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POWERS OF POSINORMAL OPERATORS

C. S. KUBRUSLY, P. C. M. VIEIRA AND J. ZANNI

(Communicated by M. Omladič)

Abstract. The square of a posinormal operator is not necessarily posinormal, but natural powers
of a posinormal operator with finite descent are posinormal. Also, natural powers (i) of quasi-
posinormal operators are quasiposinormal, (ii) of operators that are both posinormal and coposi-
normal are posinormal and coposinormal, and (iii) of semi-Fredholm posinormal operators are
posinormal.

1. Introduction

Throughout this paper the term operator means a bounded linear transformation
of a Hilbert space into itself. Posinormal operators where introduced in [10] as the class
of operators T such that T T ∗ = T ∗QT for some nonnegative operator Q , which turns
out to be equivalent to saying that T T ∗ � α2T ∗T for some nonnegative real number
α . It was noticed then that this was a very large class, including the dominant (and so
the hyponormal) operators, as well as the invertible operators.

It is well known that the square of a hyponormal operator is not necessarily hy-
ponormal. Since hyponormal operators are posinormal, it is sensible to ask whether the
square of a posinormal operator is posinormal. Although open for a while, this question
had been tackled before. For instance, an operator T is p -posinormal for some positive
real number p > 0 if (T T ∗)p � α2(T ∗T )p for some positive real number α > 0 (cf.
[3], [9]), so that a 1-posinormal operator is posinormal. It was shown in [9, Corollary 4]
that, for each integer n � 1, if T is p -posinormal, then Tn is p

n -posinormal. However,
the original simple question remained unanswered, namely is the square of a posinor-
mal operator posinormal? We show that this fails in general, and investigate conditions
to ensure that natural powers of a posinormal operator are posinormal. In particular, we
show that each natural power of a posinormal operator with finite descent is posinormal,
natural powers of operators that are both posinormal and coposinormal are posinormal
and coposinormal, natural powers of semi-Fredholm posinormal operators are posinor-
mal, and every natural power of a quasiposinormal operator is quasiposinormal.
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2. Posinormal operators

Let H be a complex Hilbert space, and let B[H ] denote the Banach algebra
of all operators on H . If M is a linear manifold of H then M− and M⊥ stand
for closure and orthogonal complement of M , respectively. For any T ∈ B[H ] , set
N (T ) = kerT = T−1{0} (the kernel or null space of T , which is a subspace — that is,
a closed linear manifold — of H ) and R(T ) = ranT = T (H ) (the range of T , which
is a linear manifold of H ). Let T ∗ ∈ B[H ] denote the adjoint of T ∈ B[H ] . A
nonnegative operator Q ∈ B[H ] is a self-adjoint (i.e., Q∗ = Q) such that 0 � 〈Qx ;x〉
for every x ∈ H , which is denoted by O � Q (or Q � O), where 〈 ; 〉 stands for the
inner product in H , and O stands for the null operator. If A and B are operators
on H such that O � A−B , then we write B � A . Recall that T ∗T (and so TT ∗ )
is always nonnegative. An operator T is normal if it commutes with its adjoint (i.e.,
TT ∗ = T ∗T ), hyponormal if TT ∗ � T ∗T , and cohyponormal if T ∗ is hyponormal.
There are several equivalent definitions of posinormality as it will be listed in Definition
1, whose properties that will be required in the sequel will be presented in Proposition 1.
For proofs concerning the equivalences in Definition 1 and the properties in Proposition
1, the reader is referred to [10, Theorems 2.1, 3.1, Corollary 2.3, Proposition 3.5], [8,
Proposition 1, Remarks 1,2], and [4, Theorem 1, Proposition 3]). The main ingredient
for proving the equivalences in Definition 1 is a classical result due to Douglas [2,
Theorems 1,2], which reads as follows.

LEMMA 1. [2] For arbitrary operators A and B in B[H ] , the following asser-
tions are pairwise equivalent.

(a) AA∗� α2BB∗ for some α � 0 .

(b) R(A) ⊆ R(B) .

(c) There exists C ∈ B[H ] such that A = BC.

DEFINITION 1. [10, 8, 4] Take an arbitrary operator T ∈ B[H ] .
(a) T is posinormal if any of the following equivalent assertions are fulfilled.

(a1) TT ∗ = T ∗QT for some Q � O .

(a2) TT ∗ � T ∗QT for some Q � O .

(a3) T = T ∗L for some L ∈ B[H ] .

(a4) R(T ) ⊆ R(T ∗) .

(a5) TT ∗ � α2T ∗T for some α � 0.

(a6) ‖T ∗x‖ � α‖Tx‖ for some α � 0 and every x ∈ H .

(b) T is coposinormal if T ∗ is posinormal.

(c) T is dominant if any of the following equivalent assertions are fulfilled.
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(c1) λ I−T is posinormal for every λ ∈ C .

(c2) R(λ I−T ) ⊆ R(λ I−T∗) for every λ ∈ C .

(c3) For each λ ∈ C there is a real number αλ > 0 such that ‖(λ I −T ∗)x‖ �
αλ‖(λ I−T )x‖ for every x ∈ H .

(d) T is codominant if T ∗ is dominant.

A further characterization for posinormality was worked out in [3, Theorem 2].
Basic properties of posinormal operators that will be required in the sequel are summa-
rized in Proposition 1 below. Note from Definition 1 that

◦ T is posinormal and coposinormal if and only if R(T ) = R(T ∗) ,

◦ T is dominant and codominant if and only if R(λ I−T ) = R(λ I−T ∗) for all λ .

PROPOSITION 1. [10, 8, 4] Take an arbitrary operator T ∈ B[H ] .

(a) If T is posinormal, then

(a1 ) N (T ) ⊆ N (T ∗) ,

(a2 ) N (T 2) = N (T ) .

(b) Every invertible ( in fact, every injective with closed range) is posinormal.

(c) The class of hyponormal operators is properly included in the class of dominant
operators, which is properly included in the class of posinormal operators.

REMARK 1. (a) Proposition 1(a1 ) is an immediate consequence of Definition
1(a6 ), and Proposition 1(a2 ) has been verified in [4, Proposition 3] and [8, Remark
2].

(b) An operator is surjective if and only if its adjoint is injective with closed range.
(Indeed, for any A ∈ B[H ] , R(A) = H if and only if R(A) is closed and dense, and
R(A) is closed if and only if R(A∗) is closed, and R(A)−= H ⇐⇒ R(A)⊥= {0}
⇐⇒ N (A∗) = {0}). Now observe that, if T ∗ is surjective, then T is trivially posi-
normal (cf. Definition 1(a4 )); equivalently, if T is injective with closed range, then T
is posinormal, and this leads to Proposition 1(b).

(c) That the inclusions in Proposition 1(c) are all proper has been shown, for in-
stance, in [8, p.5]. Since a normal operator is precisely an operator that is both hy-
ponormal and cohyponormal, it is worth noticing in light of the proper inclusion in
Proposition 1(c) that even the combined inclusion of dominant with codominant, and
posinormal with coposinormal, remain proper. In other words,

normal = hyponormal∩ cohyponormal

⊂ dominant∩ codominant �⊆ hyponormal

⊂ posinormal∩ coposinormal �⊆ dominant.
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In fact, a bilateral weighted shift on �2 with weights {|k|−1}∞−∞ is quasinilpotent, posi-
normal, and coposinormal, and so it is dominant and codominant, but it is not hyponor-
mal, thus showing that there exist nonhyponormal operators such that R(λ I−T) =
R(λ I−T ∗) for all λ ∈ C . Moreover, for an example of a posinormal and coposinor-
mal which is not dominant take an invertible nondominant operator; e.g., T =

(1 1
0 1

)
where R(I−T ) �⊆ R(I−T∗) ; this can be generalized by taking the sum of 2I with a
backward unilateral shift, also yielding an invertible nondominant.

3. An auxiliary result

Recall the notion of ascent of an operator. If A ∈ B[H ] , then

(i) N (An) ⊆ N (An+1) for every integer n � 0, and

(ii) if N (An0) = N (An0+1) for some integer n0 � 0, then N (An) = N (An+1) for
every integer n � n0 ,

where (i) is clear, and (ii) is well-known (see, e.g., [7, Lemma 5.29]). If there exists
an integer n0 � 0 such that N (An0) = N (An0+1) , then the least integer for which
the identity holds is the (finite) ascent of A — notation: asc(A) — so that N (An) =
N (Aasc (A)) for every n � asc(A) ; if there is no such an integer, then we write asc(A) =
∞ .

REMARK 2. Thus what Proposition 1(a2 ) says is

(a2 ) if T is posinormal, then asc(T ) � 1.

Dually, recall the notion of descent of an operator. If A ∈ B[H ] , then

(i ′ ) R(An+1) ⊆ R(An) for every integer n � 0, and

(ii ′′ ) if R(An0+1) = R(An0) for some integer n0 � 0, then R(An+1) = R(An) for
every integer n � n0 .

where again (i ′ ) is clear, and (ii ′′ ) is well-known (see, e.g., [7, Lemma 5.29]). If
there exists an integer n0 � 0 such that R(An0+1) = R(An0) , then the least integer for
which the identity holds is the (finite) descent of A — notation: dsc(A) — so that
R(An) = R(Adsc (A)) for every n � dsc(A) ; if there is no such an integer, then we write
dsc(A) = ∞ .

The following basic properties of ascent and descent are readily verified.

asc(A) = 0 ⇐⇒ A is injective and dsc(A) = 0 ⇐⇒ A is surjective.

For arbitrary integers j,k � 1,

asc(Ak) � j ⇐⇒ asc(A) � jk and dsc(Ak) � j ⇐⇒ dsc(A) � jk.
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LEMMA 2. Take any operator A ∈ B[H ] , and any integer k � 1 . If

asc(A) � k and dsc(A) < ∞ or asc(A) < ∞ and dsc(A) � k,

then
dsc(A) = asc(A) � k and dsc(A∗) = asc(A∗) � k,

so that, for each integer n � k ,

R(An) = R(Ak), R(A∗n) = R(A∗k), N (An) = N (Ak), N (A∗n) = N (A∗k).

Proof. Let A ∈ B[H ] be an arbitrary operator. The following properties are well
known (see, e.g., [7, Lemma 5.30, Proof of Lemma 5.31]).

(i) asc(A) < ∞ and dsc(A) < ∞ =⇒ asc(A) = dsc(A) .

(ii) asc(A) < ∞ ⇐⇒ dsc(A∗) < ∞ .

(iii) dsc(A) < ∞ =⇒ asc(A∗) � dsc(A) .

If asc(A) � k and dsc(A) < ∞ (or if asc(A) < ∞ and dsc(A) � k ), then dsc(A) =
asc(A) � k by (i), and asc(A∗) � dsc(A) � k by (iii). Since asc(A) � k , we get
dsc(A∗) < ∞ by (ii), and so dsc(A∗) = asc(A∗) � k by (i) again. Moreover, the range
and kernel identities follow from the definition of ascent and descent. �

Lemma 2 will be needed in the next section.

4. Powers of a posinormal operator

Notation: since A∗n = An∗ for every A ∈ B[H ] and every n � 1, we will denote
the adjoint of An by A∗n for every positive integer n .

We begin with an example of a posinormal T whose square is not posinormal.

EXAMPLE 1. Set P=
(

10
00

)
, Pk = 1

k

(
k−1

√
k−1√

k−1 1

)
so that (P+Pk)2 = 1

k

(
4k−3 2

√
k−1

2
√

k−1 1

)
in B[C2] for each positive integer k , where P and each Pk are orthogonal projections.
Set A =

⊕
k P and B = A+

⊕
k Pk =

⊕
k(P+Pk) in B[�2

+(C2)] so that

O � A � B.

Since O � A1/2A1/2 � B1/2B1/2, Lemma 1 ensures that

R(A1/2) ⊆ R(B1/2).

If O � (P+Pk)2 −βP for some integer k � 1, then β � 1
k . This implies that there is

no constant α > 0 for which 0 �=⊕
k P � α2⊕

k(P+Pk)2 . Thus (since A = A2 ) there
is no α � 0 such that AA = A � α2B2 = α2BB , which means that

R(A) �⊆ R(B)
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by Lemma 1. Now consider the operator T ∈ B[�2
+(�2

+(C2))] defined by

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

O
A1/2 O

A1/2 O
B1/2 O

B1/2 . . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where every entry not directly below the main block diagonal is null. Thus

T 2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O
O O
A O O

B1/2A1/2 O O

B O
. . .

B
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that

R(T ) = {0} ⊕ R(A1/2) ⊕ R(A1/2) ⊕ R(B1/2) ⊕⊕∞
k=5 R(B1/2),

R(T ∗) = R(A1/2) ⊕ R(A1/2) ⊕ R(B1/2) ⊕ R(B1/2) ⊕⊕∞
k=5 R(B1/2),

R(T 2) = {0} ⊕ {0} ⊕ R(A) ⊕ R(B1/2A1/2) ⊕ ⊕∞
k=5 R(B),

R(T ∗2) = R(A) ⊕ R(A1/2B1/2) ⊕ R(B) ⊕ R(B) ⊕ ⊕∞
k=5 R(B).

Since R(A1/2) ⊆ R(B1/2) , it follows that R(T ) ⊆ R(T ∗) , and so T is posinormal.
Since R(A) �⊆ R(B) , it follows that R(T 2) �⊆ R(T ∗2) , and so T 2 is not posinormal.

We will now investigate under which conditions positive integer powers of posi-
normal operators remain posinormal. Theorem 1 below leads to the conclusion that
every positive integer power of a posinormal operator with finite descent is posinormal,
and also that every positive integer power of operators that are both posinormal and
coposinormal are posinormal and coposinormal.

THEOREM 1. Take an operator T ∈ B[H ] .

(a) If T k is posinormal for some integer k � 1 , and if some integer power of T has
finite descent (i.e., if dsc(Tm) < ∞ for some m � 1) , then Tn is posinormal for
every integer n � k .

(b) If T k is posinormal for some integer k � 1 , and if some integer power m greater
than k of T is coposinormal (i.e., if T ∗m is posinormal for some m � k) , then
Tn is posinormal for every integer n � k , and coposinormal for every integer
n � m.



POWERS OF POSINORMAL OPERATORS 21

Proof. (a) Suppose Tk is posinormal for some integer k � 1 and dsc(Tm) < ∞
for some integer m � 1. Since asc(Tk) � 1 if and only if asc(T ) � k , and since
dsc(Tm) < ∞ if and only if dsc(T ) < ∞ , it follows by Remark 2 that

asc(T ) � k and dsc(T ) < ∞.

Then Lemma 2 ensures that

dsc(T ) � k and dsc(T ∗) � k.

Therefore, since R(Tk) ⊆ R(T ∗k) (i.e., since Tk is posinormal), we get

R(Tn) = R(Tk) ⊆ R(T ∗k) = R(T ∗n),

implying that Tn is posinormal, for every integer n � k .
(b) If Tk is posinormal for some integer k � 1, and if T ∗m is posinormal (i.e.,

if Tm is coposinormal) for some integer m � 1, then, by Remark 2, asc(Tk) � 1 and
asc(T ∗m) � 1; equivalently,

asc(T ) � k and asc(T ∗) � m.

Since asc(T ∗) < ∞ , it follows by property (ii) in the proof of Lemma 2 that dsc(T ) <
∞ . Thus

asc(T ) � k and dsc(T ) < ∞

and, applying the same argument in the proof of (a) — using Lemma 2 — it follows
that Tn is posinormal for every integer n � k , since

dsc(T ) � k and dsc(T ∗) � k.

So, if R(T ∗m) ⊆ R(Tm) (i.e., if T ∗m is posinormal) for some m � k , we get

R(T ∗n) = R(T ∗m) ⊆ R(Tm) = R(Tn),

which implies that Tn also is coposinormal, for every n � m . �

An important particular case of Theorem 1 for m = 1 reads as follows.

COROLLARY 1. Take an operator T ∈ B[H ] .

(a) If T is posinormal, and if dsc(T ) < ∞ , then Tn is posinormal for every integer
n � 1 .

(b) If T is posinormal and coposinormal, then T n is posinormal and coposinormal
for every n � 1 .

Example 1 and Theorem 1(a) (or Corollary 1(a)) ensure the existence of posi-
normal operators T with dsc(T ) = ∞ . Posinormal operators T with dsc(T ) = ∞ ,
however, do not need to have a nonposinormal square. A typical example is the canon-
ical unilateral shift T of multiplicity 1 acting on �2

+ , which is hyponormal, and hence
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posinormal. Since T is an isometry, it is injective, and so asc(T ) = 0. Moreover, for
each positive integer n , R(Tn) = �2

+�C
n (which is closed because Tn is an isome-

try) so that dsc(T ) = ∞ . Furthermore, Tn is a unilateral shift of multiplicity n , thus
hyponormal, and so posinormal. The next theorem shows that this argument can be ex-
tended along the same line to injective unilateral weighted shifts S , so that dsc(S) = ∞ ,
although R(S) is not necessarily closed, and asc(S) = 0.

THEOREM 2. If an injective unilateral weighted shift S is posinormal, then Sn is
posinormal for every integer n � 1 .

Proof. Let

S = shift({ωk}∞
k=1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
ω1 0

ω2 0
ω3 0

ω4
. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

be a unilateral weighted shift on �2
+ , which is injective if and only if the weight se-

quence {ωk} has no zero term (i.e., ωk �= 0 for every k � 1). Suppose S is an injective
unilateral weighted shift. It is know that

S is posinormal if and only if supk�1
|ωk|

|ωk+1| < ∞

[8, p.4]. This can be extended to every integer power of injective unilateral weighted
shifts as follows. Take an arbitrary integer n � 1. Observe that

SnS∗n = diag
(
0, . . . ,0, ∏n

k=1|ωk|2, ∏n+1
k=2|ωk|2, . . .

)
,

a diagonal operator on �2
+ with zeros at the first n entries, and

S∗nSn = diag
(

∏n
k=1|ωk|2, . . . , ∏2n−1

k=n |ωk|2, ∏2n
k=n+1|ωk|2, ∏2n+1

k=n+2|ωk|2, . . .
)
,

another diagonal operator on �2
+ . According to Definition 1(a5 ), for each n the operator

Sn is posinormal if and only if there exists a nonnegative number αn (constant with
respect to the variable k ) such that SnS∗n � α2

n S∗nSn . This means that ∏n+ j
k= j+1 |ωk|2 �

α2
n ∏2n+ j

k=n+ j+1 |ωk|2 for every j � 0. Equivalently,

∏n+ j
k= j+1|ωk|

∏2n+ j
k=n+ j+1|ωk|

� αn for every j � 0.

Therefore,

Sn is posinormal if and only if sup j�0
∏ n+ j

k= j+1|ωk|
∏ 2n+ j

k=n+ j+1|ωk|
< ∞ .
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Since

sup
j�0

∏n+ j
k= j+1|ωk|

∏2n+ j
k=n+ j+1|ωk|

�
(

sup
k�1

|ωk|
|ωk+n|

)n

�
(

sup
k�1

|ωk|
|ωk+1|

)n2

,

it follows the claimed result: if S is posinormal, then Sn is posinormal. �

If T is invertible, then Tn is posinormal for every n � 1. (Indeed, if T is invert-
ible, then Tn is invertible for every n � 1, and hence posinormal every n � 1). Recall
that T , T ∗, T ∗T and TT ∗ are invertible (or not) together.

Another special class of posinormal operators for which the square is again posi-
normal will be given in Theorem 3(c) below. Consider the class of all posinormal
operators such that TT ∗ commutes with T ∗T . Trivial examples: normal operators,
or multiples of isometries (whose powers are clearly normal, or multiple of an isom-
etry, respectively, thus posinormal). In fact, every posinormal operator T such that
T ∗T = p(TT ∗) (or TT ∗ = p(T ∗T )) for some polynomial p lies in this class. Note
that TT ∗ commutes with T ∗T if and only if TT ∗T ∗T is self-adjoint (which happens
if and only if TT ∗T ∗T is nonnegative, because the product of commuting nonnegative
operators is again nonnegative). Thus, in particular, if the nonnegative operators T ∗T
and TT ∗ are both diagonal (diagonalized with respect to the same orthonormal basis
for H ), then they must commute.

THEOREM 3. Take an arbitrary operator T ∈ B[H ] so that R(TT ∗)⊆R(T ∗T )
if and only if (TT ∗)2 � β 2(T ∗T )2 for some constant β > 0 . Now suppose T is posi-
normal.

(a) If R(T ∗T ) = R(T ∗) , then T 2 is posinormal and R(TT ∗) ⊆ R(T ∗T ) .

(b) If R(TT ∗) ⊆ R(T ∗T ) , then T 2 is posinormal.

(c) If T ∗T and TT ∗ commute, then T 2 and T 3 are posinormal.

Proof. Take A and B in B[H ] . If A and B are self-adjoint (as it is the case
for TT ∗ and T ∗T ), then R(A) ⊆ R(B) is equivalent to A2 � β 2B2 for some β > 0
according to Lemma 1. Recall that R(A∗A) ⊆ R(A∗) and R(A∗A)− = R(A∗)− for
every operator A in B[H ] .

Suppose T is posinormal, which means that R(T ) ⊆ R(T ∗) ; equivalently, there
exists a constant α > 0 such that ‖T ∗y‖ � α‖Ty‖ for every y ∈ H ; still equivalently,
there exists a constant α > 0 such that TT ∗ � α2T ∗T (cf. Definition 1).

(a) Since R(T ) ⊆ R(T ∗) , it follows that if R(T ∗T ) = R(T ∗) , then R(T 2) ⊆
R(T ) ⊆ R(T ∗) = R(T ∗T ) = T ∗(R(T )) ⊆ T ∗(R(T ∗)) = R(T ∗2) , and T 2 is posi-
normal. Moreover, R(TT ∗) ⊆ R(T ) ⊆ R(T ∗) = R(T ∗T ) , completing the proof of
(a).

(b) Since R(TT ∗) ⊆ R(T ∗T ) is equivalent to saying that there is a β > 0 such
that (TT ∗)2 � β 2(T ∗T )2, which in turn is equivalent to ‖TT ∗x‖2 � β 2‖T ∗Tx‖2 for
every x ∈ H , it follows that if R(TT ∗) ⊆ R(T ∗T ) and T is posinormal, then

‖T ∗T ∗x‖ � α‖TT ∗x‖ � αβ‖T ∗Tx‖ � α2β‖TTx‖
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for every x ∈ H , and so T 2 is posinormal, which proves (b).
Recall: if Q and R are operators in B[H ] such that O � Q � R , and if QR = RQ ,

then O � QR and O � Q2 � R2 (see, e.g., [6, Problems 5.59 and 5.60]).
(c) Since T is posinormal, it follows that O � TT ∗ � α2T ∗T . If the nonnega-

tive operators TT ∗ and T ∗T commute, then (TT ∗)2 � α4(T ∗T )2 , which means that
‖TT ∗x‖2 � α4‖T ∗Tx‖2 for every x ∈ H ; equivalently, R(TT ∗) ⊆ R(T ∗T ) . Thus
T 2 is posinormal by (b) with

‖T ∗T ∗x‖ � α‖TT ∗x‖ � α3‖T ∗Tx‖ � α4‖TTx‖
for every x ∈ H . Take an arbitrary x ∈ H . The above inequalities imply that

‖T ∗T ∗T ∗x‖ � α4‖TTT ∗x‖ and ‖T ∗T ∗Tx‖ � α4‖TTTx‖.
However, since TT ∗ and T ∗T commute, and since T is posinormal,

‖TTT ∗x‖2= 〈TTT ∗x ;TTT ∗x〉 = 〈T ∗TTT ∗x ;TT ∗x〉 = 〈TT ∗T ∗Tx ;TT ∗x〉
= 〈T ∗T ∗Tx ;T ∗TT ∗x〉� ‖T ∗T ∗Tx‖‖T ∗TT ∗x‖ � α‖T ∗T ∗Tx‖‖TTT ∗x‖.

Therefore, ‖TTT ∗x‖ � α‖T ∗T ∗Tx‖ , so that

‖T ∗T ∗T ∗x‖ � α4‖TTT ∗x‖ � α5‖T ∗T ∗Tx‖ � α9‖TTTx‖,
and hence T 3 is posinormal. �

When is the product of two commuting posinormal operators posinormal?

REMARK 3. (a) The collection of all posinormal operators is a cone in B[H ]
(i.e., γ T is posinormal for any γ � 0 whenever T is posinormal).

(b) Sum of two posinormal operators may not be posinormal. Clear: if T is not
posinormal and λ is in the resolvent set of T , then λ I and T −λ I are both invertible,
thus posinormal.

(c) Orthogonal direct sums of posinormal operators are trivially posinormal, and
tensor products of posinormal operators are posinormal as well [5, Theorem 4].

(d) Product of two posinormal operators is not necessarily posinormal. For com-
muting operators, see Example 1. For operators that do not commute, consider, for
instance, a unilateral weighted shift, which is the product of two noncommuting posi-
normal operators, namely, a diagonal (normal) and the canonical unilateral shift (hy-
ponormal); but examples of (injective) unilateral weighted shifts that are not posinor-
mal were exhibited in [8, p.4]. Therefore, this shows that even the product of a positive
operator and a quasinormal (in particular, and a hyponormal) operator may not be posi-
normal.

(e) It is worth noticing that, if S and T commute, and if ST is posinormal, then

R(ST) ⊆ R(S)∩R(T)∩R(S∗)∩R(T ∗).

(If S and T commute, then R(ST ) ⊆ R(S)∩R(T ) and R(T ∗S∗) ⊆ R(T ∗)∩R(S∗) ,
so that, if ST is posinormal, then R(ST ) ⊆ R((ST )∗) = R(T ∗S∗) .)
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THEOREM 4. Suppose T is posinormal.

(a) If S is posinormal and S∗ and T commute, then ST is posinormal.

(b) If S is normal and S and T commute, then ST is posinormal.

Proof. (a) If T and S are posinormal in B[H ] , and if TS∗ = S∗T , then there
exist positive constants αT and αS such that ‖(ST )∗x‖ = ‖T ∗S∗x‖ � αT‖TS∗x‖ =
αT‖S∗Tx‖ � αT αS‖STx‖ for every x ∈ H , and so ST is posinormal.

(b) If T is posinormal, S is normal, and ST = TS , then the Fuglede Theorem
ensures that S∗T = TS∗ (see, e.g., [7, Corollary 3.19]), so that (b) follows from (a)
since S is posinormal. �

5. Powers of a quasiposinormal operator

DEFINITION 2. Take a arbitrary operator T ∈ B[H ] .
(a) T is quasiposinormal if any of the following equivalent assertions are fulfilled.

(a1) R(T )− ⊆ R(T ∗)− .

(a2) N (T ) ⊆ N (T ∗) .

(b) T is coquasiposinormal is T ∗ is quasiposinormal.

The above equivalence is readily verified. In fact, take an arbitrary operator A on
H , an arbitrary pair of linear manifolds M and N of H , and recall that A∗∗ = A ,
R(A)− = N (A∗)⊥, N (A) = N (A)−, and M⊥ ⊆ N ⊥ if and only if N − ⊆ M−.
Thus R(A)−⊆ R(A∗)− if and only if N (A) ⊆ N (A∗) .

As every surjective operator is trivially coposinormal, every injective operator
is trivially quasiposinormal. In particular, every injective unilateral weighted shift is
quasiposinormal. Along this line it is also worth remarking that if T is not quasiposi-
normal (or not coquasiposinormal so that either T or T ∗ is not injective), then T has
a nontrivial invariant subspace (cf. [8, Section 5]).

Clearly, every posinormal is quasiposinormal (either by Definitions 1(a4 ) and
2(a1 ), or by Proposition 1(a1 ) and Definition 2(a2 )). The converse holds for opera-
tors with closed range: if R(T ) is closed (equivalently, if R(T ∗) is closed) and if T is
quasiposinormal, then T is posinormal. If T is posinormal and dsc(T ) < ∞ , then Tn

posinormal by Corollary 1(a), so that Tn is quasiposinormal. More is true.

THEOREM 5. If T is quasiposinormal, then Tn is quasiposinormal for every
n � 1 .

Proof. The result in Proposition 1(a2 ), namely, N (T 2) = N (T ) whenever T is
posinormal, can be extended to quasiposinormal operators. Indeed, the very same proof
in [8, Remark 2] survives: if T is quasiposinormal, then N (T 2) = N (T ) . This means
(as in Remark 2) that
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(a ′2 ) if T is quasiposinormal, then asc(T ) � 1,

which implies that N (Tn) = N (T ) (by the definition of ascent). Summing up:

N (T ) ⊆ N (T ∗) =⇒ N (T 2) = N (T ) =⇒ N (Tn) = N (T )

for every n � 1. Therefore, if N (T ) ⊆ N (T ∗) (i.e., if T is quasiposinormal), then

N (Tn) = N (T ) ⊆ N (T ∗) ⊆ N (T ∗n),

so that Tn is quasiposinormal, for every n � 1. �

Since posinormality implies quasiposinormality, and since quasiposinormality and
closed range imply posinormality, we get the following immediate consequences of
Theorem 5. Recall the Banach Closed Range Theorem again: R(T ) is closed if and
only if R(T ∗) is closed.

COROLLARY 2. If T is posinormal, then Tn is quasiposinormal for every n � 1 .

COROLLARY 3. If T is posinormal and R(Tn) is closed for some integer n � 2 ,
then Tn is posinormal.

The next result is reminiscent of Fredholm Theory, and it can be thought of as a
especial unfolding of Corollary 3.

THEOREM 6. If a semi-Fredholm operator T is posinormal, then Tn is posinor-
mal (and semi-Fredholm) for every integer n � 1 .

Proof. Note that the above statement is equivalent to the following one: if T is
posinormal, if R(T ) is closed, and if dimN (T ) < ∞ or dim(T ∗) < ∞ , then Tn is
posinormal for every integer n � 1.

Indeed, suppose T is posinormal. Corollary 2 says that Tn is quasiposinormal
for every n � 1. In addition, suppose R(T ) is closed and N (T ) or N (T ∗) is finite-
dimensional, which means that T is semi-Fredholm (see, e.g., [7, Corollary 5.2]). Since
T is semi-Fredholm, it follows that Tn is semi-Fredholm, and this implies that R(Tn)
is closed, for every n � 1 (see, e.g., [7, Corollaries 5.2 and 5.5] — also see [1, Corollary
2]). Being quasiposinormal with a closed range (so that the range of T ∗n is also closed),
Tn is posinormal for each n � 1. �

The notion of supraposinormal operators was recently introduced and investigated
in [11]: an operator T is supraposinormal if there exist nonnegative operators P and
Q , at least one of them with dense range, such that TPT ∗ = T ∗QT — a posinormal op-
erator is a particular case of a supraposinormal with P = I , and a coposinormal operator
is a particular case of a supraposinormal with Q = I . It is clear that if T is posinor-
mal or coposinormal, then it is quasiposinormal or coquasiposinormal. However, it was
shown in [11, Theorem 1] that a supraposinormal operator is quasiposinormal or co-
quasiposinormal (according to whether P or Q has dense range, respectively). This
leads to another consequence of Theorem 5.
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COROLLARY 4. If T is supraposinormal, then T n or T ∗n is quasiposinormal for
every integer n � 1 .
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