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MATRICES WITH TOTALLY POSITIVE

POWERS AND THEIR GENERALIZATIONS

OLGA Y. KUSHEL

(Communicated by M. Omladič)

Abstract. In this paper, eventually totally positive matrices (i.e. matrices all whose powers start-
ing at some point are totally positive) are studied. We present a new approach to eventual total
positivity which is based on the theory of eventually positive matrices. We mainly focus on the
spectral properties of such matrices. We also study eventually J-sign-symmetric matrices and
matrices, whose powers are P -matrices.

1. Introduction

In the 1940’s Gantmacher and Krein described spectral properties of strictly totally
positive matrices (i.e. matrices for which all minors are positive). Among these results
they proved sufficient criteria for a matrix A to have a strictly totally positive power Ak

for some positive even integer k (see [12]).
Then the theory of eventually positive matrices (i.e. matrices A such that Ak is

(entry-wise) positive for all k � k0 , for some positive integer k0 ) was developed (see
[10], [18], [14]). Such matrices were characterized by their spectral properties, similar
to the properties of positive matrices (i.e the largest in absolute value eigenvalue is
positive, and the corresponding eigenvectors of both A and the transpose of A can be
chosen to be positive). Thus the theory of positive matrices was extended to matrices
with some negative entries. Different aspects of eventual positivity were studied in [2]-
[7], [16]. Total positivity of Hadamard powers of matrices as well as continuous real
powers of totally positive matrices were studied in [8].

In this paper, a new approach (through eventual positivity) for the matrices with to-
tally positive powers, described by Gantmacher and Krein is provided. Using the theory
of eventual positivity, we give a necessary and sufficient characterization of eventually
totally positive matrices (i.e. matrices A such that Ak is strictly totally positive for all
k � k0 , for some positive integer k0 ). Then, we analyze a certain cone-theoretic gen-
eralization of strictly totally positive matrices and study some properties of eventually
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P-matrices (i.e. matrices A such that Ak has positive principal minors for all k � k0 ,
for some positive integer k0 ).

The paper is organized as follows. We first collect definitions and statements on
the Perron–Frobenius property and eventually positive matrices. We provide a cer-
tain generalization of the Perron–Frobenius property which characterizes the class of
matrices, similar to eventually positive matrices. In section 2, we define eventually to-
tally positive matrices and consider the property of matrix eigenvalues and eigenvectors
which is equivalent to eventual total positivity. We provide examples to show how the
theory of totally positive matrices is extended to the matrices with some negative mi-
nors. Section 3 deals with similarity transformations preserving eventual total positivity
and related properties. In section 4, we describe a cone-theoretic generalization of the
class of eventually totally positive matrices, namely eventually totally J-sign-symmetric
matrices. In section 5, we analyze the structure of eventually P-matrices with positive
distinct spectra.

2. Eventually positive matrices and their generalizations

Here, as usual, let ρ(A) denote the spectral radius of a matrix A . An eigenfunc-
tional of a matrix A corresponding to an eigenvalue λ is defined as an eigenvector of
AT (the transpose of A), corresponding to the same eigenvalue. Given a vector x ∈ R

n

with the coordinates (x1, . . . , xn) , we define the signature vector, Sign(x), as follows

Sign(x) := (sgn(x1), . . . , sgn(xn))T .

For a column vector x = (x1, . . . , xn)T and a row vector y = (y1, . . . , yn) , their tensor
product x⊗ y is defined as the following n×n matrix:

x⊗ y =

⎛⎝x1y1 . . . x1yn

. . . . . . . . .
xny1 . . . xnyn

⎞⎠ .

Let us recall some related definitions (see, for example, [5], [6], [14], [16]).

DEFINITION 1. For a real n×n matrix A , an eigenvalue λ of A is called a dom-
inant eigenvalue if |λ | = ρ(A) . In addition, λ is called a strictly dominant eigenvalue,
if |λ | > |μ | for any other eigenvalue μ of A .

DEFINITION 2. An n×n matrix A is said to have the Perron–Frobenius property
if A has a positive dominant eigenvalue with a corresponding nonnegative eigenvector.
A matrix A is said to have the strong Perron–Frobenius property if A has a unique
positive simple strictly dominant eigenvalue a the corresponding positive eigenvector.

Following Johnson and Tarazaga (see [14]), we denote PF a class of all matrices
A which have the strong Perron–Frobenius property together with their transpose AT .

Let us give the following generalization of the strong Perron–Frobenius property.

DEFINITION 3. A matrix A is said to have the signature equality property if it
satisfies the following conditions:
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1. A has a unique simple strictly dominant eigenvalue λ > 0 with a corresponding
eigenvector x and eigenfunctional x∗ ;

2. Both x and x∗ have no zero coordinates, and Sign(x) = Sign(x∗) .

If a matrix A has the strong Perron–Frobenius property, then it obviously has the
signature equality property. For an analogue of the Perron–Frobenius property, we have
the following definition.

DEFINITION 4. A matrix A is said to have the weak signature equality property
if it satisfies the following conditions:

1. A has a dominant eigenvalue λ > 0 with a corresponding eigenvector x and
eigenfunctional x∗ ;

2. The inequalities xi(x∗)i � 0, i = 1, . . . , n hold for the coordinates (x1, . . . , xn)
of the eigenvector x and ((x∗)1, . . . , (x∗)n) of the eigenfunctional x∗ .

To show a link between the peripheral spectrum of a matrix and the asymptotic
limit of matrix powers, we need the following lemma (a similar statement can be found
in [11]).

LEMMA 1. Let an n×n matrix A have a unique simple strictly dominant eigen-
value λ1 = ρ(A) with a corresponding eigenvector x1 and eigenfunctional x∗1 . Then
the following approximation holds:

1
ρ(A)k

Ak → x1⊗ x∗1 as k → ∞.

Proof. The proof follows the reasoning of Johnson and Tarazaga (see [14], p. 328,
proof of Theorem 1). Let us write the Jordan decomposition of A :

A = SΛS−1,

where Λ is the Jordan canonical form of A . In this case, we have

Λ =
(

λ1 0
0 Λ′

)
= ρ(A)

(
1 0
0 1

ρ(A)Λ′
)

.

The columns of the matrix S are the eigenvectors of A and the rows of of the
matrix S−1 are the eigenfunctionals of A . So the first column of the matrix S co-
incides with the first eigenvector x1 and the first row of S−1 coincides with the first

eigenfunctional x∗1 . Thus we can write S =
(
x1 S′

)
and S−1 =

(
x∗1

(S−1)′

)
. (Here S′ is

an n× (n−1) matrix and (S−1)′ is an (n−1)×n matrix.) Since A and Ak share the
same eigenvectors and eigenfunctionals, we obtain:

Ak = SΛkS−1, k = 2,3, . . . .
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Thus

Ak = ρk(A)
(
x1 S′

)(1 0
0 1

ρk(A) (Λ
′)k

)(
x∗1

(S−1)′

)
.

Since ρ( 1
ρ(A)Λ′) < 1, we have 1

ρk(A) (Λ
′)k → 0 as k → ∞ . In coordinates, this means

1
ρk(A)

Ak =

⎛⎜⎜⎝
x1
1 s′11 . . . s′1n−1

x2
1 s′21 . . . s′2n−1

. . . . . . . . . . . .
xn
1 s′nn−1 . . . s′nn−1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 . . . 0
0 ε11 . . . ε1n−1

0 . . . . . . . . .
0 εn−11 . . . εn−1n−1

⎞⎟⎟⎠
⎛⎜⎜⎝

(x∗1)
1 (x∗1)

2 . . . (x∗1)
n

(s−1)′11 (s−1)′12 . . . (s−1)′1n
. . . . . . . . . . . .

(s−1)′n−11 (s−1)′n−12 . . . (s−1)′n−1n

⎞⎟⎟⎠

=

⎛⎜⎜⎝
x1
1(x

∗
1)

1 x1
1(x

∗
1)

2 . . . x1
1(x

∗
1)

n

x2
1(x

∗
1)

1 x2
1(x

∗
1)

2 . . . x2
1(x

∗
1)

n

. . . . . . . . . . . .
xn
1(x

∗
1)

1 xn
1(x

∗
1)

2 . . . xn
1(x

∗
1)

n

⎞⎟⎟⎠+

⎛⎜⎜⎝
ε ′11 ε ′12 . . . ε ′1n
ε ′21 ε ′22 . . . ε ′2n
. . . . . . . . . . . .
ε ′n1 ε ′n2 . . . ε ′nn

⎞⎟⎟⎠ .

Hence
1

ρk Ak → x1⊗ x∗1 as k → ∞ . �

Let us recall the following definition introduced in [10].

DEFINITION 5. A real n×n real matrix A is called eventually positive (EP) (re-
spectively, eventually nonnegative (EN)) if there exists a positive integer k0 such that
Ak > 0 (respectively, Ak � 0) for all k � k0 . For an EP matrix, the least such k0 is
called the power index of A .

The following statement was proved for eventually positive matrices (see [14], p.
328, Theorem 1).

THEOREM 1. (Johnson, Tarazaga) Let A ∈ R
n×n . Then the following statements

are equivalent.

1. Both of the matrices A and AT have the strong Perron–Frobenius property.

2. The matrix A is eventually positive.

3. There is a positive integer k such that Ak > 0 and Ak+1 > 0 .

A weaker statement holds for eventually nonnegative matrices (see [16], p. 136,
Theorem 2.3).

THEOREM 2. (Noutsos) Let A ∈ R
n×n be an eventually nonnegative matrix that

is not nilpotent. Then both matrices A and AT have the Perron–Frobenius property.

Note, that the converse to Theorem 2 may not hold. For a counterexample, see [6],
p. 394, Example 2.5.

The following generalization of nonnegative matrices was introduced in [15].
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Let J be any subset of [n] := {1,2, . . . ,n} and let Jc := [n]\ J . Then

[n]× [n] = (J× J)∪ (Jc× Jc)∪ (J× Jc)∪ (Jc× J)

is a partition of [n]× [n] into four pairwise disjoint subsets.

DEFINITION 6. A matrix A = {ai j}n
i, j=1 is called J-sign-symmetric (JS) if

ai j � 0 on (J× J)∪ (Jc× Jc);

and
ai j � 0 on (J× Jc)∪ (Jc × J).

A matrix A = {ai j}n
i, j=1 is called strictly J-sign-symmetric (SJS) if

ai j > 0 on (J× J)∪ (Jc× Jc);

and
ai j < 0 on (J× Jc)∪ (Jc × J).

Let us recall the following properties of JS matrices (see, for example, [15]).

1. A matrix A is JS (SJS) if and only if A can be represented as follows:

A = DÃD−1, (1)

where Ã is a nonnegative (respectively, positive) matrix, D is a nonsingular
diagonal matrix.

2. The spectral radius ρ(A) of an SJS matrix A is a simple positive eigenvalue
of A , strictly larger than the absolute value of any other eigenvalue of A . The
eigenvector x1 and the eigenfunctional x∗1 , corresponding to the eigenvalue λ1 =
ρ(A) may be chosen to satisfy the inequalities Dx1 > 0, Dx∗1 > 0 entrywise,
where D is an invertible diagonal matrix from (1).

The proof of Property 2 immediately follows from the Perron theorem (see, for exam-
ple, [3], p. 27, Theorem 1.4).

Now let us examine a more general class of matrices, which includes eventually
nonnegative matrices.

DEFINITION 7. A real n×n matrix A is called eventually strictly J–sign-symmet-
ric (ESJS) if there exists a positive integer k0 such that Ak is SJS for all k � k0 . A real
n× n matrix A is called eventually J–sign-symmetric (EJS) if there exists a positive
integer k0 such that Ak is JS for all k � k0 .

Let us recall that the sign pattern Sign(A) of a real n× n matrix A = {ai j}n
i, j=1

is defined by the equalities:
Sign(A) = {si j}n

i, j=1,

where si j = sgn(ai j) (see, for example, [7]).
We now state the following property satisfied by all ESJS matrices.
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LEMMA 2. A matrix A is ESJS if and only if A = DÃD−1 , where Ã is an EP
matrix, D is a nonsingular diagonal matrix.

Proof. (⇐) Let A = DÃD−1 , where Ã is an EP matrix. Then there is a positive
integer k0 such that (Ã)k is positive for all k � k0 . Thus

Ak = (DÃD−1)k = D(Ã)kD−1.

Since (Ã)k is positive, we obtain by Property 1 of SJS matrices that Ak is SJS for all
k � k0 .

(⇒) Let A be ESJS. Since Ak0 is SJS for some positive integer k0 , ρ(Ak0) is
a positive simple strictly dominant eigenvalue of Ak0 by Property 2 of SJS matrices.
Since all the eigenvalues of Ak0 are powers of the eigenvalues of A , we conclude
there is an eigenvalue λ of A such that λ k0 = ρ(Ak0) > 0. Since ρ(Ak0) is simple
and strictly dominant, λ is also simple and strictly dominant. Since A is real, λ is
also real (positive or negative). Applying the same reasoning to Ak0+1 and taking
into account that either k0 or k0 + 1 must be odd, we conclude that λ > 0. Thus the
conditions of Lemma 1 hold. Applying Lemma 1, we obtain that 1

ρ(A)k A
k → x1⊗ x∗1 as

k → ∞ , where x1 and x∗1 are the eigenvector and the eigenfunctional corresponding to
the simple strictly dominant eigenvalue λ . Thus there is a positive integer k1 such that
Sign(Ak) = Sign(x1⊗ x∗1) for all k � k1 .

Since Ak is SJS starting from k = k0 and A and Ak share the same eigenvectors
we have by Property 2 of SJS matrices that Dx1 > 0 and Dx∗1 > 0 for some invertible
diagonal matrix D . This implies the equality Sign(x1) = Sign(x∗1) . Examine D =
diag[sgn(x1

1), sgn(x2
1), . . . , sgn(xn

1)] and put Ã = D−1AD . In this case, it is easily
verified D−1Sign(x1 ⊗ x∗1)D is positive. We obtain

Sign(D−1AD)k = D−1Sign(Ak)D = D−1Sign(x1 ⊗ x∗1)D

for k � k1 . This equality shows that (D−1AD)k is positive for all k � k1 . Thus A =
DÃD−1 , where Ã = D−1AD is an EP matrix. �

The following statement generalizes results of Johnson and Tarazaga [14].

THEOREM 3. Let A ∈ R
n×n . Then the following statements are equivalent.

1. The matrix A has the signature equality property.

2. The matrix A is eventually SJS.

3. There is a positive integer k such that both Ak and Ak+1 are SJS.

Proof. (1) ⇒ (2) Suppose A have a unique simple strictly dominant eigenvalue
λ1 > 0 with a corresponding eigenvector x1 and eigenfunctional x∗1 . Let, in addition,
both x1 and x∗1 have no zero coordinates, and the equality Sign(x1) = Sign(x∗1) holds.
By Lemma 1, there is a positive integer k0 such that

Sign(Ak) = Sign(x1 ⊗ x∗1)
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for all k � k0 .
Let us organize a partition of [n] as follows. We put J := {i ∈ [n] : xi

1 > 0} . In this
case, Jc = [n]\ J = {i ∈ [n] : xi

1 < 0} . Since sgn(xi
1) = sgn((x∗1)

i) for all i = 1, . . . , n
and all of the coordinates are nonzero, we have

xi
1(x

∗
1)

j > 0 if i, j ∈ J or i, j ∈ Jc;

xi
1(x

∗
1)

j < 0 if i ∈ J, j ∈ Jc or i ∈ Jc, j ∈ J.

Thus the matrix x1⊗ x∗1 is SJS according to Definition 6.

(2) ⇒ (3) Since A is eventually SJS, we obtain by Lemma 2 that A = DÃD−1 ,
where Ã is an EP matrix, D is a nonsingular diagonal matrix. Thus there is a positive
integer k0 such that Ãk is positive for all k � k0 . Considering the equalities

Ak0 = DÃk0D−1

and
Ak0+1 = DÃk0+1D−1

we obtain that

sgn((ak0)i j) = sgn(dii)sgn((ãk0)i j)sgn

(
1

d j j

)
;

sgn((ak0+1)i j) = sgn(dii)sgn((ãk0+1)i j)sgn

(
1

d j j

)
,

where (ak)i j , (ãk)i j denote the entries of the matrices Ak and Ãk , respectively, for
k = k0, k0 + 1. Since sgn((ãk0)i j) = sgn((ãk0+1)i j) = +1 for all i, j = 1, . . . , n , we
have Sign(Ak0) = Sign(Ak0+1) .

(3) ⇒ (1) Suppose both the matrices Ak and Ak+1 are SJS for some positive
integer k . Since Ak is SJS, ρ(Ak) is an eigenvalue of Ak (by Property 2), and there
must be an eigenvalue λ of A such that λ k = ρ(Ak) . Since ρ(Ak) is a positive simple
strictly dominant eigenvalue of Ak , λ is a real simple strictly dominant eigenvalue of A
(positive or negative). Applying the same reasoning for Ak+1 and taking into account
that one of the integers k and k+1 must be odd, we have λ > 0.

Applying Property 2 again to Ak , we get that the corresponding to ρ(Ak) eigen-
vector x1 and eigenfunctional x∗1 satisfy the equality Sign(x1) = Sign(x∗1) . Observing
that x1 and x∗1 are also an eigenvector and eigenfunctional of A , corresponding to the
eigenvalue λ we complete the proof. �

3. Eventually totally positive matrices

Let us recall the following definitions and notations.

DEFINITION 8. Let e1, . . . , en be an arbitrary basis in R
n and let x1, . . . , x j

(2 � j � n) be any vectors in R
n defined by their coordinates: xi = (x1

i , . . . , xn
i ) ,



950 OLGA Y. KUSHEL

i = 1, . . . , j . Then the vector x1∧ . . .∧x j ∈R
(n

j) (here
(n

j

)
= n!

j!(n− j)! ) with coordinates
of the form

(x1 ∧ . . .∧ x j)N(α) :=

∣∣∣∣∣∣∣
xi1
1 . . . xi1

j
. . . . . . . . .

x
i j
1 . . . x

i j
j

∣∣∣∣∣∣∣ ,
where N(α) is the number of the set of indices α = (i1, . . . , i j) ⊆ [n] in the lexico-
graphic ordering (1 � N(α) �

(n
j

)
) , is called an exterior product of x1, . . . , x j .

We consider the j th exterior power ∧ j
R

n of the space R
n as the space R

(n
j) . The

set of all of exterior products of the form ei1 ∧ . . .∧ ei j , where 1 � i1 < .. . < i j � n
forms a canonical basis in ∧ j

R
n (see [13]).

DEFINITION 9. Let A : R
n →R

n be a linear operator. Then its j th exterior power
∧ jA is defined as on operator on ∧ j

R
n acting by the rule

(∧ jA)(x1 ∧ . . .∧ x j) = Ax1∧ . . .∧Axj.

If A = {ai j}n
i, j=1 is the matrix of A in a basis e1, . . . , en , then the matrix of ∧ jA

in the basis {ei1 ∧ . . .∧ ei j} , where 1 � i1 < .. . < i j � n , equals the j th compound

matrix A( j) of the initial matrix A . Here the j th compound matrix A( j) consists of all

the minors of the j th order A

(
i1 . . . i j

k1 . . . k j

)
, where 1 � i1 < .. . < i j � n, 1 � k1 < .. . <

k j � n , of the initial n×n matrix A , listed in the lexicographic order (see, for example,
[17]).

It is easy to see that A(1) = A and A(n) is one-dimensional and coincides with
det(A) .

The following properties of the compound matrices will be used later (see, for
example, [12]).

1. Let A, B be n× n matrices. Then (AB)( j) = A( j)B( j) for j = 1, . . . , n (the
Cauchy–Binet formula).

2. The j -th compound A( j) of an invertible matrix A is invertible and the following
equality holds: (A( j))−1 = (A−1)( j) , j = 1, . . . , n (the Jacobi formula).

Let us recall the statement concerning the eigenvalues of the exterior power of an
operator (see, for example, [17], p. 132).

THEOREM 4. (Kronecker) Let {λi}n
i=1 be the set of all eigenvalues of an n× n

matrix A , repeated according to multiplicity. Then all the possible products of the form
{λi1 . . .λi j} , where 1 � i1 < .. . < i j � n, forms the set of all the possible eigenvalues

of the j th compound matrix A( j) , repeated according to multiplicity. If xi1 , . . . , xi j are
linearly independent eigenvectors of A , corresponding to the eigenvalues λi1 , . . . , λi j
(1 � i1 < .. . < i j � n) respectively, then their exterior product xi1 ∧ . . .∧ xi j is an

eigenvector of A( j) , corresponding to the eigenvalue λi1 . . .λi j .
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As usual, we denote S−(x) the number of sign changes in the sequence of the
coordinates (x1, . . . , xn) of the vector x with zero coordinates discarded, and S+(x) the
maximumnumber of sign changes in the sequence (x1, . . . , xn) , where zero coordinates
are arbitrarily assigned values ±1.

The following definition was given in [12].

DEFINITION 10. A system of nonzero vectors {x1, . . . , xn} , xi ∈ R
n , is called a

Markov system or an oscillating system if any linear combination x =
j

∑
i=1

cixi satisfies

the inequality

S+(x) � j−1,

whenever 1 � j � n , ci ∈ R ,
j

∑
i=1

c2
i 
= 0.

DEFINITION 11. A real n× n matrix A is said to have the Gantmacher–Krein
property if A has n positive simple eigenvalues {λ1, . . . , λn} with the Markov system
of corresponding eigenvectors {x1, . . . , xn} .

Let us denote by GK the class of all matrices which possess the Gantmacher–Krein
property together with their transposes.

The following lemma is proved in [1] (see [1], p. 198, Lemma 5.1).

LEMMA 3. (Ando) Let {x1, . . . , x j} be real vectors from R
n ( j < n) . In order

that

S+(
j

∑
i=1

cixi) � j−1,

whenever ci ∈ R ,
j

∑
i=1

c2
i 
= 0 , it is necessary and sufficient that x1 ∧ . . .∧ x j be strictly

positive or strictly negative.

Now we prove the following result.

LEMMA 4. Let A ∈ R
n×n . Then the following are equivalent.

1. The matrix A has the Gantmacher–Krein property.

2. The j th compound matrix A( j) has the strong Perron–Frobenius property for all
j = 1, . . . , n.

Proof. (1)⇒ (2). Assume that A has the Gantmacher–Krein property, i.e. A has
n positive simple eigenvalues {λ1, . . . , λn} , λ1 > λ2 > .. . > λn > 0, and corresponding
eigenvectors {x1, . . . , xn} form a Markov system. Let us consider the j th compound
matrix A( j) . Applying the Kronecker theorem (Theorem 4) to A( j) we obtain that
ρ(A( j)) = λ1 . . .λ j is a positive simple strictly dominant eigenvalue of A( j) with a
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corresponding eigenvector x1 ∧ . . . ∧ x j . Since the eigenvectors x1, . . . , xn form a

Markov system, any linear combination x =
j

∑
i=1

cixi satisfies the inequality

S+(x) � j−1,

whenever 1 � j � n , ci ∈ R ,
j

∑
i=1

c2
i 
= 0. Thus, by Ando’s lemma (Lemma 3), the

eigenvector x1∧ . . .∧ x j may be chosen to be strictly positive.
(2) ⇒ (1). The proof of the statement that all the eigenvalues λ1, . . . , λn of A

are positive, simple and different in absolute value of each other is identical to the
argument found in [12] or [17], p. 130, the proof of Theorem 5.3. List the eigenvalues
of the matrix A in descending order of their absolute values (taking into account their
multiplicities):

|λ1| � |λ2| � |λ3| � . . . � |λn|.
Since the matrix A has the strong Perron–Frobenius property, λ1 = ρ(A) > 0

is a simple positive eigenvalue of A , different in absolute value from the remaining
eigenvalues. Examine the second compound matrix A(2) which also has the strong
Perron–Frobenius property we get: ρ(A(2)) > 0 is a simple positive eigenvalue of
A(2) , different in absolute value from the remaining eigenvalues. By the Kronecker
theorem, all eigenvalues of A(2) are of the form λi1λi2 where 1 � i1 < i2 � n . There-
fore ρ(A(2)) > 0 can be represented in the form of the product λi1λi2 with some values
of the indices i1, i2 , i1 < i2 . The facts that the eigenvalues are listed in a descending
order and there is only one eigenvalue on the spectral circle |λ | = ρ(A) imply that

ρ(A(2)) = λ1λ2 = ρ(A)λ2 . Therefore λ2 = ρ(A(2))
ρ(A) > 0.

Repeating the same reasoning for A( j) , j = 3, . . . , n , we obtain the relations:

λ j =
ρ(A( j))

ρ(A( j−1))
> 0,

where j = 3, . . . , n . The simplicity of the eigenvalues λ j for every j also follows from
the above relations and the simplicity of ρ(A( j)) .

Applying Ando’s lemma (Lemma 3) to all the exterior products of the form x1 ∧
. . .∧ x j (they are all positive), we obtain that the eigenvectors {x1, . . . , xn} form a
Markov system. �

Let us recall some well-known definitions (see, for example, [11]).

DEFINITION 12. A real n× n matrix A is called totally positive (TP) if A is
nonnegative and its j th compound matrix A( j) is also nonnegative for all j = 2, . . . , n .

A real n×n matrix A is called strictly totally positive (STP) if A is positive and
its j th compound matrix A( j) is also positive for all j = 2, . . . , n .

DEFINITION 13. A real n×n matrix A is called oscillatory if it is TP and there
is a positive integer k such that Ak is STP.
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Obviously, every STP matrix is oscillatory.
The following statement holds for STP matrices (see [12] or [17], p. 130, Theorem

5.3)

THEOREM 5. (Gantmacher, Krein) Let an n× n matrix A be STP. Then all the
eigenvalues of A are positive and simple:

ρ(A) = λ1 > λ2 > .. . > λn > 0.

The first eigenvector corresponding to the maximal eigenvalue λ1 is strictly positive
and the j th eigenvector x j corresponding to the j th in absolute value eigenvalue λ j

has exactly j−1 changes of sign. Moreover, the following inequalities hold:

q−1 � S−(
p

∑
i=q

cixi) � S+(
p

∑
i=q

cixi) � p−1

for each 1 � q � p � n and
p
∑
i=q

c2
i 
= 0 .

Now let us introduce the following generalization of the class of STP matrices.

DEFINITION 14. A real n×n matrix A is called eventually strictly totally positive
(ESTP) if there is a positive integer k0 such that for all k � k0 Ak is STP. Here the
minimal value of k0 is called the power index of a ESTP matrix A .

It follows from the given above definition that an oscillatory matrix is ESTP. But
the class of ESTP matrices also includes matrices with some negative entries and some
negative minors.

Note that if A and B are ESTP (ETP) matrices and AB = BA , then AB is also
ESTP (ETP). However, if AB 
= BA the above property may not hold. Moreover, AB
might be ESTP (ETP) yet neither A nor B is so.

The following theorem was proved in [12].

THEOREM 6. Let an n× n matrix A have n different in absolute value nonzero
eigenvalues λ1, . . . , λn :

|λ1| > |λ2| > .. . > |λn| > 0.

and the eigenvectors x1, . . . , xn and x∗1, . . . , x∗n of A and AT , respectively, form
two Markov systems. Then there is a positive integer k such that Ak is strictly totally
positive.

The proof of Theorem 6 given by Gantmacher and Krein implies that in the case
when some of the eigenvalues λi , i = 1, . . . , n , are negative, the value k is necessarily
even.

The following corollary concerns oscillatory matrices (see [12]).

COROLLARY 1. If a totally nonnegative matrix A satisfies the following condi-
tions
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1. all the eigenvalues of A are positive and simple;

2. all the eigenvectors of A and AT forms two Markov systems,

then A is oscillatory.

Now let us prove the main result, which characterizes properties of ESTP matrices.

THEOREM 7. Let A ∈ R
n×n . Then the following statements are equivalent.

1. Both of the matrices A and AT have the Gantmacher–Krein property.

2. For every j , j = 1, . . . , n, both the j th compound matrix A( j) and its transpose
(A( j))T have the strong Perron–Frobenius property.

3. For every j , j = 1, . . . , n, the j th compound matrix A( j) is eventually positive.

4. The matrix A is eventually strictly totally positive.

Proof. (1) ⇒ (2). Applying Lemma 4 to the matrix A , we obtain that the j th
compound matrix A( j) has the strong Perron–Frobenius property for every j , j =
1, . . . , n . Applying Lemma 4 to AT we obtain that (AT )( j) has the strong Perron–
Frobenius property for every j , j = 1, . . . , n . Observing that (AT )( j) = (A( j))T for
every j , j = 1, . . . , n , we complete the proof.

(2) ⇒ (3). It is sufficient to apply Theorem 1.
(3) ⇒ (4). Since the compound matrices A( j) are eventually positive for all j =

1, . . . , n , we can find the power index k j such that (A( j))k is positive for all positive
integers k � k j . Fix k0 = max

j
(k j) and examine Ak , for k � k0 . Applying the Cauchy–

Binet formula, we obtain that

(Ak)( j) = (A( j))k,

for all j = 1, . . . , n , and (A( j))k is positive since k � k0 � k j . Thus Ak is STP for all
k � k0 and A is ESTP.

(4) ⇒ (1). Since the matrix A is eventually strictly totally positive, we can find
a power index k0 such that Ak is STP for all k � k0 . Applying Theorem 5 to Ak , we
obtain that all the eigenvalues μ1, . . . , μn of Ak are positive, simple and distinct:

μ1 > μ2 > .. . > μn > 0.

The corresponding eigenvectors (x1, . . . , xn) form a Markov system. Since all eigen-
values of Ak are just powers of the eigenvalues of A , there is an eigenvalue λi of A
such that λ k

i = μi , i = 1, . . . , n . Thus we obtain that all the eigenvalues of A are sim-
ple, real (positive or negative) and different in absolute value from each other. Applying
the same reasoning to Ak+1 and observing that either k or k+1 must be odd, we obtain
that all the eigenvalues of A are positive. Since A and Ak share the same eigenvectors,
the corresponding eigenvectors of A form a Markov system. Now let us examine the
transpose matrix AT . It is easy to see that AT is also eventually strictly totally positive.
Applying the same reasoning to AT we may deduce that the eigenvectors of AT also
form a Markov system. �
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COROLLARY 2. Let an n× n matrix A have a Gantmacher–Krein property (be
ESTP). Then A+ αI also has the Gantmacher–Krein property (respectively, is ESTP),
whenever α > 0 .

Proof. For the proof, it is enough to observe that if λ1, . . . , λn are the eigenvalues
of A , then λ1 + α, . . . , λn + α are the eigenvalues of A+ αI with the same systems
of the corresponding eigenvectors and eigenfunctionals. �

EXAMPLE 1. Let us consider the matrix

A =

⎛⎝10 2 2
3 2 1
7 4 6

⎞⎠ .

In this case, we have

A(2) =

⎛⎝14 4 −2
26 46 4
−2 11 8

⎞⎠ .

A(3) = 54.

Since

(A(2))3 =

⎛⎝ 9980 10936 40
80264 112156 7264
218400 29156 2756

⎞⎠
and

(A(2))4 =

⎛⎝ 423976 543416 24104
4025224 5560136 346208
1010144 1445092 101872

⎞⎠
are positive, we apply Theorem 1 and conclude that A(2) is eventually positive. Thus
A is ESTP (by Theorem 7).

EXAMPLE 2. Let

A =

⎛⎝ 8 4 1
4 10 3
−3 5 9

⎞⎠ .

In this case we have

A(2) =

⎛⎝64 20 2
52 75 31
50 45 75

⎞⎠ ;

A(3) = detA = 470.

Since Ak > 0 for k = 5 and k = 6, we apply Theorem 1 and Theorem 7 and

obtain that A is ESTP. However, the eigenvalues of the 2×2 submatrix Â =
(

8 1
−3 9

)
,

obtained from A by deleting the second row and column, are both complex: λ1 =
17+i

√
11

2 and λ2 = 17−i
√

11
2 .
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So let us note that a principal submatrix (i.e. obtained from the initial matrix by
deleting rows and columns with the same indices) of an ESTP matrix may not be ESTP.

4. Similarity transformations preserving the
Gantmacher–Krein property and being in GK

Let us recall some more definitions concerning matrix classes (see [3], [11]).

DEFINITION 15. A matrix S is called monotone if it is invertible and S−1 is non-
negative.

DEFINITION 16. Let A = {ai j}n
i, j=1 . A matrix A is called sign-alternating if the

matrix A∗ with the entries

a∗i j = (−1)i+ jai j, i, j = 1, . . . , n

is nonnegative.

A matrix A is sign-alternating if and only if it can be written in the following form

A = DÃD,

where Ã is a nonnegative matrix, D is a diagonal matrix with the diagonal entries
dii = (−1)i+1 , i = 1, . . . , n .

DEFINITION 17. A real n× n matrix A is called totally sign-alternating (TSA)1

if A∗ is TP.

A matrix A is TSA if and only if it can be written in the following form A = DÃD,
where Ã is a TP matrix, D is a diagonal matrix with diagonal entries dii = (−1)i+1,
i = 1, . . . , n .

The following properties of TSA matrices were stated in [12].

LEMMA 5. Let A be an invertible matrix. Then

1. If one of the matrices A and A−1 is TP then the other is TSA.

2. The matrix A is TP if and only if the matrix (A∗)−1 is also TP.

The similarity matrices preserving the strong Perron–Frobenius property and the
class PF are described in [4]. The following statements are proved in [4] (see [4], p. 41,
Theorems 3.6 and 3.7).

THEOREM 8. For any invertible matrix S , the following statements are equiva-
lent:

1. Either S or −S is monotone.

1Such matrices are called sign-regular in [12].
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2. S−1AS has the strong Perron–Frobenius property for all matrices A having the
strong Perron–Frobenius property.

THEOREM 9. For any invertible matrix S , the following statements are equiva-
lent:

1. S and S−1 are either both nonnegative or both nonpositive.

2. S−1AS ∈ PF for all matrices A ∈ PF .

Now we analyze which similarity matrices S preserve the Gantmacher–Krein
property or being in GK.

THEOREM 10. For any invertible matrix S , the following statements are equiva-
lent:

1. Either S or −S is TSA.

2. S−1AS has the Gantmacher–Krein property for all matrices A having the
Gantmacher–Krein property.

Proof. (1) ⇒ (2). Suppose (1) holds. Assume without loss of generality that S
is TSA. Then S−1 is TP and (S−1)( j) is nonnegative for all j = 1, . . . , n . The Jacobi
formula (S−1)( j) = (S( j))−1 shows that S( j) is monotone for j = 1, . . . , n .

Let A be an arbitrary n× n matrix having the Gantmacher–Krein property. Ap-
plying Lemma 4 to A , we obtain that the j th compound matrix A( j) has the strong
Perron–Frobenius property for all j = 1, . . . , n . Let us examine the matrix S−1AS .
The Cauchy–Binet formula implies the equality

(S−1AS)( j) = (S−1)( j)A( j)S( j).

Applying Theorem 8 to every A( j) , we obtain that (S−1)( j)A( j)S( j) has the strong
Perron–Frobenius property for all j = 1, . . . , n . Applying Lemma 4 to S−1AS com-
pletes the proof.

(2) ⇒ (1). Conversely, suppose (1) does not hold, i.e., both S and −S are not
TSA. Then there is a positive integer j , 1 � j � n such that the j th compound matrix
(S−1)( j) = (S( j))−1 has a positive entry and a negative entry.

In this case, following the reasoning from [4], we can find a positive vector v such
that (S( j))−1v has a positive entry and a negative entry. Consider the following two
cases.

(a) The matrix (S( j))−1 has a column (say, the l th column) with a positive entry

and a negative entry. In this case, we take v ∈ R
(n

j) with the coordinates v =
(v1, . . . , v(

n
j)) , where vl = 1, vi = εi > 0, i 
= l , 1 � i �

(n
j

)
. Thus, (S( j))−1v

has a positive entry and a negative entry, for sufficiently small values εi , starting
from some point.
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(b) Every nonzero column of (S( j))−1 is either nonpositive or nonnegative (with at
least one nonzero entry). Let us assume that the l th column is nonnegative and
the m th column is nonpositive. Without loss of generality, we assume that l
and m are the numbers in the lexicographic numeration of the sets of indices
(i1, . . . , ir−1, ir+1, . . . , i j+1) and (i1, . . . , is−1, is+1, . . . , i j+1) , respectively
(here 1 � i1 < .. . < i j+1 < n , 1 � r, s � j + 1, r 
= s). (Indeed, suppose that
all nonzero entries of each two columns of (S( j))−1 with the numbers as above
are of the same sign (say, positive). In this case it is easy to see that the whole
matrix (S( j))−1 is nonnegative.) Let us consider (S( j))−1((1− λ )ẽl + λ ẽm) ,
where ẽl, ẽm are the l th and the m th basic vectors in R

(n
j) respectively, λ ∈

[0,1] . Note that (S( j))−1ẽl is nonnegative and (S( j))−1ẽm is nonpositive. Let
λ0 be the largest number in [0,1] such that (S( j))−1((1− λ )ẽl + λ ẽm) is still
nonnegative. Since all the columns of (S( j))−1 are linearly independent, we
obtain that the vector (S( j))−1((1−λ0)ẽl +λ0ẽm) is nonzero for any λ0 . Choose
λ1 > λ0 , sufficiently close to λ0 . Then (S( j))−1((1−λ1)ẽl +λ1ẽm) has a positive

entry and a negative entry. Now let v = (v1, . . . , v(
n
j)) be the positive vector in

R
(n

j) with vl = 1−λ1 , vm = λ1 and vi = εi , 1 � i �
(n

j

)
, i 
= l, m . Then (S( j))−1v

has a positive entry and a negative entry, for sufficiently small εi , starting from
some point.

Fix an arbitrary STP matrix A . By Gantmacher–Krein theorem (Theorem 5), A has
the Gantmacher–Krein property. Thus, applying Lemma 4, we obtain that the j th com-
pound matrix A( j) has the strong Perron–Frobenius property, that is, the first eigen-

vector ϕ j = (ϕ1
j , . . . , ϕ

(n
j)

j ) corresponding to the greatest in absolute value eigenvalue

ρ(A( j)) may be chosen to be positive. Without loss the generality we may assume that
minp ϕ p

j > 1. Construct a positive diagonal matrix D as follows:

(a’) For the case (a), let l be the number in the lexicographic numeration of the set of
indices (i1, . . . , i j) , 1 � i1 < .. . < i j � n . Then we set D = diag{d11, . . . , dnn} ,
where

dkk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε j−1ϕ l

j, if k = i1;

1
ε , if k ∈ {i2, . . . , i j};

maxp ϕ p
j

ε2 if k ∈ [n]\ {i1, i2, . . . , i j}.

(b’) For (b), where l and m are the numbers in the lexicographic numeration of the
sets of indices (i1, . . . , ir−1, ir+1, . . . , i j+1) and (i1, . . . , is−1, is+1, . . . , i j+1) ,
respectively (here 1 � i1 < .. . < i j+1 < n , 1 � r, s � j + 1, r 
= s), we set
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D = diag{d11, . . . , dnn} as follows:

dkk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(1−λ1)ε j−1 ϕ l

j, if k = is;

1
λ1ε j−1 ϕm

j , if k = ir;

ε, if k ∈ {i1, . . . , i j+1} \ {ir, is};
maxp ϕ p

j

ε j if k ∈ [n]\ {i1, i2, . . . , i j+1}.

In both cases (a’) and (b’), choose the value ε as follows:

0 < ε < min
i

εi,

where the values εi (1 � i �
(n

j

)
) are chosen in (a) and (b), respectively, such that

(S( j))−1v has a positive entry and a negative entry.
Considering the matrix B = D−1AD , by the Cauchy–Binet formula we have that

B is also STP, for any positive diagonal matrix D . Then, applying the Gantmacher–
Krein theorem (Theorem 5), we obtain that B has the Gantmacher–Krein property.
Now let us show that the matrix S−1BS does not have the Gantmacher–Krein prop-
erty. For this, it is enough to show that at least one of its compound matrices does not
have the strong Perron–Frobenius property. Indeed, consider its j th compound ma-
trix (S−1BS)( j) = (S( j))−1B( j)S( j) (through the Cauchy–Binet and Jacobi formulae).
It is easy to see, that the eigenvalues of (S( j))−1B( j)S( j) are the same that those of
B( j) . Consider the eigenvector of (S( j))−1B( j)S( j) which corresponds to the greatest in
absolute value eigenvalue ρ(B( j)) . It is of the form (S( j))−1ψ j , where ψ j is the eigen-
vector of B( j) which corresponds to the same eigenvalue ρ(B( j)) . Since B = D−1AD ,
we have the equality B( j) = (D( j))−1A( j)D( j) (through the Cauchy–Binet and Jacobi
formulae). Thus the first eigenvector ψ j of B( j) is of the form (D( j))−1ϕ j , where ϕ j is
the first eigenvector of A( j) corresponding to the greatest in absolute value eigenvalue
ρ(A( j)) . We derive the following equalities:

ψ j = (D( j))−1ϕ j;

(S( j))−1ψ j = (S( j))−1((D( j))−1ϕ j).

Now let us consider the entries of D−1 . From the choice of ε , the vector (S( j))−1ψ j

has both positive entries and negative entries as well as the vector (S( j))−1v . Thus
(S−1BS)( j) does not have the strong Perron–Frobenius property and S−1BS does not
have the Gantmacher–Krein property, which is a contradiction. �

THEOREM 11. For any n× n invertible matrix S , the following statements are
equivalent:

1. S is positive (negative) diagonal matrix.

2. S−1AS ∈ GK for all matrices A ∈ GK .
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Proof. (1)⇒ (2) . Let A be an arbitrary matrix from GK. Applying Theorem 7 to
A , we obtain that the j th compound matrix A( j) belongs to PF for every j = 1, . . . , n .
Let S be a positive diagonal matrix (otherwise we consider −S). In this case, it is easy
to see that S( j) is also a positive diagonal matrix for every j = 1, . . . , n . Applying the
Cauchy–Binet and Jacobi formulae, we obtain the equality

(S−1AS)( j) = (S( j))−1A( j)S( j). ( j = 1, . . . , n)

Since S( j) and (S( j))−1 are both nonnegative, we apply Theorem 9 and obtain that the
matrix (S( j))−1A( j)S( j) also belongs to PF for every j = 1, . . . , n . Applying Theorem
7 to the matrix S−1AS we set that S−1AS belongs to GK.

(2)⇒ (1) . It is enough to prove that if S and S−1 are both TP then S is a positive
diagonal matrix. If S−1 is TP then using Lemma 5 we obtain that S is TSA. Thus we
have that the matrices S and S∗ are both TP. We show that this is possible only if S is
positive diagonal, by using induction on n .

For n = 2, we have S =
(

s11 s12

s21 s22

)
� 0, S∗ =

(
s11 −s12

−s21 s22

)
� 0 and det(S) > 0.

Obviously, this is possible if and only if s12 = s21 = 0, s11, s22 > 0. For n = 2,
the statement holds. Suppose the statement holds for order n− 1. For the case of
order n , suppose that S and S∗ are both n× n and TP. Consider S̃1 and S̃n — two
(n−1)×(n−1) principal submatrices of S , obtained by deleting the first (respectively,
the last) row and column. The following equalities hold for these submatrices:

(S̃n)∗ = S̃∗
n;

(S̃1)∗ = S̃∗
1.

These equalities and total positivity of S and S∗ imply that all the matrices S̃n ,
S̃1 , (S̃n)∗ and (S̃1)∗ are totally positive. Thus we can apply the induction hypothesis
and obtain that S̃n and S̃1 are both positive diagonal. This implies sii > 0 for all
i = 1, . . . , n and all off-diagonal entries of S , except, probably, s1n and sn1 are equal
to zero. We show that s1n and sn1 are also equal to zero. If n is even then s∗1n = −s1n ,
s∗n1 = −sn1 and the inequalities s∗1n, s∗n1, s1n, sn1 � 0 imply sn1 = s1n = 0. If n is odd,

consider the minors S

(
1 2
2 n

)
and S

(
n−1 n

1 n−1

)
. If sn1 > 0 or s1n > 0, then we have

one of the following estimates

S

(
1 2
2 n

)
= s12s2n− s22s1n = −s22s1n < 0;

S

(
n−1 n

1 n−1

)
= sn−1,1sn,n−1− sn−1,n−1sn1 = −sn−1,n−1sn1 < 0.

This contradicts the nonnegativity of S(2) . �
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5. Eventually STJS matrices

Now we give the following definitions.

DEFINITION 18. An n× n matrix A is said to have the total signature equality
(TSE) property if A has n positive simple eigenvalues {λ1, . . . , λn} with the systems
of the corresponding eigenvectors {x1, . . . , xn} and eigenfunctionals {x∗1, . . . , x∗n}
satisfying the following conditions:

1. Both x1∧ . . .∧x j and x∗1∧ . . .∧x∗j have no zero coordinates for all j = 1, . . . , n .

2. Sign(x1∧ . . .∧ x j) = Sign(x∗1∧ . . .∧ x∗j) for all j = 1, . . . , n .

It is obvious that if A has TSE property then so does AT .
Now let us present the following generalizations of total positivity (for the defini-

tion and examples, see also [15]).

DEFINITION 19. A n×n matrix A is called totally J–sign-symmetric (TJS), if it
is J–sign-symmetric, and its j -th compound matrices A( j) are also J–sign-symmetric
for every j ( j = 2, . . . , n) .

DEFINITION 20. A n× n matrix A is called strictly totally J–sign-symmetric
(STJS), if it is strictly J–sign-symmetric, and its j -th compound matrices A( j) are also
strictly J–sign-symmetric for every j ( j = 2, . . . , n) .

Let us give an example of an STJS matrix.

EXAMPLE 3. Take

A =

⎛⎜⎜⎝
5.6 1.2 0.7 0.5
6.6 6.2 4.1 8.1
4.4 4.4 3.5 8
1 3.8 3.4 9

⎞⎟⎟⎠
In this case, we have

A(2) =

⎛⎜⎜⎜⎜⎜⎜⎝
26.8 18.34 42.06 0.58 6.62 3.62
19.36 16.52 42.6 1.12 7.4 3.85
20.08 18.34 49.9 1.42 8.9 4.6
1.76 5.06 17.16 3.66 13.96 4.45
18.88 18.34 51.3 5.5 25.02 9.36
12.32 11.46 31.6 1.66 9.2 4.3

⎞⎟⎟⎟⎟⎟⎟⎠ ;

A(3) =

⎛⎜⎜⎝
15.656 58.464 15.438 −2.602
22.008 87.992 25.676 −3.532
4.168 19.76 7.69 −0.45
−9.584 −35.408 −8.354 2.386

⎞⎟⎟⎠ ;

A(4) = det(A) = 3.3928.
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The following statement describes the spectral properties of STJS matrices (see
[15], p. 559, Theorem 31).

THEOREM 12. Let an n×n matrix A be STJS. Then all the eigenvalues of A are
positive and simple:

ρ(A) = λ1 > λ2 > .. . > λn > 0.

If A is STJS, then AT is also STJS (see [15], p. 558, Proposition 29). In this case,
we have Sign(A( j)) = Sign((A( j))T ) for j = 1, . . . , n . Hence is not difficult to see that
an STJS matrix A has the total signature equality property.

Analogously with ESTP matrices, we introduce the following generalization of
the class of STJS matrices.

DEFINITION 21. A real n×n matrix A is called eventually strictly totally J-sign-
symmetric (ESTJS) if there is a positive integer k0 such that Ak is STJS for all k � k0 .

The following result characterizes properties of ESTJS matrices.

THEOREM 13. Let A be an n× n matrix. Then the following statements are
equivalent.

1. The matrix A has the total signature equality property.

2. For every j , j = 1, . . . , n, the j th compound matrix A( j) has the signature
equality property.

3. For every j , j = 1, . . . , n, the j th compound matrix A( j) is ESJS.

4. The matrix A is eventually STJS.

Proof. (1) ⇒ (2) . The proof follows from the definition and the Kronecker theo-
rem (Theorem 4), applied to A and AT .

(2)⇒ (3) . The proof follows from Theorem 3, applied to each A( j) , j = 1, . . . , n .
(3) ⇒ (4) . We duplicate the reasoning of the proof of Theorem 7, implication

(3) ⇒ (4) .
(4) ⇒ (1) . We duplicate the reasoning of the proof of Theorem 7, implica-

tion (4) ⇒ (1) , replacing the Gantmacher–Krein theorem (Theorem 5) with Theorem
12. �

6. Eventually P-matrices

Recall the following definition (see [9]).

DEFINITION 22. An n× n matrix A is called a P-matrix if all its principal mi-

nors are positive, i.e the inequality A

(
i1 . . . ik
i1 . . . ik

)
> 0 holds for all sets of indices

(i1, . . . , ik), 1 � i1 < .. . < ik � n , and all k, 1 � k � n .

The corresponding eventual property of matrices is defined as follows.



MATRICES WITH TOTALLY POSITIVE POWERS 963

DEFINITION 23. A matrix A is called an eventually P-matrix if there is a positive
integer k0 such that Ak is a P-matrix for all positive integers k � k0 .

Assuming the positivity and simplicity of the spectrum, we obtain the following
result describing the structure of eventually P-matrices.

THEOREM 14. Let A be an n×n eventually P-matrix whose eigenvalues are all
positive, simple and distinct:

ρ(A) = λ1 > λ2 > .. . > λn.

Then A is ESTJS.

Proof. Consider the j th compound matrix A( j) , j = 1, . . . , n . Applying the
Kronecker theorem (Theorem 4) to A( j) we obtain that ρ(A( j)) = λ1 . . .λ j is a positive
simple strictly dominant eigenvalue of A( j) . Thus the conditions of Lemma 1 hold.
Applying Lemma 1 to each A( j) , j = 1, . . . , n , we obtain the approximation:

1

ρ(A( j))k
(A( j))k → ϕ j ⊗ϕ∗

j as k → ∞,

where ϕ j = (ϕ1
j , . . . , ϕ

(n
j)

j ) and ϕ∗
j = ((ϕ∗

j )
1, . . . , (ϕ∗

j )
(n

j)) are the eigenvector and the

eigenfunctional of A( j) corresponding to ρ(A( j)) , respectively. Applying the Cauchy–
Binet formula, we have

(A( j))k = (Ak)( j).

Since A is an eventually P-matrix, we have that (A( j))k has positive principal diagonal
entries for sufficiently large k .

Let us consider the principal diagonal entries of the matrix ϕ j ⊗ϕ∗
j . These are

ϕ i
j(ϕ∗

j )
i , i = 1, . . . ,

(n
j

)
. So the following inequalities hold:

ϕ i
j(ϕ

∗
j )

i > 0, i = 1, . . . ,

(
n
j

)
.

It follows that Sign(ϕ j) = Sign(ϕ∗
j ) , i.e. A( j) has the signature equality property.

Applying Theorem 3, we have that A( j) is eventually SJS for all j = 1, . . . , n . Then,
by Theorem 13 it follows that A is eventually STJS. �

COROLLARY 3. Any eventually P-matrix with a positive simple distinct spectrum
has the total signature equality property.

Proof. Follows from the above reasoning and Theorem 13. �
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