),M(A)).

The organization of this paper is as follows. In Section 2, we recall some notations
and definitions. Section 3 is devoted to investigate multipliers of a Hilbert pro-C*-
bimodule. Given a Hilbert pro-C*-bimodule X, we show that the Hilbert pro-C*-
bimodule structure on X extends to a Hilbert pro-C*-bimodule structure on the mul-
tiplier bimodule M(X) of X. Also we define the strict topology on M(X) and show
that X can be identified with a Hilbert pro-C*-sub-bimodule of M(X) which is dense
in M(X) with respect to the strict topology. We introduce the notion of morphism of
Hilbert pro-C*-bimodules, and show that a nondegenerate morphism between Hilbert
pro-C* -bimodules is continuous with respect to the strict topology and it extends to a
unique morphism between the multiplier bimodules. Finally, as in the case of Hilbert
C*-bimodules [15], we show that (M(X),M(A)) can be regarded as a maximal exten-
sion of (X,A). Section 4 is devoted to investigate the relationship between the crossed
product A xx Z of a pro-C*-algebra A by a Hilbert pro-C*-bimodule X over A, the
crossed product M(A) x y;x) Z of the multiplier algebra M(A) of A by the multiplier
bimodule M(X)of X and the multiplier algebra M (A xx Z) of A xx Z. We show that
the crossed product associated to a full Hilbert pro-C*-bimodule (X,A) can be iden-
tified with a pro-C*-subalgebra of the crossed product associated to (M (X),M(A))
and the crossed product associated to (M(X),M(A)) can be identified with a pro-
C*-subalgebra of the multiplier algebra of the crossed product associated to (X,A).
Crossed products by Hilbert pro-C*-bimodules are generalizations of crossed prod-
ucts of pro-C*-algebras by inverse limit automorphism [11]. As an application, we
prove that given an inverse limit automorphism o of a nonunital pro-C*-algebra A,
the crossed product of M(A) by @, the extension of ¢ to M(A), can be identified with
a pro- C*-subalgebra of the multiplier algebra M(A x ¢ Z) of A X ¢ Z.

2. Preliminaries

A complete Hausdorff topological x-algebra A whose topology is given by a
directed family of C*-seminorms {p;;A € A} is called a pro-C*-algebra. Other
terms used in the literature for pro-C*-algebras are: locally C*-algebras (A. Inoue,
M. Fragoulopoulou, A. Mallios, etc.), LMC* -algebras (G. Lassner, K. Schmiidgen),
b* -algebras (C. Apostol).

Let A be a pro-C* -algebra with the topology given by I'= {p, ;A € A} and let B
be a pro-C* -algebra with the topology given by I" = {g5;06 € A}.

An approximate unit of A is a net {e;}ic; of positive elements in A such that
py (e;) <1 forall i €I and forall A € A and the nets {e;b}ic; and {be;};c; converge
to b forall beA.

A pro-C* -morphism is a continuous *-morphism ¢ : A — B (that is, ¢ is linear,
¢ (ab) = ¢(a)p(b) and @(a*) = @(a)* for all a,b € A and for each g5 € T, there is
p;. € T such that g5 (@(a)) < p; (a) for all @ € A). An invertible pro-C* -morphism
¢ : A — B is a pro-C* -isomorphism if ¢! is also pro-C*-morphism.
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{(A;L, ||'HA,1> STAu Y a>u A uea i an inverse system of C*-algebras, then {i_filAA

with the topology given by the family of C*-seminorms {p; },ca, With pj ((aﬂ) e A)
= [laxll4, forall A € A, is a pro-C* -algebra.

Let A be a pro-C*-algebra with the topology given by T' = {p,;A € A}. For
A € A, kerp, is a closed *-bilateral ideal and Ay = A/kerp, is a C*-algebra in the
C*-norm ””m induced by p; (that is, Ha—i—kerp;LHp)1 = p,(a), forall a € A). The
canonical map from A to A; is denoted by 7', 7 (a) = a+kerp; forall a € A.
For A,u € A with u < A there is a surjective C* -morphism nfu :Aj — Ay such that
nfﬂ (a+kerp,) = a+kerpy, and then {A,l;rcfu},l#e,\ is an inverse system of C*-
algebras. Moreover, the pro-C* -algebras A and IE}LIA ,, are isomorphic (Arens-Michael

decomposition). For further information on pro-C*-algebras we refer the reader to
[6, 13, 14].

Here we recall some basic facts from [7] and [17] regarding Hilbert pro-C*-
modules and Hilbert pro-C* -bimodules respectively.

Let A be a pro-C* -algebra whose topology is given by the family of C* -seminorms
I'= {pl;z, S A}

A right Hilbert pro-C* -module over A (or just Hilbert A-module), is a linear space
X that is also a right A-module equipped with a right A-valued inner product (-,-),,
that is C- and A-linear in the second variable and conjugate linear in the first variable,
with the following properties:

1. (x,x), >0 and (x,x), =0 if and only if x =0;

2. ((x3)4)" = (,x)4
and which is complete with respect to the topology given by the family of semi-

norms {pA}5.ca, with pi (x) = p ((x,x),)% ,x € X.. A Hilbert A-module X is full if
the pro-C* - subalgebra of A generated by {(x,y),;x,y € X} coincides with A.

A left Hilbert pro-C*-module X over a pro-C*-algebra A is defined in the same
way, where for instance the completeness is requested with respect to the family of
seminorms {4p; };ca» Where 2p; (x) = py (4 <x,x>)% xeX.

In the case X is a left Hilbert pro-C*-module over (A,{pj}ca) and a right
Hilbert pro-C* -module over (B,{q; }1ca), such that the following relations hold:

o A(x,y)z=x(y,2)p forall x,y,z€X,

o g¥(ax) < pz(a)gs (x) and Apy (xb) < g (b)*ps (x) forall xe X,acA,beB
and forall A € A,

then we say that X is a Hilbert A — B pro-C*-bimodule.

A Hilbert A — B pro-C*-bimodule X is full if it is full as a right and as a left
Hilbert pro-C*-module. Throughout the paper we use the notation (X,A) to denote a
Hilbert A — A (pro-) C*-bimodule X .

Let A be an upward directed set and {A;;B;; X, 43 XA Oaus A L € AA > 1}
an inverse system of Hilbert C* -bimodules, that is:
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o {AymA,u €A A >} and {By;xausA, 1€ AJA > u} are inverse systems
of C*-algebras;
o {X3;003A, 0 € A,A > u} is an inverse system of Banach spaces;
e foreach A € A, X, is aHilbert Ay —B; C*-bimodule;

° <67L[J (x)7G7L[L (y>>BH :XQLIJ (<xay>Bl> and Ay <G7L[L (x)aGQL[J (y)> =Tu (Al <xay>)
for all x,y € X, and forall A,u € A with A > u.

o 05, (X)xu(b) =03, (xb), myy(a)opy,(x) =0y (ax) forall xe Xy, ac Ay, be
B) andforall A,u € A with A > .
Let A= 11mA 1, B= 11mB;L and X = th;L Then X has a structure of a Hilbert
A — B pro-C* blmodule Wlth

(xl))LeA (bl)AeA = (xlbl)AeA and <(xl))LeA7(yl))LeA>B = (<xl»yl>Bk>
and

(aA)AeA (xA)AeA = (alxl)AeA and 4 <(xl))LEAv(yl))LeA> = (A)L <xl7yl>)AeA'

AEA

Let X be a Hilbert A — B pro-C*-bimodule. Then, for each 1 € A, 4p; (x) =
45 (x) for all x € X, and the normed space X; = X /N¥, where N¥ = {x € X;45 (x) =
0}, is complete in the norm [|x-+N¥||x, = g% (x),x € X. Moreover, X, has a canoni-
cal structure of a Hilbert Ay — B; C*-bimodule with (x+ N2,y +N;15>Bl =(x,y)p+

kergy and 4, (x+N&,y+N¥) =4 (x y) +kerp; forall x,y € X. The canonical sur-
jection from X to X is denoted by cr}L For A,u € A with A > u, there is a canonical
surjective linear map (f)L : X; — X, such that (f)L (x+N?) =x+Nf forall xe X.
Then {AA’BA’XA’”M 717)“1 GM ;A L € A, A > u} is an inverse system of Hilbert C*-
bimodules in the above sense.

Let X and Y be Hilbert pro-C*-modules over B. A morphism 7 : X — Y of right
modules is adjointable if there is another morphism of modules 7 : ¥ — X such that
(Tx,y)p = (x,T*y)p forall x € X,y € Y. The vector space Lg(X,Y) of all adjointable
module morphisms from X to Y has a structure of locally convex space under the
topology given by the family of seminorms {q 1, (x.v)}rea> Where gy 1 xy) (T) =
sup{q%(Tx);x € X,q% (x) < 1}. Moreover, {Lg, (X;,Y)): )()LLZ(XY AueNL>=u}
Ly(XY Ly(XY

80 Ly, (X3,Y3) — L, (Xu.Yy) s given by 2% (T) (o (x)) =
o), (T(cr}L (x))), is an inverse system of Banach spaces and Lg (X, Y)= 111}11 Lg, (X3,Y2)

where o

up to an isomorphism of locally convex spaces. The canonical projections xiB X

Ly(X,Y) — Ly, (X,,Y3), A € A are given by x.**")(T) (oF (x)) = 6} (T(x)) for
all xeX. Forx€ X and y €Y, the map 6, : X — Y given by 0y, (z) =y(x,2)p
is an adjointable module morphism and the closed subspace of Lg(X,Y) generated by
{6yx;x€X and y €Y'} is denoted by Kz(X,Y ), whose elements are usually called com-
pact operators. For Y =X, Lg(X) = Lg(X,X) is a pro-C*-algebra with (Lg(X)), =
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Lg, (X,) for each A € A, and Kp(X) = Kp(X,X) is a closed two-sided *-ideal of
Lp(X) with (Kg(X)); = K, (X;) foreach A € A.

A pro-C*-algebra A has a natural structure of Hilbert pro-C*-module, and the
multiplier algebra M(A) has a structure of pro-C*-algebra which is isomorphic to
Ls(A) [14]. Moreover, pro-C*-algebras A and K4 (A) are isomorphic and A is a closed
bilateral ideal of M(A) which is dense in M(A) with respect to the strict topology. The
strict topology on M(A) is given by the family of seminorms { p(l7a)}(l7a)e AxA, Where
P(r.a) (D) = pj (ab) + p; (ba) forall b€ M(A).

A pro-C*-morphism ¢ : A — M(B) is nondegenerate if [ (A)B] = B, where
[ (A)B] denotes the closed subspace of B generated by {¢ (a)b;a € A,b € B}. A
nondegenerate pro-C* -morphism ¢ : A — M(B) extends to a unique pro-C*-morphism
©:M(A) — M(B) which is strictly continuous on bounded sets.

Throughout this paper, A and B will denote two pro-C*-algebras whose topolo-
gies are given by the families of C*-seminorms T = {p,;A € A}, respectively I =
{as:6 € A}.

3. Multipliers of Hilbert pro-C* -bimodules
Let X and Y be two Hilbert pro-C*-modules over A.

PROPOSITION 3.1. The vector space La(X,Y) of all adjointable module maps
from X to Y has a natural structure of Hilbert Ly(Y) — Lx(X) pro-C*-bimodule with
the bimodule structure given by

S-T=SoTandT-R=ToR
Jorall T € Ly(X,Y),S € Ls(Y) and R € Ls(X) and the inner products given by
L (N, ) =TioTy and (T1, 1), x) =T o >
SJorall |, T, € Ly(X,Y).
Proof. It is a simple calculation to verify that L4 (X,Y) has a structure of pre-right

Hilbert L4 (X)-pro-C* -module with

T-R=ToRand (T, T3), x) =T o T
and L, (X,Y) has a structure of pre-left Hilbert L4 (Y)-pro-C*-module with

S:T=SoTand ,(y)(T1,T2) =TioT;.

Moreover,

Ly, (X3)
(see, for example, the proof of Proposition 1.10 [5])
2

Ly, (X3.73)

= PA.Ls(X)Y) (T)2
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and

L) ps (T = P sy () (T5T)) = Pasyry (ToT")

= [ (1) a6y

Ly, ()
2
— LA(X7Y) T *

X)L ( ) LA)L(Y)LﬂXl)

(see, for example, the proof of Proposition 1.10 [5])
2

La, (Xp.13)

= %,ILA X (1) = DALa(X.Y) (T)

forall T € Ly(X,Y) and for all A € A. Therefore, L4 (X,Y) is a left Hilbert L, (Y)-
module and a right Hilbert L, (X)-module.
Also it is easy to check that 1, (y)(T1,T2) - T3 = T1 - (T2, T3>LA(X) forall 71,15, T5 €

La(X,Y), and since piA(X) (T)=1Wp, (T)=pj 1,xy) (T) forall T €La(X,Y) and
forall A € A, L4(X,Y) has astructure of Hilbert Ly (Y) — L4 (X) pro-C*-bimodule. [J

REMARK 3.2. Suppose that (X,A) is a full Hilbert pro-C* -bimodule. Then there
is a pro-C*-isomorphism @4 : A — K4 (X) given by ®, (a) (x) = a-x which extends to
a pro-C* -isomorphism @4 : M(A) — L4 (X). Moreover, p; 1, x) (P4 (a)) = p (a) for
all a € A and A € A. Identifying M(A) with Ls(A) and using Proposition 3.1 and
[15, Proposition 2.5], we obtain a natural structure of Hilbert M(A) — M(A) pro—C*-
bimodule on L4 (A,X) with

m-T = ()TA(m) oT and M(A) <T1,T2> = q)Xl (Tl OT2*)

and
T-m=Tomand <T1,T2>M(A) =TioT

forall T,Ty,T» € L4(A,X) and m € M(A).

DEFINITION 3.3. Let (X,A) be a full Hilbert pro-C*-bimodule. The Hilbert
M(A)—M(A) pro-C*-bimodule L4 (A,X) is called the multiplier bimodule of X and it
is denoted by M(X).

The following definition is a generalization of [5, Definition 1.25].

DEFINITION 3.4. The strict topology on M(X) is given by the family of semi-

norms {p . a)}(1.a)eaxa» Where p oy (T) = pf{l(A) (T-a)+ p]f(A) (a-T) forall T €

M(X) and a € A.

REMARK 3.5. Let {T,}, be a sequence in M(X).
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1. If {T,}, is strictly convergent, then it is bounded. Indeed, if {7,}, converges
strictly to T € M(X), then for each A € A, since

[ @ @ - " (1) @), = p4 (Tala) - T (@)

=Y (Ty-a—T-a),

the sequence {xi’l(x) (Ty) 7} (a)}n converges to xll{/[(x) (T) 7} (a) forall a €A
and by the Banach-Steinhaus theorem there is M, > 0 such that

<M,
Ly, (Ax:X2)

Py (1) = pasyax) (B) = |1 (1)

forall n € N.

2. If {T,}, converges strictly to 0, then the sequences {(Tn,Tn>M(A)}n and
{m@)(Tn, T) }n are strictly convergentto 0 in M(A).

Suppose that X is a Hilbert pro-C*-module over A. In [8, Definition 3.2], the strict
topology on L4(A,X) is given by the family of seminorms {p (1 4. }(%.ax)cAxaxx s
where p(; o) (T) = p} (T (a))+p; (T*(x)). We will show that this definition coincides
with the above definition of the strict topology on M(X) on bounded subsets when X
is a full Hilbert A — A pro-C*-bimodule. To show this, we will use the following result.

LEMMA 3.6. Let X be a Hilbert pro-C*-module over A. For each x in X there
is a unique element y in X such that x =y (y,y), .

Proof. Let x € X. For each A € A, there is a unique element y, € X, such that
ol (x) =y <J’A:)’A>Ax (see, for example, [16, Proposition 2.31]). Let A,u € A with
A > u. From

ol (9 = o (0f () = ol 02) (0, ) 0, 0w)),

and [ 16, Proposition 2.31], we deduce that Gfﬂ (va)= yu- Therefore, there exists y € X

such that 6 (y) =y, forall A € A and x = y(y,y),. Moreover, y is unique with this
property. [

PROPOSITION 3.7. Let (X,A) be a full Hilbert pro-C* -bimodule and {T;}ici a
netin M(X).

1. If {Ti}ier converges strictly to 0, then {p(; q.)(Ti)}icr converges to 0 for all
a €A, forall x € X and forall A € A.

2. If {Ti}ier is bounded and {p(; o) (Ti)}ic1 convergesto O for all a € A, for all
x € X and forall A € A, then {T;}ic converges strictly to 0.
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Proof. (1) If the net {T;};c; converges strictly to O, then {p’}L a))}ier con-
vergesto O foralla € A and A € A. Let x€ X and A € A. Then, by Lemma 3.6, there
is y € X such that x =y (y,y)4, = 6,, (y). From

pa (T7 (X)) = pa (T (655 () < PaLyxa) (T 0 B4y) P (9)
= Pissax) (B0 T ph () = P (6,0 Th) P (3),

we deduce that the net {p, (T* (x))}ic; convergesto 0.
(2) If {P(r.ax (Ti)}ier converges to O for all a € A, x € X and A € A, then
{P4 (Ti(a)) }ier converges to O forallac A and A € A. Let S € K4(X), L € A and

€>0. Then there is 2 Oy, such that py ;. x) (S— Y kaﬂyk) <&, andsince {Tj}ics
k=1 ’ k=1

is bounded, there is M; > 0 such that p]f(A) (T;) < M, forall i € 1. From

pj)‘:I(A) (SoTp) < PALA(X) (S— g ekak) pl)tL/[(A) (Ti) +p1;L4(A) (kzl O © Tl)
< EM) +py. La(AX) ( )y exk,T*(vk))

< &M + kgpfz (k) pa (T (7))

we deduce that {p}L (So T;) }icr convergesto 0. [
Let (X,A) and (Y,B) be two Hilbert pro-C* -bimodules.

DEFINITION 3.8. A morphism of Hilbert pro-C* -bimodules from (X,A) to (Y,B)
is a pair (®, @) consisting of a pro-C* -morphism ¢ : A — B and amap ®: X — Y such
that:

1. ®(xa)=(x)@(a) forall x € X and for all a € A;
2. ®(ax) =@ (a)P(x) forall x € X and for all a € A;
3. (@ (x),®(y))p = @ ((x,),) forall x,y € X;

B(®(x), @ (y)) = ¢ (afx,y)) forall x,y € X.

b

The relation (3) implies the relation (1) and the relation (4) implies (2).
If (®,9): (X,A) — (Y,B) is a morphism of Hilbert pro-C*-bimodules, then ®
is continuous, since for each § € A, there is A € A such that

73 (®(x))* = 45 (@ (x), @ (x)) ) = g5 (¢ ((x,x)4)) < pa ((x,x)4) = P (%)

forall x € X. It is easy to check that if ¢ is injective, then @ is injective, and if (X,A)
is full and @ is injective, then ¢ is injective.
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DEFINITION 3.9. Anisomorphism of Hilbert pro-C* -bimodules is a morphism of
Hilbert pro-C* -bimodules (®, @) such that ¢ is a pro-C*-isomorphism and the map
@ is bijective.

The Hilbert pro-C*-bimodules (X,A) and (Y,B) are isomorphic if there is an
isomorphism of Hilbert pro-C* -bimodules (@, ¢) : (X,A) — (Y,B).

DEFINITION 3.10. A morphism of Hilbert pro-C*-bimodules (®,¢) : (X,A) —
(M(Y),M(B)) is nondegenerate if ¢ is nondegenerate and [®(X)B] =Y.

REMARK 3.11. If (®,¢): (X,A) — (M(Y),M(B)) is nondegenerate and (X,A)
is full, then (®, @) is nondegenerate in the sense of [9, Definition 3.1], since

[@(X)"Y] = [®(X)"®(X) B] = [(®(X), (X)) (0 B]
=[p((X,X),)B] = [¢(A)B] =B.

LEMMA 3.12. Let (X,A) be a full Hilbert pro-C* -bimodule. Then the maps

(xiA(A,x>7n24(A>> S(M(X),M(A)) — (M(X;),M(A})),A €A,
where nj{/[(A) = XfA(A)» and

(xjﬁ<A=X>7n§ﬁA>) L(M(X3),M(A)) — (M(X,),M(Ay)) , Ayt € A with A >

where nﬁA) = xiZ(A) , are all strictly continuous morphisms of Hilbert bimodules.

Proof. Let A,u € A with A > u. For T, T, € M(X),) we have

(a0 (). (T2>>M<Au> = 1M ()" o g (1)

= 1 (1) 0 gt (1)
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Therefore, (xi"‘l(’q X) rc%EA)> is a morphism of Hilbert C*-bimodules.

Let {T;}ier be anetin M(X; ) which converges strictly to 0. From

HXLAAX )ﬁ”H :HXLA(A,X)(TI_)E%A)(nix(a»

= |0k, (7i (71 @)

Xu

< |7 (72 (@),

forall a € A, and

[ (90 224 )

= () o™ @
= a0 (52 (s)0 1)

<[l e

Lay (A Xu)

Lay (A Xu)

La, (A2:X3)

forall § € K4(X), and taking into account that Ky, (X,) = xﬁA(X) (Ka(X)), we deduce
that the net { x%ﬁx) (T;) }ier converges strictly to 0.
In a similar way, we show that the maps (x}fA(A X) ni/[(A)> P (M(X),M(A)) —

(M(X),),M(A})),A €A are all strictly continuous morphisms of Hilbert bimodules. [J

THEOREM 3.13. Let (X,A) be a full Hilbert pro-C* -bimodule.

1. M(X) is complete with respect to the strict topology;

2. (w,u): (X,A) — (M(X),M(A)), where 1x(x)(a) = xa and 14 (D) (a) = ba
for all x € X and a,b € A, is a nondegenerate morphism of Hilbert pro-C* -
bimodules;

3. X can be identified with a closed M(A) — M(A) pro-C* -sub-bimodule of M(X)
which is dense in M(X) with respect to the strict topology.

Proof. (1)Foreach A € A, M(X,) has astructure of Hilbert M(A; )— M(A,) C*-
bimodule (see, [5, Proposition 1.10]). It is easy to check that

(M) M) o A€ AL >
where x%ﬁ ) = x)LLA AX) for all A, € A with A > p, is an inverse system of Hilbert
C*-bimodules. Then lhil M(X,) has a structure of Hilbert lir? M(Ay)— lirgg M(Ay)
pro-C*-bimodule. Moreover, by Lemma 3.12 the maps x%ﬁx) tM(X)) — M(Xy),
A, € A,A > u are all strictly continuous.
Consider, the maps:

®: M(X) — limM(x,). (T) = (2, %())
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and
@ M(A) — HmM (A7), @ (m) = (" (m))

It is easy to check that (@, ¢) is a morphism of Hilbert pro-C*-bimodules. Moreover,
@ is bijective, and since ¢ is a pro-C*-isomorphism, (D, ) is an isomorphism of
Hilbert pro-C*-bimodules. Clearly, a net {T;}ic; in M(X) converges strictly to 0 in
M(X) if and only if the net {®(T;)}ic; converges strictly to 0 in liI}Ll M(X,). There-
fore, the strict topology on M(X) can be identified with the inverse limit of the strict
topologies on M(X; ), A € A, and since M(X, ), A € A, are complete with respect to
the strict topology [5, Proposition 1.27], M(X) is complete with respect to the strict
topology.

(2)Let A € A. By [5], (1x;, 1, ) : (X2,42) — (M(X3),M(Ay)), where 1x, (03 (x))
(m(a)) = 6f (xa) and 1, (7} (b)) 7} (a) = 7} (ba) forall x€ X and a,b €A, is a
morphism of Hilbert C*-bimodules. Since

M(X) - X M(A) o A
T Ol =1x, ©0y and Ty Ol =1, 0Ty

forall A,u € A with A > u, there is a morphism of Hilbert pro-C*-bimodules

limy, ,limt o imX; ,limA IimM (X, ),limM(A .
(s i, ) 5 (it ) — (timava )t ) |
Identifying X with lirilX,l and A with liri]A 2 and using (1), we obtain a morphism

of Hilbert pro-C*-bimodules (1x,14) : (X,A) — (M(X),M(A)), where 1x (x) (a) = xa
and 14 (b) (@) = ba for all x € X and a,b € A. We know that 14 is nondegenerate and
XA is dense in X, therefore (1x,14) is nondegenerate.

(3) Since, for each A € A,

P () =l (08 00) e, = o @y, = A0

for all x € X, X can be identified with a closed M(A) — M(A) pro—C*-sub-bimodule
of M(X). Using (1) — (2) and [13, Chapter III, Theorem 3.1], we have

Str Str —_ r

_ 11151;52“") (1x (X)) =limuy, (of (X)) = limiy, (X;)

— limM(X;) = M(X),

Str

156 (X)

where Z"" denotes the closure with respect to the strict topology of the Hilbert sub-
bimodule Z of a Hilbert bimodule Y. Therefore, X can be identified with a closed
M(A) —M(A) pro—C*-sub-bimodule of M(X) which is dense in M(X) with respect to
the strict topology. [

REMARK 3.14. Let (X,A) be a full Hilbert pro-C*-bimodule.

1. A net {x;i}ier in X converges strictly to 0 if and only if the nets {pg‘L (xia) }ier
and {p’}L (axi)}ier convergeto O forall a € A and A € A.
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2. The morphism of Hilbert pro-C*-bimodules (1x,14) : (X,A) — (M(X),M(A)) is
strictly continuous.

LEMMA 3.15. Let (X,A) be a full Hilbert pro-C*-bimodule, let {e;}ic; be an
approximate unit for A and T € M(X). Then the net {T - e;}ic; converges strictly to
T.

Proof. The net {T -e;}ics is bounded, since

Py (T e) <P (1) pagyay (e) = P (T pa (e) < ) (T)

forall i € I and for all A € A. Moreover, we have that

p]f(A) ((T-e;—T)(a)) = p4 (T (eja—a)) < Paryax) (T)pa(eia—a)

foralla€ A, iel, A €A, and

pa(((T-e)" =T7) (x)) = pa (eT"(x) = T"(x))

forall x € X, i€ I, A € A. Based on Proposition 3.7 , and taking into account that
{ei}ier is an approximate unit for A, we conclude that {T - e;};c; converges strictly to
T. O

In the following theorem we show that any nondegenerate morphism of pro-C*-
bimodules is strictly continuous.

THEOREM 3.16. Let (X,A) and (Y,B) be two full Hilbert pro-C* -bimodules and
let (@, Q) be a nondegenerate morphism of Hilbert pro-C* -bimodules from (X,A) to
(M(Y),M(B)). Then (®,9) extends to a unique nondegenerate morphism of Hilbert

pro-C* -bimodules (®,Q) from (M(X),M(A)) to (M(Y),M(B)). Moreover, ® is
strictly continuous.

Proof. For each & € A, there is A € A such that g5 ) (¢ (a)) < p (a) for
all a € A and q]g(B) (@ (x)) < pj (x) forall x € X. So there exists a C*-morphism

(B

®(.,5): Ay — M(Bg) such that @, g omy = Tt,'g[ )o(p and a linear map @ s): X; —

M(Yg) such that @, 5 005 = xg/[(Y) o®. Itis easy to check that (®(; 5),9(1.5)) is
a morphism of Hilbert C*-bimodules from (X;,A;) to (M(Ys),M(Bs)). Moreover,
(®(1.6),9(2r.6)) is nondegenerate, since

[00.6) (42) Bs] = [001.) (1 (4)) Bs] = | (0 (4) B)| =[x}/ (B)] = B

and
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Then, by [5, Theorem 1.30], @3 5) is strictly continuous and (CI)(;hg),(p(;L’S))

extends to a unique nondegenerate morphism of Hilbert C*-modules (q)( 1,8): P, 5))
= = M —

from (M(X;,),M(A)) to (M(Ys),M(Bs)). Let @5 =D 50, %) and g5 = ?(2.5)°

nil(A). Clearly, (@5, ®5) is a morphism of pro-C*-bimodules f&(;m (M(X),M(A)) to

(M(Ys),M(Bs)). Moreover, @ is strictly continuous, since x;‘:{ is strictly continuos

(see Lemma 3.12).
Let 81,6 € A with 8§ > & . We have

B, (1x (1) = (B o 020 ™) (1x () =By, (11, (0 ()
= ©, 5 (05 (1)) =x5 " (@(x))
for some A; € A and for all x € X. Then

(245 0 @5, ) () =315, (28" (@ ())) = 1" (@ () = B (1 (x))

for all x € X. From these relations and taking into account that ngg)» D5, Dy, are

strictly continuous and X is dense in M(X) with respect to the strict topology, we

conclude that yMY) 6 @5 = B . Therefore there is a strictly continuous linear ma
Xs,5, 5 & y p

@ : M(X) — M(Y) such that xéw(y) o® = d; forall § €A, and ®o1y = D.

By [14, Proposition 3.15], there is a pro-C*-morphism ¢ : M(A) — M(B) such
that ng/[(B) o =1 forall 8 €A and po1y = @.

It is easy to check that (57 6) is a morphism of Hilbert pro-C*-bimodules. Since
@ is nondegenerate [7, Proposition 6.1.4] and

(@ (M(X))B] = [®(M(X)) ¢ (A)B] = [®(M(X)A)) B]
=[@(X))B] =Y
the morphism of Hilbert pro-C*-bimodule (® ,§) is nondegenerate.
Suppose that there is another morphism of Hilbert pro-C*-bimodules (®y, @) :
(M(X),M(A)) — (M(Y),M(B)) such that ®; (1x(x)) = ®(x) for all x € X and
01 (ta(a)) = @(a) for all a € A. Let {e;}ic; be a approximate unit for A. Then,

by Lemma 3.15 foreach T € M(X) and m € M(A), the nets {T -e;}ic; and {m-e;}ic;
are strictly convergentto T respectively m. Thus we have

@ (T) = str-1im® (T - ¢;) = str-lim @ (T - ¢;) = D (T)
forall T € M(X) and
@1 (m) =str-lim @y (m-¢;) = str-lim @ (m - ¢;) =@ (m)

forall me M(A). O

Let X be a Hilbert A —A pro-C*-bimodule. For a closed two sided ideal .# of
A weput X =span{ax/a€ ¥ ,xc X} and X.# =span{xa/ac ¥ ,x€X}.By|[l2,
Lemma 3.7], #X and X.# are closed Hilbert pro-C*-sub-bimodules of X .
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DEFINITION 3.17. Let (X,A) and (Y,C) be two Hilbert pro-C*-bimodules. We
say that (¥,C) is an extension of (X,A) if the following conditions are satisfied:

1. C contains A as an ideal;

2. there exists a morphism (@x,®4) of Hilbert pro-C*-bimodules from (X,A) to
(Y,C), such that @4 : A — C is just the inclusion map;

3. ox(X)=@a(A)Y =Ypa(A).

REMARK 3.18. If (¥,C) is an extension of (X,A), and if the topology on C is
given by the family of C*-seminorms {p,;A € A}, then the topology on A is given by
{PrlasA € A}, and p; (@4 (a)) = py (a) for all a € A and for all 1 € A. Therefore,
P5 (@x (x)) = p (x) forall x € X and forall A € A, and so, for each A € A, there is a

linear map ox;, - X, — Y, such that G}f °o@x = @x, © G})f . Then @y = liI}Ll 0x, » and for

each A € A, (Y3,C;) is an extension of (X,,A,) via the morphism (@x, , @4, ), where
@a, is the inclusion of A; into Cj .

In the following proposition, we show that (M(X),M(A)) is a maximal extension
of (X,A) in the sense that if (Y,C) is another extension of (X,A) via a morphism
(Wx,ya), then there is a morphism of Hilbert pro-C*-bimodules (dy,d¢) : (¥,C) —
(M(X),M(A)) such that Yy o yx = 1x and ¢ o yy = 14 (for the case of Hilbert C*-
modules, see [3,4]).

PROPOSITION 3.19. Let X be a full Hilbert pro-C*-bimodule over A. Then
(M(X),M(A)) is a maximal extension of (X,A).

Proof. Let (1x,14) be the morphism of Theorem 3.13(2) between (X,A) and
(M(X),M(A)), where 1x(x)(a) =xa, ta(a)(b) = ab, for x € X,a,b € A. From [15,
Corollary 3.3] we have that forevery A € A, M(Xy )14, (Ay) = tx, (X;3) = 1a, (A3)M(X;,).
Therefore, since from Theorem 3.13, we have that M(X) = liri]M (X)), ix = lir}ll Ix, »
= liril 14, » and since both 14 (A)M(X),M(X)14(A) and 1x(X) are closed submodules

of M(X), we deduce that 14 (A)M(X) = 1x(X) =M(X)14(A). Hence (M(X),M(A)) is
an extension of (X,A).

To show that (M(X),M(A)) is a maximal extension, let (¥,C) be another exten-
sion of (X,A) via a morphism (Wx, W, ). Then, by Remark 3.18, yx = lil}l Vx, , Wa =

lir}ll Va,, and for each A € A, (Y3,Cy) is an extension of (X;,A;) via the morphism
(wx,,wa,). By [15, Proposition 3.4], there exists a unique morphism (dy, ,dc,) :
(Y,C) — (M(Xy),M(Ay)) such that ¥y, o yx, = 1x, and ¥, o Ya, = 14, . More-
over,

Oy, (0] ) (71 (@) = v, (0} ) v, (} (@)

and

dc, (75 () (w7 (@) = v (77 () v, (72 (@)
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foralla € A, forall c € C andforall y €Y. Itis easy to check that (191//1 ) A is an inverse
system of linear maps, (ﬂck) ;, is an inverse system of C*-morphisms, and (dy, 9¢) :
(Y,C) — (M(X),M(A)), where ¥y = lir}}ﬁYx and ¥¢ = HI}L“C}CA’ is a morphism of

Hilbert pro-C*-bimodules such that ¥y o wx =ty and Ycoyy = 14. O

4. Crossed products by Hilbert pro-C*-modules

A covariant representation of a Hilbert pro-C*-bimodule (X,A) on a pro-C*-
algebra B is a morphism of Hilbert pro-C*-bimodules from (X,A) to the Hilbert pro-
C*-bimodule (B,B).

The crossed product of A by a Hilbert pro-C*-bimodule (X,A) is a pro-C*-
algebra, denoted by A x x Z, and a covariant representation (ix,is) of (X,A) on A xxZ
with the property that for any covariant representation (@x, @) of (X,A) on a pro-C*-
algebra B, there is a unique pro-C*-morphism @ : A xx Z — B such that ®oiy = @y
and ®oiy = @ [11, Definition 3.3].

REMARK 4.1. If (@, ) is a morphism of Hilbert pro-C*-bimodules from (X,A)
to (Y,B), then (iy o®,ipo @) is a covariant representation of X on B Xy Z and by the
universal property of A Xy Z there is a unique pro-C*-morphism @ x ¢ from A xx Z
to B xy Z such that (O x @)ois =igpo@ and (O X @)oix =iyod.

LEMMA 4.2. Let (®,9) be a a morphism of Hilbert pro-C*-bimodules from
(X,A) to (Y,B). If T and T" have the same index set and ¢ = lir}ll )., then ® = lir}lldD;L,

foreach A € A,(®y, ;) is a morphism of Hilbert C*-bimodules, (®) x @;), is an
inverse system of C*-morphisms and ® X ¢ = liI}qu)l X @y,. Moreover, if (®@,0) is an

isomorphism of Hilbert pro-C* -bimodules and @),,A € A are C*-isomorphisms, then
(Dy,0.), A €A are isomorphisms of Hilbert C*-bimodules.

Proof. Let A € A. From

73 (®(x))* = 1 (¢ ((x,x))) < pa ((e.x)) = pi (%)

for all x € X, we deduce that there is a linear map @, : X; — Y, such that @, o G})f =
G}L’ o®. It is easy to verify that (®; ), is an inverse system of linear maps and @ =
lirngd);L . Moreover, foreach A € A, (®,, ¢; ) is a morphism of Hilbert C*-bimodules.

Let @, x @, be the C*-morphism from A; xx, Z to By xy, Z induced by (®;,¢,).
From

BxyZ . BxyZ _ . . B
Ty o (Pax@p)oin, =my " oip, 0@y =ip, oMy, 0P

— 7 A . AXXZ .
—lBHO(p“on)w—(d)yX(p“)on)w Olig,

and
BxyZ . zZ .
nA;Y o (D) x @) 0ix, = (Py x @) onj:;’( oiy,
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forall A,u € A with A > u and taking into account that is, (A;) and iy, (X;) gen-
erate Ay xx, Z, we deduce that (®) x ¢;); is an inverse system of C*-morphisms.
Moreover, since

lim (q)l X (Pl) OliI]fliA}b = lim (q)l X (Pl) oiAl = limin oy = limin olim(p,l

—A —2 —2 —2 —2 —A
and

III}LI (q)l X (P}L) OliI;liX}L = llril (q))L X (P)L) OiX}L = liriliYk Oq))L = liI}Lll'Y)L O]irilq))“

we obtain @ x ¢ = lir}gd)l X @y, .

Suppose that (®, @) is an isomorphism of Hilbert pro-C* -bimodules and ¢, ,A €
A are C*-isomorphisms. Then, since ¢! = {1_151 0, L by the first part of the proof,
o = EIE v, and (y;,¢; ") is a morphism of Hilbert C*-bimodules for all A € A.
Let A € A. From

W;LOGD;LOG;}L(:W;LOG{Od):GdeTIOd):Gf

and
(I);Lou/;LOG{ :(I);Locfi(o(l)_l :G/{/ocl)ocl)_l :G{

and taking into account that G/{( and G{ are surjective, we deduce that y; = (I);L1 . g

The following proposition gives the relation between the crossed product of A by
X and the crossed product of M(A) by M(X).

PROPOSITION 4.3. Let (X,A) be full Hilbert pro-C*-bimodule. Then A xXx 7
can be embedded into M(A) X y(x) Z.

Proof. Let 14 be the embedding of A in M(A) and 1y the embedding of X in
M(X). Then (1x,14) is a morphism of Hilbert pro-C*-bimodules, and since 14 =
lir}ll LA » by Lemma 4.2, 1y X 14 = lir}ll Ly, X la, is a pro-C*-morphism from A Xx Z to

M(A) X py(x) Z. Moreover, since

P?L,M(A)XM(X)Z(‘X X1 (c)) = Hlxx X 14, (nﬁxxz (c)> HM(AA)XM(X z
A

[1, Remark 2.2]

AXXZ

= ||TT =
[m@, ., =rrane(

forall c € Axx7Z andforall A € A, A XxZ can be identified with a pro-C* -subalgebra

The following proposition is a generalization of [15, Proposition 4.7].
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PROPOSITION 4.4. Let (X,A) be a full Hilbert pro-C* -bimodule. Then M(A) X yy(x)
7 can be identified with a pro-C* -subalgebra of M(A xx 7).

Proof. Since X is full, (ix,is) is nondegenerate and iy = lhil ix, and ix = lhil ix;

[11, Propositions 3.4 and 3.5]. Then, by Theorem 3.16, (ix,is) extends to a co-
variant representation (zx,lA) of (M(X),M(A)) on M(A xx Z), and moreover, iy =
111}11le and iy = hmle It is easy to check (le ,le) is a covariant representation of

(M(X),),M(A;)) on M(A;L xx, Z) foreach 4 € A. By [15, Proposition 4.7], for each
A € A, there is an injective C*-morphism ®; : M(A) Xy (x, ) Z — M(A; Xx, Z) such
that @; oiyx,) = ix, and @; oiya,) = ia, . From

M(AxxZ . M(AxxZ) +— +—— _M(X
T 0@ 0y = my, N 0Ty =T 0y,
M(AxxZ) .
= Py oiyx, ox,”f )_q)#onmf o )O’M(Xm
and
M(AxxZ . M(AxxZ) — +—— _M(A
ﬂ:llj XX )Oq))l,olM(Ax) :nllj XX )OZA)LZZAHOTEA’_E )
A M(AxxZ) .
_q)uOlM( )OTE)L}E ):q)uoﬂ:}m( XX )OlM(A)L)

for all A,u € A, with A > pu, and taking into account that zM( )(M(X;L)) and
ima,) (M(Ay)) generate M(A,l) X pm(x, )L, we deduce that (@), is an inverse system
of isometric C*-morphisms. Hence @ = lir}lld);L is an injective pro-C*-morphism from

{i_rilM(A;L) Xpmx,)Z to {i_r;LlM(A;L xx, Z) such that p; yaxyz) (®(c)) =
PAM(A) Xy Z (c) forall c € M(A) x y(x)Z and forall A € A. Therefore, M(A) x y(x)Z
can be identified with a pro-C*-subalgebra of M(A xx Z). O

An automorphism ¢ of a pro-C*-algebra A such that p, (a(a)) = py(a) for all
acA and A € A/, where A’ is a cofinal subset of A, is called an inverse limit au-
tomorphism. If o is an inverse limit automorphism of the pro-C*-algebra A, then
Xo = {&wx € A} is a Hilbert A — A pro-C*-bimodule with the bimodule structure de-
fined as &ca = &yq, respectively a, = &1 (@)x* and the inner products are defined as
(&, &), = x"y, respectively 4 (&, &) = a(xy*). The crossed product A x ¢ Z of A
by o is isomorphic to the crossed product of A by X, [11].

COROLLARY 4.5. If o is an inverse limit automorphism of a non unital pro-C* -
algebra A, then M(A) xgZ can be identified with a pro-C* -subalgebra of M(A X o Z).
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