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Abstract. We present a Hilbert space perspective to homogenization of standard linear evolu-
tionary boundary value problems in mathematical physics and provide a unified treatment for
(non-)periodic homogenization problems in thermodynamics, elasticity, electro-magnetism and
coupled systems thereof. The approach permits the consideration of memory problems as well
as differential-algebraic equations. We show that the limit equation is well-posed and causal. We
rely on techniques from functional analysis and operator theory only.
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