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NOTE ON SOME OPERATOR EQUATIONS
AND LOCAL SPECTRAL PROPERTIES

IL JU AN AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper we define .7 ; by the set of solutions (A,B) of the operator equations
AKBIHIAR = A%HT and BYAJT1BY = B%+J | Then we observe the set .% ; is increasing for all
integers k> 1 and j > 0.

Now let a pair (A,B) € S jNZj+1k—1 for any integer k > 1 and j > 0. We show that
if any one of the operators A, AB, BA, and B has Bishop’s property (), then all others have
the same property. Furthermore, we prove that the operators A/ AKBit+1 - Ait1gk  gitlak
BFAT*! and B*'J have the same spectra and spectral properties. Finally, we investigate their
Weyl type theorems.

1. Introduction

Let 2" and % be infinite dimensional Banach spaces and let B(.Z2™,%) denote
the algebra of bounded linear operators from 2" to ¢, and abbreviate B(.2",.Z") to
B(Z"). Let K(Z") be the ideal of all compact operators in B(Z"). If T € B(Z'),
we shall write N(T) and R(T) for the null space and range of T'. Also, let o/(T) :=
dimN(T), B(T) :=dimN(T*), and let 6(T), 6,(T), 0u(T), 0,(T), 6.(T), po(T),
and mp(T') denote the spectrum, the point spectrum, the approximate point spectrum,
the residual spectrum, and the continuous spectrum of 7', respectively. For T € B(Z"),
the smallest nonnegative integer p such that N(77) = N(T?*!) is called the ascent of
T and denoted by p(T). If no such integer exists, we set p(T) = e. The smallest non-
negative integer ¢ such that R(T9) = R(T9*!) is called the descent of T and denoted
by ¢(T). If no such integer exists, we set g(7) = oo.

The famous “reversal of product” for inverse says that if A € B(2",%') and C €
B(%,%) are invertible, then so is CA € B(2", %), with (CA)~! =A~!'C~!. In gen-
eral, the sum of two invertible operators need not be invertible. However it is well
known that if A and C are in B(.Z"), then

I — CA is invertible <= [ — AC is invertible.

Mathematics subject classification (2010): Primary 47A10, 47A53; Secondary 47B20.

Keywords and phrases: Operator equations, spectrum, single valued extension property.

This work was supported by Basic Science Research Program through the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. 2009-0083521). This research was supported by Basic Science
Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2009-
0093827).

© MV, Zagreb 397
Paper OaM-10-22


http://dx.doi.org/10.7153/oam-10-22

398 I.J. AN AND E. Ko

More generally, we consider that for any integers £ > 1 and j > 0,
[ — C/1 A is invertible < I — AKC/*! is invertible.

Indeed, assume that  — C/*1AF is surjective, that is, (I — C{'+1Ak)<%” = 2. For arbi-
trary y € 27, there exists x € 2" such that C/!y = (I — C/*'A¥)x. Thus A*C/*!y =
AF(I — CIT1AR)x = (I — AKCT1) AR, so that

y=ARCTy 4 (1 - ARCTt Yy = (1 — AR AR + (1 - AFCT)y
= (I—-AfCIt Yy (ARx+y) e (1 - AFCITh 2.

Hence (I —A*C/*1) 2 = 2. Conversely, we have the similar method. It follows that
for any integers k > 1 and j > 0,

I —C/ T AR is surjective <= I —AFC/*! is surjective.

We now assume that [ — C/+1A* is injective. If (I — A*C/*1)x =0, then x = A*C/*1x.
Hence C/tlx = C/H1AXC/H1x, so that (I — C/T1ARC/H1lx = 0. Since I — C/H1AK
is injective, we have that C/*1x = 0, which implies that AXC/*!x = 0. Since (I —
ARCIH1)x =0, we get that x = 0. Thus I — A¥C/*! is injective. Conversely, we have
the similar method. Therefore this means that for any integers k > 1 and j > 0,

I —C/ T Ak s injective <= I —AFC/*! is injective.

As mentioned in [2] we replace from I — A*C/+! to certain 7 — AKB/*! and specifically
we will suppose that AXB/T1AK = AKC/+1AK | The special case is of interest to us, the
case AXB/T1AK = A%+7 in which C/*! = A/ for any integer j > 0.

Now we let a pair (A, B) be the solution of the operator equations

AFBIHIAR — A%k and BFAJHIBY = B2, (1.1)

In particular, when k=1 and j = 0, the operators A and B are solutions of the system
of operator equations

ABA = A% and BAB = B. (1.2)

This means that if a pair (A, B) of Banach space operators is the solution of the operator
equations (1.2), then so is this of the operator equations (1.1). In [10], I. Vidav proved
that A and B are self-adjoint operators satisfying the operator equations (1.2) if and
only if A = PP* and B = P*P for some idempotent operator P. Also, the common
spectral properties of the operators A and B satisfying the operator equations (1.2)
have been studied by C. Schmoeger [9]. In particular, it is possible to relate the various
spectra, the single-valued extension property and Bishop’s property () of A and B,
which has been carried out by [5]. So we extend the previous results for the operator
equations (1.2) to those for the operator equations (1.1). We start our program with the
following section.
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2. Preliminaries

An operator T € B(Z") is called upper semi-Fredholm if it has closed range and
finite dimensional null space and is called lower semi-Fredholm if it has closed range
and its range has finite co-dimension. If 7 € B(.Z") is either upper or lower semi-
Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator
T € B(Z") is defined by

i(T):=o(T)—B(T).

If both a(T) and B(T) are finite, then T is called Fredholm. T € B(Z") is called
Weyl if it is Fredholm of index zero. The essential spectrum ©,(T), the Weyl spectrum
0,,(T) and the Browder spectrum o,(T) of T € B(Z") are defined as follows.

0,(T):={A € C: T — Ais not Fredholm},

0,(T):={A € C: T — A is not Weyl},

and
0,(T) :={A € C: T — A is not Browder},

respectively. Evidently
0.(T) C 6(T) C op(T) = 0.(T)Uacco(T),

where we write acc K for the accumulation points of K C C.
By definition,
0.a(T) :=N{o,(T+K): K€ K(Z)}

is the essential approximate point spectrum,
0u(T):={0,(T+K): TK=KT and K € K(Z")}

is the Browder essential approximate point spectrum.
If we write iso K = K \ acc K, then we let

moo(T) :=={A €isoo(T): 0< ot(T — L) <o },
m5o(T) :=={A €is0 0,(T): 0 < (T —A) <o },
poo(T) :==o(T)\ oy(T),
and
Poo(T) := 6a(T) \ Oan(T).
We say that Weyl’s theorem holds for T € B(Z") if there is equality
o(T)\ ow(T) = mo(T),
that Browder’s theorem holds for T € B(Z") if there is equality

o(T)\ 0w(T) = poo(T),



400 I.J. AN AND E. Ko
that a-Weyl’s theorem holds for T € B(.Z") if there is equality
0u(T)\ Oea(T) = o (T),
and that a-Browder’s theorem holds for T € B(Z") if there is equality
04(T)\ Oea(T) = Pio(T)-
It is known [3, 4, 6] that we have
a-Weyl’s theorem = Weyl’s theorem = Browder’s theorem;

a-Weyl’s theorem =- a-Browder’s theorem = Browder’s theorem.

Let o/ be a unital algebra. We say that an element x € <7 is Dragzin invertible of degree
k if there exists an element a € 2/ such that

Xax=x*, axa=a, and xa = ax.

Let a € o7 . Then the Drazin spectrum is defined by
op(a):={A € C:a— A isnot Drazin invertible}.

Itis well known that T is Drazin invertible if and only if it has finite ascent and descent,
which is also equivalent to the fact that

T =T, @ T, where T is invertible and 75 is nilpotent.

In terms of local spectral theory ([1], [8]) recall the following definitions.

DEFINITION 2.1. Let T € B(Z").

(1) An operator T has Bishop’s property (f3) if for every open subset U of
C and every sequence of analytic functions f,, : U — 2~ with the property that (7 —
A)fu(A) — 0 as n — oo, uniformly on all compact subsets of U , it follows that f,,(1) —
0 as n — oo, uniformly on all compact subsets of U .

(2) Anoperator T has the single valued extension property at Ay € C, abbreviated
T has SVEP at A if for every open neighborhood U of Ay the only analytic function
f:U — Z which satisfies the equation

(T=2)f(A)=0

is the constant function f =0 on U. The operator T is said to have SVEP if T has
SVEP atevery A € C.

In general, the following implications hold:

Bishop’s property () = SVEP.
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Evidently, every operator T, as well as its dual 7%, has SVEP at every point of the
boundary do(T) of the spectrum o(7T'), in particular, at every isolated point of & (T).
We also have (see [1, Theorem 3.8])

p(T —A) <oo = T has SVEPat A, 2.1)

and dually
q(T — L) <o = T" has SVEP at 1. (2.2)

It is well known from [1] that if 7 — A is semi-Fredholm, then the implications (2.1)
and (2.2) are equivalent.

3. Local spectral properties and some operator equations

Throughout this paper we define .y ; by the set of solutions (A,B) of the operator
equations
AkBj+1Ak — A2k+j and BkAj+lBk — B2k+j

for all integers k > 1 and j > 0. In particular, if a pair (A,B) € .%o, then ABA = A2
and BAB = B?. Then the following inclusions are satisfied.

PROPOSITION 3.1.
(1) S C i forall integers k > 1 and a fixed integer j 2 0.
(2) Srj C St for every k € N and all integer j > 0.

Proof. (1) Suppose that (A,B) € .#19. Then A"B = AB" and B"A = BA" for
n > 2. Then for all integer k,j > 1,

and
BkAj-‘rlBk :Bk—lBAj+lBk :Bk—lBj+lABk :Bk-‘rj—lBABBk—l :sz-‘rj.

Hence (A,B) € .%} ;. so that this inclusion is satisfied.
(2) Suppose that (A,B) € .%; ; forevery k € N and all integer j > 0. We first fix
j>0. Then AKB/T1AK = A%k+J and B¥A/+1BK = B**J Thus we have that

AKFLRITLAKL _ A Akpi+t1 gk g — A2(k+1)+)
and
B 1Akt — pRiA T+l gig — Rk,
Thus (A,B) € 1, forevery k € N and a fixed integer j > 0. O

From Proposition 3.1, it is obvious that the set .#; ; is nonempty. Moreover, we
observe the following remark.
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REMARK 3.2. Set .7 ; := ;| %, for afixed integer j > 0. Then
AjC S C - CIhjC S Coo C T

However, the following example says that .71 ; # .77 ;41 holds for integers j > 0.

wl 0 ol 0 .
EXAMPLE 3.3. If A = <0 6]) and B= <0 a)I) arein B(2 @® 27), where

®>"*1 =1 and w € C\ {1}, then by the induction,
(A,B) € ¥, forintegersn > 1.

But, (A, B) & A1 n—1US ny1 forintegers n > 1. In fact, assume that there exists some
integer m > 1 such that (A,B) € A y—1US1 y1. If (A,B) € %) 1, then AB™A #
A1 and BA"B # B! since 0®"*1 = 1.1f (A,B) € A mt1, then AB"H2A £ A3
and BA™"2B # B"3 since @*"*! = 1. Hence we have a contradiction. Thus (A,B) €
A n—1US1 g1 .- Moreover, it follows that .71 ; ¢ .77 j41 holds for all integers j > 1.

EXAMPLE 3.4. Ingeneral, if (A,B) € .7] o, then it follows that the equality A"B =
AB" holds for n > 2. However, this equality is not satisfied when (A, B) € .} ;, for any
nonnegative integers k and j. Let’s consider the operator matrices A and B defined in
Example 3.3. Then a pair (A,B) isin % ; for k =1 and any integer j > 1. By the
straightforward calculation, we have that A”B # AB" for n > 2.

From Example 3.4 we can guess the following proposition.

PROPOSITION 3.5. If (A,B) € 41, for any integer n > 0, then for k > n+ 1

Ak+2n+lBk — AkBk+2n+1 Bk+2n+1Ak — BkAk+2n+l

and

Proof. Suppose that (A, B) € %11 , for any integer n > 0. Then A"+ !B 1A =
A32 and B T1AMHI Bl — B3+2 We show that for every integer k > n+1, AK21+1gk
_ AkBk+2n+l and Bk+2n+1Ak _ BkAk+2n+l I k=n+1 for [ >1, Ak+2n+1Bk _
A171A3n+2Bn+l AlflAnJranJrlAnJranJrlBlfl An+133n+l+l — AkBk+2n+1 , and sim-
ilarly, B<t2n 14k = BkAk+2n+1  This proof is complete. [

Now we show that the operators A, AB, BA and B have the property (f) in
common. For this we need the following lemma.

LEMMA 3.6. Let (A,B) € Y} ; for any integer k > 1 and j > 0. Then the fol-
lowings are satisfied.

(1) A has property (B) if and only if A*B/*! has property (B).

(2) B¥J has property (B) if and only if B\A7™! has property (B).
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Proof. (1) Suppose that AKB/*! has property (8) at 4 € C. Let % be an open
neighborhood of p and f, : % — 2 be a sequence of analytic functions such that
(AT — Q) fu(A) —0in % .

Then A*B/H1(AM/ —A)f,(A) — 0 and (A%**+2 — AAKB/+1)f, (A1) — 0. Since
AH2i £, () = A%f,(A) in %, we have that (A*B/*1 — 1)(—=Af,(1)) — 0. But,
A¥B/*1 has property (B) at u € C, hence —Af,(1) — 0 so that f,(A) — 0 for all
A in % . Thus A¥/ has property (B) at u.

Conversely, assume that A¥*/ has property (B) at u € C. Let g,: % — 2
be a sequence of analytic functions such that (A¥B/*! —1)g,(1) — 0 in % . Then
AFBIFY(AFBITT — 1)g,(A) — 0, so that (A2F7B/1 — 2 AkBi+1)g, (1) — 0. Hence we
have (AF7 —1)(A*B/*1g, (1)) — 0. Since A**/ has property (B) at u, AKB/i*1g, (1)
— 0. But, (A*B/*! —1)g,(A) — 0 in % , thus g,(A) — 0 forall A in % . So A*B/*!
has property (f3) at pt. Since u is arbitrary in C, this is complete.

(2) The proof is obvious by the similar process as above. [

As some applications of Lemma 3.6, we get the following theorem.

THEOREM 3.7. Let (A,B) € %} ;N .Ljy14—1 for any integer k > 1 and j > 0.
Then the following statements are equivalent.

(1) A has property (B).

(2) AB has property ().

(3) BA has property (B).

(4) B has property (B).

Proof. Suppose that A has property (f3). Then it follows from [1, Theorem 2.40]
that A**/ has property (B). So we first show that B¥A/*! has property (B). Let
fu: % — 2 be asequence of analytic functions for every open neighborhood % of
Ao € C. Suppose that (BXA/*! —2)f,(A) — 0. Then A/*1(BFA/F1 — )£, (1) — 0.
Since (A,B) € 4141, we have (A¥/ —1)ATT1£,(1) — 0. And then A7 f,(1) —
0. But, BFA7*1 £, (A1) = Af, (1), hence Af, (1) — 0. Since A is arbitrary in % , we
have f,(A) — 0. Thus B¥A/*! has property (B). So it follows from Lemma 3.6 that
B**J has property (). Therefore B has property (j3).

Conversely, suppose that B has property (). Then B*/ has property (). So we
only need to prove that AKB/*! has property () by Lemma 3.6. Assume that g: %" —
Z is the analytic function for every open neighborhood # of g € C and (A*B/*! —
W) fu(p) — 0. Then B/ (AKB/*! — ) f,(1) — 0. Since (A,B) € 4141, we have
(B**/ — )BT f,(u) — 0. And then B/ £, (1) — 0. But, (A*B/*!1 — ) f,(u) — 0,
hence pf, (1) — 0. Since u is arbitrary in %, we have f, () — 0. Thus A*B/*! has
property (B), so that A¥*/ has. Consequently, A has property (8). [

REMARK 3.8. Similarly, Theorem 3.7 holds for the single-valued extension prop-
erty. This means that if one of A, AB, BA, or B has SVEP whenever (A,B) €
N 4141 for any integer k > 1 and j > 0, then all of the operators A, AB,
BA, and B have SVEP.
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If (A,B) € 71, then the operators A, AB, BA, and B have the spectrum, point
spectrum, approximate point spectrum, residual spectrum, essential spectrum, and Weyl
spectrum in common (see, [5] and [9]). So we extend these to the operators ARt
AKBITL ATHIBE BITIAK BXAJT and B*'J when (A,B) € % jN.%}+14-1 for any
integer k > 1 and j > 0. We shall require the following results.

LEMMA 3.9. Let (A,B) € 7 ; for any integer k, j = 0. Then the followings are
satisfied for A # 0.
N(AMT — A1) = N(AKB/+Y — AT) and N(B¥7 — AI) = N(BFAT+! — AT).

Proof. (1) Let x € N(A¥*/ —AI). Then A¥/x = Ax, so that AKB/1AM Ty =
AA*Bi+1x Hence A%*+2ix = LA*B/+1x and AAKB/+1x = A2+2ix = 1 %x. Since A #0,
AKBI*1x = Ax. So x € N(A*B/*! — AI). Thus N(A¥/ — A1) C N(AKB/*! — AT).

Conversely, suppose that x € N(A¥B/*! — AI). Then A*B/T!x = Ax, so that
A*BITIAKBI T x = AA*B/1x and then A¥T/A*B/T1x = AA*B/T1x. Thus AANix =
A2x, which implies that A¥*/x = Ax. Hence x € N(A**/ — AI). Consequently, The
first equality holds. From similar argument, the second statement can be proved. [

LEMMA 3.10. Let (A,B) € S} ;N .Sjy1k—1 for any integer k > 1 and j > 0.
Then the following properties hold for A # 0.

(1) N(A¥J — AI) = N(AFB/*! — A1) = N(A/T1BX — AT).

(2) N(B¥/ — A1) = N(BFAJH! — AI) = N(B/H1AK — AD).

Proof. From Lemma 3.9 we only need to show that N(A**/ — A1) = N(A/+!1BK —
Al). Let x € N(A¥/ —AI). Then AF/x = Ax, sothat A2x = A% 2ix = AIH1 BFARH/x =
AATF1B x . Since A # 0, we have that A7*!Bkx = Ax. So x € N(A/+!BX — AI). Thus
N(AM — A1) C N(A/H1BF - AT).

Conversely, let x € N(A/F1B* — AI). Then A/T!'B*x = Ax, so that AAKx =
A2/ Bk y = ATFIBYATH1 Bk x = 2%x. Hence N(A/H!Bk — A1) C N(A¥/ — AI), which
completes the proof. [

Lemmas 3.9 and 3.10 ensure that the following proposition holds.

PROPOSITION 3.11. Let (A,B) € %4 jNSj1x—1 for any integer k > 1 and j >
0. Then the followings are equivalent for A # 0.

(1) N(A¥7 — A1) = {0}.

(2) N(AkB/*+! — A1) = {0}.

(3) N(A71Bk — A1) = {0}.

(4) N(B/*1Ak — A1) = {0}.

(5) N(BFAT+! — A1) = {0}.

(6) N(B*/ — A1) = {0}.

Prpof. We only need to show thaf[ (I)= (4) and (6)=(3) from Lemma 3.10. Let
N(A*J — A1) = {0}. Assume that (B/*1A¥ — 1)y = 0 for some nonzero y € 2". Then
0 = AK(B/T1AK — L)y = (A% — AAk)y = (AKH) — 2)A%y. Hence Aky € N(A¥H —
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AI) = {0}, so that Ay = 0. Since A #0, y =0, but this is a contradiction. Thus
N(B/t1AK — AI) = {0}, which completes the implication (1)=> (4). By similar way, it
is shown that (6)=-(3). [

LEMMA 3.12. Let (A,B) € % jNSj1k-1 for any integer k > 1 and j > 0.
Then the followings hold for A # 0.

(1) BE(N(A¥) — A1) = N(B — AI).

(2) AK(N(B* — AI)) = N(AKH — AT).

Proof. Let x € N(A¥t/ — AI). Then A**/x = Ax. So BX**iAktiy = AB**ix,
and this implies that BXA/T! BXA/T1Ak=1x = A B?+Jx. Hence B*A**+%ix = AB**ix,
so that A2B*x = AB**/x. Since A # 0, B**/x = ABkx and then (B**/ — AI)B*x=0.
Thus B*x € N(B¥*/ — AI), which implies that B¥(N (A7 — A1)) C N(B*/ — AI).

Conversely, if x € N(B**/ — AI), then B*A/*1x = Ax by Lemma 3.9. So A¥2/+1x
= ATHIBFATH x = LA+ x, hence (AKF/ — L)A7+1x = 0. Thus A/t1x € N(AF7 - AT),
so that Ax = BXA/*1x € B¥(N(A¥7 — AI)). Since A # 0, we get that x € BF¥(N(AF7 —
Al)). Consequently, B¥(N(A¥/ — AI)) = N(B¥*/ — AI). By the similar way, it is
shown that A¥(N(B*+/ — AI)) C N(A¥*/ — AI). Hence we complete our proof. []

PROPOSITION 3.13. Let (A,B) € %4 jNS 41 x—1 for any integer k > 1 and j >
0. Then we have the following equalities for A # 0.

a(A¥ — A1) = a(A*B/T — A1) = a(A/TIBE — AT)
= a(B/TAY — A1) = a(B* AT — A1) = a(B* — AD).
Proof. We first show that
N(AYNN(BT — A1) = {0} and N(B)NN(A7 — A1) = {0}. (3.1)

Assume that there exists a nonzero x € 2" such that Axx =0 and B¥"/x = Ax. Then we
have that A%x = B%*+2/y = BitlAkpktiy = A B/It1Akx = 0. However, x is a nonzero
element, so that A = 0. This is a contradiction. Thus N(A*) N N(B**/ — 1) = {0}.
Similarly, the second equality of (3.1) can be proved, so that the restrictions of A* to
N(B¥7 — 1) and BF to N(A¥*/ — 2) are injective. Therefore the proof follows from
Lemmas 3.10 and 3.12. [

LEMMA 3.14. Let (A,B) € %} ; for any nonnegative integer k, j. Then we have
the following equalities.

(1) 6p(A*7)\{0} = 0, (A*B/*1)\ {0} and o,(B**/)\ {0} = 6, (B*A7*")\ {0}.

(2) 0a (A7) \ {0} = 04 (A*B/*1)\ {0} and 64(B*)\ {0} = 0, (B*A/*1)\ {0}.

Proof. (1) The proof is obvious from Lemma 3.9.

(2) Let A € 6,(A**7)\ {0} . Then there exists a sequence (x,) C 2~ with |jx,|| = 1

for all n € N such that (A7 —AI)x, — 0 as n — eo. Let z, := (A¥*/ — AI)x,. Then
AMix, = Ax, + 2, and z, — 0 as n — oo. So

A2y p AR 4 AR — 2 %% 4 Az, + AR
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But, AZ+2jx, = AKB/H1AK Iy, = LA¥B/T1x, + AKB/ 17, Thus
(AARBITY —22)x, = (AT + A% — A*BIT )z, — 0as n — oo, (3.2)

For A #0, (A*B/*! — A)x, — 0 as n — o, so that A € o,(AkB/F1)\ {0}.

Conversely, let 4 € 6,(A*B/*1)\ {0}. Then there exists a sequence (y,) C 2~
with ||y,|| =1 for all n € N such that (AKB/*! — AI)y, — 0 as n — eo. Let w, :=
(A*B/*1 — AI)y,. Then A*B/*1ly, = Ay, +w, and w,, — 0 as n — oo. So

APRHIBITLy = QAARBITYy, 4+ AKBI s, = A2y, + Aw, + AFBI T,
However, A+ Bitly, — A (Ay, +w,) = LAy, + A¥Fiw, . Thus
(AAT 221y, = (AL +A*BIH — A ), — 0 as n — oo

For 2 # 0, (A¥/ — AI)y, — 0 as n — oo, so that A € 0,(A¥"/)\ {0}. Therefore
0a(AM)\ {0} = 0,(A*B/*1)\ {0}. The second equality can be proved by similar
process. [J

THEOREM 3.15. Let (A,B) € % jN.%j11 k-1 for any integer k > 1 and j > 0.
Then the following statements hold.

(1) 6, (A1) {0} = 0, (A*BI*1)\ {0} = 6, (47 BY)\ {0} = 6, (B/*14%)\ {0} =
op(B*ATH1)\ {0} = 6, (B) \ {0}.

(2) 0a(A)\ {0} = 04 (A*B/*1)\ {0} = 00 (A7 BX)\ {0} = 04 (B/H1AF) \ {0} =
0a(B*ATT1)\ {0} = 04 (B**/) \ {0}.

Proof. (1) The proof follows from Lemma 3.10.

(2) It is sufficient to show that o, (A/*1BX)\ {0} = 0,(AK7)\ {0} = o,(B )\
{0} by Lemma 3.14. To show the first equality, we let A € o,(A/+!B)\ {0}. Then
there exists a sequence (x,) C 2~ with ||x,|| = 1 for all n € N such that (A/*!B* —
Al)x, — 0 as n — oo. Let z, := (A/*'B* — AI)x,. Then A/*!'Bkx, = Ax, + 2z, and
zn — 0 asn—o. So

ARF2IHL By — QAT BRx, + AT BR 7, = A2x, + Az, + AT IBRZ,.
However, AKT2/+1 Bky, = AKHJ (AT BRx,)) = AA¥+ix, + A¥ iz, . Thus
(AAMT 221D x, = (AL + AT BY — AM)z, — O as n — oo,

For A #0, (A¥*/ — AI)x, — 0 as n — o, so that A € o,(AF"/)\ {0}.

Conversely, let A € 6,(A¥7)\ {0}. Then there exists a sequence (y,) C 2 with
lyall = 1 for all n € N such that (A**/ — A1)y, — 0 as n — co. Let w, := (AF/ —
Al)y,. Then A Jy, = Ay, +w, and w, — 0 as n — . So

A2y = QAT AR, = Ay, 4 Aw, + A,
But, A%+2/y, = AJFIBkAKty, — ) ATHIBKy, + AT+ Bk, . Thus

(AATTIBE — A2y, = (AT + A — ATH1BN YW, — 0 as n — oo
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For A #0, (A/*1BX — 1)y, — 0 as n — oo, so that A € 0,(A/T'B*)\ {0}. Therefore
0a(ATBY)\ {0} = 04 (A*17) \ {0}
Now, we let A € 0,(A¥"/)\ {0}. From (3.2) in the proof of Lemma 3.14, we have
that
(ABkJijJrl —AszJrl)x = Uy,
where u, := (AB/T! 4+ B/t 1 AR/ — BA2i+1)z 0 as n — oo. Hence A BT/ —AI)B/*!x,
=u,, so that for L #0,

. . 1
(B*H —ADB/ Ty, = 7 (3.3)
From this, there is a positive integer m such that B/*'x, # 0 for n>m and ||B/*'x,| ™!
is bounded. Let y, := ||B/*'x,||"'B/*!x, for n > m. Then ||y,|| = 1. It follows from

(3.3) that for n > m

(BT — AD)y, = |B/ x| Y (B — ADB T,
= (AMIB x|

Therefore (B*/ —A)y, — 0 as n — 0. So A € 0,(B**/)\ {0} . Similarly, the opposite
inclusion is satisfied. Consequently, this complete the proof by Lemma 3.14. [

COROLLARY 3.16. Let (A,B) € 7} jN.Yj11k—1 forany integer k> 1 and j > 0.
Then we have the following equalities.

(1) o (Ak+j) p(BkAjJrl) (Bj+lAk)

(2) o (Bk+j) p(AkBjJrl) (Aj+lBk)

(3) Ga(Akﬂ) Ou(BFATT) = Ga(BJ“A")

(4) 04(B¥V) = 0,(A*B/*1) = 6,(AJ 1 BF).

Proof. (1) We suppose that N(A*/ — A1) = {0}. It was already shown by Propo-
sition 3.11 when A # 0. So we assume that A = 0. Then we have that for every
xe ',

Ak+j(BkAj+1 —Ak+j)x: (Ak+jBkAj+1 —A2k+2j)x
— (Ak—lAj+lBkAj+1 —A2k+2j)x =0.

Similarly, A¥*/(B/t1A% — AK+7)x =0 for every x € 2. Since A¥*/ is injective, we
have that (B*A/T! — A)x = 0 and (B/*!A* — A¥/)x = 0 for every x € 2. Thus
ARHT = BkATHT = BI+1AK for k> 1 and j > 0.

Therefore 6,(A*"/) = 6,(B*A/*!) = 0,(B/t1A*) for k> 1 and j > 0.

(2) It is shown by similar process as the proof of (1).

(3) Suppose that A € 0,(A¥/). It was already shown by Theorem 3.15 when
A # 0. So we assume that A = 0. Then A**/ is bounded below. It follows from the
proof in part (1) that these can be proved. [J

Theorem 3.15 shows that the only O can fail to be in the point spectrum and ap-
proximate point spectrum of the operators At/ AKBIT1 - Ait1Bk - pitlpk - pkpTt1
and B¥7 . Evidently, the operators have the same point spectrum and approximate point
spectrum whenever j =0 in Theorem 3.15.
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COROLLARY 3.17. Let (A,B) € %} jN.Yj41k—1 forany integer k > 1 and j=0.
Then the following equalities hold.
(1) 6,(A7) = 6,(A*B/*1) = 6,(A7T' B*) = 6,(B/ 1 AF) = 6, (B*ATT) = 0, (BXHY).
(2) o4 (AkJrj) = Ga(AkBjJrl) = Ga(AjJrlBk) =0y (BjJrlAk) =0y (BkAjJrl) =0y (BkJrj) .
Proof. (1) Suppose that N(A*B— AI) = {0} for any integer k > 1. If A # 0, then
it is shown by Proposition 3.11. So we assume that A = 0. Then A*B(A*B — Bf) =
AFBAKB — A¥B*1 = 0. Since A*B is injective, we have that AKB = B* for any integer
k > 1. Thus we get that for every x € 2",

Thus B**~! = B*~2 for any integer k > 1. Since N(B) C N(B*) = {0}, it follows
that B=1. So B¥ =1 for all integer k > 1. It follows from the equation B*XAB* = B
that A = I, which implies that A = I for all integer k > 1. This means that A¥*/ =
ARBI+T = AJ+1 gk — Bit1Ak — BFAJ+! — Bk+7 — | | So the proof is complete.

(2) It is immediately shown by the proof in (1) and Theorem 3.15. [l

Under the similar conditions, we have more results for the residual spectrum,
spectrum, and continuous spectrum of the operators AXT/, AKBi+1 AJ+Ipk  BitlAk
BFAT+! and BM

PROPOSITION 3.18. Let (A,B) € %} jN.Sj 1 k-1 forany k> 1 and j > 0. Then
the following equalities hold.
0:(AF)\ {0} = 0, (4B 1)\ {0} = 0, (471 BY) \ {0}
— 0,(B/7 )\ {0} = o, (B47")\ {0} = 6,(B"7)\ {0}.
Proof. 1t suffices to show that
0:(AF)\ {0} € 0,(4*BIH)\ {0} € 0,4 1B\ {0} C o, (B7)\ {0} (3.4)

Let A € 0,(A¥"7)\ {0}. Then A & 6,(A**/) and R(A¥+J — A1) # 2 . Thus N(A**+/ —
AI*) # {0}. Since (A*,B*) € S ;%41 41, by Proposition 3.11, N(B*/ — AI*) #
{0}. However, it follows from Lemma 3.10 that

N(A*B/1 —AD)* = N(BVHIA™ — AI*) = N(B**/ — AI*) # {0}.

Thus R(A*B/+! — A1) # 2 . By Theorem3.15, A & 6,,(AKB/*!), so that A € o,(AKB/T!)
\ {0}. Hence o,(A¥/)\ {0} C o,(A*B/*1)\ {0}. Now, let A € o(AKB/+1)\ {0}.
Then A & 0,(A*B/*!) and R(AKB/+1 — A1) # 2. So N(A*B/*! — AI)* # {0}. Since
(A*,B*) € S, jN 11, by Lemma 3.10,

N(B*A* L A1) = N(BV A — A1*) = N(A*B/T! — A1)* # {0}.

Hence R(A/*1B* —AI) # 2. Since A & ,(A7*!B*) by Theorem 3.15, we have that
A € 6,(A/1B5\ {0}. Similarly, if A € o,(A7F!B¥)\ {0}, then it follows that

N(BTH = A1) = N(B*A — A1) = N(A7B" — A1) # {0},
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and so R(B¥J —AI) # 2. Since A & 0,(B*"/), we have that A € o,(B"/)\ {0}.
Therefore (3.4) is proved. [

COROLLARY 3.19. Let (A,B) € %4 jNSj1 41 for any integer k > 1 and j > 0.
Then we have the following equalities.

(1) 0,(A)) = 0,(B*AJH!) = o, (B/H1AF).

(2) 0,(B**7) = 0,(AkB/*1) = o, (A/T1 BF).

Proof. The proof follows from Proposition 3.18 and Corollary 3.16. [

COROLLARY 3.20. Let (A,B) € % jN.Y 41 k-1 forany integer k> 1 and j=0.
Then the following equalities hold.

0,(A*) = 6,(A*B/*") = 6,(A/T1BY) = 6, (BT AF) = 6, (B*ATT) = 6, (BFTY).
Proof. The proof is immediately shown by Corollary 3.17 and Proposition 3.18.  [J

We next find the following spectral relations.

THEOREM 3.21. Let (A,B) € %} jNSjy1 -1 for any k> 1 and j > 0. Then
the following equalities hold.

o(AF) = G4BT = o(ATH BY) = 0(B1AN) = o(BATT!) = o (B,
Proof. We first show that
o(A")\{0} C o(A* B\ {0} C o(AIBY\ {0} Co(B)\ {0} (3.5)

Let A € o(A¥/)\ {0}. Assume that A € p(A*B/*'). Then ot(A*B/*! —AI) =0 and
A & o, (AFBIHY) . By Proposition 3.13 and Theorem 3.15, we have that a (AT — A =
0 and A ¢ o,(AF7). Therefore

VAT =20 = inf{|[(A = 20)x]| :x € 27 and [l = 1} >0,

so that R(A¥T7 — A1) is closed. From this, A¥*/ — AI is upper semi-Fredholm. Since

A € p(BHAK) | we have o(BH!1A* —AI*) = {0} and A & o,(B/F'A*). But,
(A*,B*) € % jN.Fj+14-1. hence it follows that o (B —AI) = {0} and A & 0,(B*").
Thus we get that

B(AM — A1) = a(A™* — AI*) = a(B*H — A1*) = 0.

Thus A € p(A**/), but this is a contradiction. Hence o(A**/)\ {0} C o(A*B/*1)\
{0},

Now, let A € o(A*B/*1)\ {0} and assume that A € p(B**/). Then o(B**/ —
AI)=0and A ¢ 6,(B*7). By Propositions 3.13 and Theorem 3.15, we have a(A*B/*!
—AI) =0 and A & 6,(A*B/*1). Therefore y(A*B/*! — AI) > 0, so that A¥B/*1 — AT
is upper semi-Fredholm. Since A € p(B**/), we have o(B**/ —AI) = {0} and
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A & 0,(BH1A™) . So it follows that B(A*B/*! — AI) = a(B*/*1A** — AI) = 0. Thus

A € p(A¥B/T1), but this is a contradiction. Hence o(A*B/™1)\ {0} C o(B**/)\ {0}.

Therefore (3.5) is proved. Now, we assume that At/ is invertible. Then it follows from

the equation AXB/T1A% = A%+ that B/T! is also invertible, so that B/F1AF = AK+/,

Since the equation B/*!AKB/+1 = Bk+2i+1 holds, we have that AXB/T! = BitlAk —

B*J . Also it follows from the equation A7+ BXA/T1 = AK+2/+1 that BFAT+1 = AT+ Bk —
AK+J | Therefore the proof is completed. [

COROLLARY 3.22. Let (A,B) € . jNLjy14—1 forany k> 1 and j>0. If A
has the property (B) and c(A) has nonempty interior in C, then B, AB, and BA have
a nontrivial invariant subspace.

Proof. From Theorems 3.7 and 3.21 we get that B, AB, and BA have the property
(B) and their spectra have nonempty interior in C. Hence the proof follows from
[8]. O

COROLLARY 3.23. Let (A,B) € %} ;NS j114—1. Then the following equalities
hold for any integer k> 1 and j > 0.

0c(AT7)\ {0} = 0. (ABI*1)\ {0} = 6. (471 BY)\ {0}
= 0c (B 1A\ {0} = oc(B*AT"1)\ {0} = 0.(B*7)\ {0}.
Moreover, for any integer k > 1 and j = 0 we have that
0.(AF) = 6, (A*B/TY) = 6.(A7T1 BY) = 6. (B/T1AK) = 6, (B*ATTY) = 0. (B).

Let 7 denote the coset in B(2")/K(2"). Then it is obvious that for T € B(2")

~

we have 0,(T) = o(T). From this argument, we get the following corollary.

COROLLARY 3.24. Let (A,B) € % jNLjy14—1 forany k> 1 and j > 0. Then
the following equalities hold.

0.(AF) = 6,(A*B/TY) = 6,(ATTBY) = 6, (B/T1AK) = 6, (B*ATTY) = 6, (B).
Proof. Since (X, §) € S, jN 41 k-1, it follows from Theorem 3.21.  [J

~ We next study how Weyl type theorems hold for the operators A**/, A*B/*1,
AJHIBE BITIAK  BKAJ+L and Bt/ in common. We first begin with the following
lemma.

LEMMA 3.25. Let (A,B) € S jNSji1k-1 forany k> 1 and j=0. If A ¢
0.(AK)), then the following equalities hold.

ind(A¥7 — A1) = ind(A*B/! — A1) = ind(A7H' B — A1)
= ind(B"AK — A1) = ind(B*A7! — A1) = ind(B*Y — AI).  (3.6)
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Proof. Suppose that A # 0. Since (A*,B*) € .7} ;.11 forany k> 1 and
J = 0, it follows from Proposition 3.13 and Corollary 3.24 that

B(AST — AI) = B(A*B/T — A1) = B(ATT' B — AI)
= B(B/ A — A1) = B(B*A/T — AT = B(B*T/ — AD),

which implies that (3.6) holds for A # 0. Now we suppose that A = 0. Then At/
is Fredholm, so that A%¥*+J is invertible. Since (X, ﬁ) € S, jNj+1x—1, we have that
Akt = AkB/+1 = Aj+1Bk = B/+1Ak = BkAJ+1 = Bk+j by the similar argument in the
proof of Theorem 3.21. Hence we get that

ind(A*"/) = ind(A*B/™!) = ind(A/ T B)
= ind(B/*1A%) = ind(B*A/ 1) = ind (B*T).

Therefore the proof is complete. [J

LEMMA 3.26. Let (A,B) € S} ;N .Sjy1k—1 for any integer k > 1 and j > 0.
Then the following equalities hold.

(1) o,,(A* =0, (A*B/t) =0, (AT BY) =0, (BT A% =0, (B*AT 1) =0, (BFHY).

(2) op(AF =0, (A B/ =0, (AT BX) =0, (BT AF) =0, (BFATH ) =0, (BKH).

Proof. (1) It follows from Corollary 3.24 and Lemma 3.25.

(2) It is well known that for an operator T € B(Z"), T — Al is Browder if and
only if T — AT is Weyl and T has SEVP at A (see [1]). Thus if one of the operators
AT — AT, AKBITY — A1, ATTIBY — A1, BITIAK — A1, B*ATT! — A1, and BMY — Al is
Browder, then all of them are Browder by part (1) and the proof in Theorem 3.7. [

The following proposition is obvious from Lemma 3.26.

PROPOSITION 3.27. Let (A,B) € %4 jNSj41 41 for any integer k > 1 and j >
0. Then the followings are equivalent.

(1) Browder’s theorem holds for Ak,

(2) Browder’s theorem holds for AKB/*1.

(3) Browder’s theorem holds for AJTIBk,

(4) Browder’s theorem holds for BIt1AK,

(5) Browder’s theorem holds for BFAT*!.

(6) Browder’s theorem holds for B .

Furthermore, we can easily prove from Theorem 3.21 and Proposition 3.13 that

moo(AF)\ {0} = moo (A*B7 1)\ {0} = moo (A7 BY) \ {0}
= moo(B/ ' A%)\ {0} = moo(B* A7) \ {0} = moo (B \ {0}

Hence we have the following results from these arguments.
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THEOREM 3.28. Let (A,B) € ;N7 j41k—1 for any integer k > 1 and j > 0.
Suppose that the range of T is closed whenever 0 € isoc (T), where T € {A¥7 AKB/+1
AJTIBk BIT1AK BXAT+1 BKHIY | Then the following statements are equivalent.

(1) Weyl’s theorem holds for A7 .

(2) Weyl’s theorem holds for AKB/*1.

(3) Weyl’s theorem holds for AT7F'BF.

(4) Weyl’s theorem holds for BIT1A¥.

(5) Weyl’s theorem holds for BFAT*1.

(6) Weyl’s theorem holds for B<t/ .

Proof. Suppose that Weyl’s theorem holds for A¥*/_ Tt follows from Proposition
3.13, Theorem 3.21 and Lemma 3.26 that for A # 0,

A € o(AFBTY\ 6, (A BT < A € mpo(AFBITY).

So we only need to show that the above equivalence holds for A = 0. Assume that
0 € o(AB/™1)\ 6,,(A*B/*1). Then 0 € o(A**/)\ 0,,(A*B/*!). Since Weyl’s theorem
holds for A¥*7, we have that 0 € moo(A**/). Thus 0 € isoo (A*B/*!) and o (A*B/*!) >
0. Since A*B/*! is Weyl, a/(A¥B/*!) < oo. Hence 0 € mo(A¥B/T!). Now, suppose
that 0 € 7tpo(A*B/*1). Then 0 € isoo (A¥B/*1) and 0 < a(A*B/ 1) < . Since A*B/*!
has closed range by hypothesis, AXB/*! is upper semi-Fredholm. Since B*/*1A*k has
SVEP at 0, we have B(A*B/™!) < at(A¥B/*!) < . Hence A¥B/*! is Fredholm. Also
AFBI*! has SVEP at 0, hence ind(A*B/T!) = 0. Thus A¥B/*! is Weyl, so that 0 €
o(AFBI+1)\ 6,,(A*B/T1). Consequently, Weyl’s theorem holds for AXB/!. The rest
of the equivalences can be proved by the similar process. [

~

_For an operator T € B(Z'), it is well known that 0,(T') = 04(T') and 0(T) =
0,(T"). So we have the following lemma.

LEMMA 3.29. Let (A,B) € Y} ;N .Sjy1k—1 for any integer k > 1 and j > 0.
Then the following equalities hold.

(1) 01 (A41)\ {0} = 01, (A*BI*1)\ {0} = 01, (A7*1B}) \ {0} = 0y, (BI*1A%) \
{0} = 01 (B*A7* 1)\ {0} = 07 (B**/) \ {0}

(2) 0 (A7) \ {0} = Gro(AXBIT1)\ {0} = 0o(A11BY)\ {0} = 0r(BIH1AK) \
{0} = 0re(B*AT1)\ {0} = 0, (B/) \ {0}.

In particular, if j =0 then we have that

(3) 01.(A7) = 61, (AKB/*Y) = 07, (AT BY) = 0, (B/F1A%) = o), (BFATT!) =
Gle(BkJrj)‘

(4) 0,(AK)) = 6,,(AKBITY) = 0, (ATT1BY) = 0,.(B/T1AY) = 0, (B*ATT!) =
Ore(BF).

Proof. (1) The proof follows from Theorem 3.15. Since (X*,B\*) € S, iNTjr1k-1
for any integer £ > 1 and j > 0, (2) holds again from Theorem 3.15. Furthermore, (3)
and (4) are immediately shown by Corollary 3.17. [J
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THEOREM 3.30. Let (A,B) € %} ;N.Yj11k—1 for any integer k > 1 and j = 0.
Then the following equalities hold.

Gea(Ak+j) _ a(AkBj+l) _ Gea(Aj+lBk)

wa(BIAR) = 6,,(B*ATTY) = 6, (BFH). (3.7)

Furthermore, If the range of T is closed whenever 0 € isoc,(T), where T € {A*H]
AFBIFTY ATFIBk BIt1AK BKAJ+Y BYHIL Cthen the followings are equivalent.

(1) a-Weyl’s theorem holds for AR

(2) a-Weyl’s theorem holds for AKB/T1.

(3) a-Weyl’s theorem holds for A7+ B

(4) a-Weyl’s theorem holds for BI1A¥.

(5) a-Weyl’s theorem holds for BkAT+L,

(6) a-Weyl’s theorem holds for Bkt

Proof. Suppose that A & 6,,(A**7). Then A¥*/ — A1 is upper semi-Fredholm and
ind(A¥/ — A1) < 0. Since AKB/*! — AT is upper semi-Fredholm by Lemma 3.29 (3),
we only need to show that ind(AKB/*1 — A1) < 0. If B(A*B/*! — AI) = e, then it is
obvious. So we assume that B(A*B/*! — AI) < eo. Then AKB/*! — AT is Fredholm and
hence it follows from Lemma 3.25 that ind(A*B/*! — A1) = ind(A¥*/ — A1) < 0. Thus
A & Oeu(AFBI+1) . The same process can be applied to the rest, so that (3.7) is proved.
Now we observe that from Corollary 3.17 and Proposition 3.13

1o (A7) \ {0} = 7y (A*B"*1) \ {0} = miy (A7 B) \ {0}
= iy (B A\ {0} = mio (B*AT) \ {0} = mio (B/) \ {0}

Suppose that a-Weyl’s theorem holds for A¥*/ . Then it is obvious that for A # 0,
A € 0,(A*BITY\ 6, (AFBITY) & A € mfy(AFBTT).

So we only need to prove that the above equivalence holds for A = 0. Assume that
0 € 6,(A*B/t1)\ 6,4(A*B/*1). Then 0 € 0,(A*V)\ 0pu(A*H). Since a-Weyl’s the-
orem holds for A"/, we have that 0 € 7§, (A**/). Thus 0 € isoo,(A*B/™!) and
a(A*B/T1) > 0. Since A*B/*! is upper semi-Fredholm, o:(A*B/!1) < . Hence
0 € 5, (A*B/*1). Now, assume that 0 € &, (A*B/™!). Then 0 € isoo,(A*B/*!) and
0 < o(A¥B/F1) < . Since A¥B/*! has closed range by hypothesis, AKB/*! is up-
per semi-Fredholm. Since A¥B/*! has SVEP at 0, we have that p(A*B/*1) < o, so
that ind(A*B/*1) < 0. Thus 0 € 0,(A*B/*1)\ 0,,(A*B/*1). Consequently, a-Weyl’s
theorem holds for A*B/*!. The rest of the equivalences can be proved by similar pro-
cess. U

For an operator T € B(Z"), a hole in 6,(T) is a bounded componentof C\ c,(T).
A pseudohole in 0,(T) is a component of 6,(T)\ 0.(T) or 0,(T)\ 6(T). The
spectral picture of an operator T € B(:Z") (notation : SP(T)) is the structure consisting
of the set o0,(T), the collection of holes and pseudoholes in 6,(T), and the indices
associated with these holes and pseudoholes.
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THEOREM 3.31. Let (A,B) € %} ;NS j11k—1 for any integer k > 1 and j =0
Then the following equalities hold.

SP(A*H) = SP(AKB/1) = SP(ATT1BY) = SP(B/T1AF) = SP(BFA/TY) = SP(BFTY)

Proof. If A belongs to a hole or pseudohole in 6,(A**/), then all the indices of
the operators AXT7 — A1, AKBIt1 — A1, AJHIBY — A1, BIt1AX — A1, BXA7+1 — A1, and
B**J — AI are equal by Lemma 3.25. Thus it follows from Corollary 3.24 and Lemma
3.29 that all of the operators A"/ AXB/+1 AJT1gk BitlAk BKAI+! and B/ have
the same spectral picture, which completes the proof. [

PROPOSITION 3.32. If (A,B) € NS jr1 -1 forany k> 1 and j > 0, then
the following properties hold.

(1) Ogeri(BT1Y) C Opigiet () C Opins(x) for y:= Akx, and o y;(A/F!z) C
Ourpi (z) C GBkﬂ( ) for z:=B*x forall xe % .

(2) B Dy (F) © Zgiaa (F), A* 2y (F) © Zgegir (F), AT Do (F)
C Zyin1(F), and B* 2y ;(F) C Xginje1 (F) for any closed set F € C.

Proof. (1) It suffices to show the first inclusions. Let y := A¥x € 2" be given for
each x € 2" and let U € pyigi1(v). Then we can choose a neighborhood D of p and
an analytic function f: D — 2 such that (A*B/T! —1)f(1) =y forall A € D. Since

(Bk+j —)L)Bj-Hf(z,) _ (Bk+2j+1 —A,Bj+1)f()t,)
— (Bj+1AkBj+1_)LBj+l) (l) Bj+1y
(

for all 2 € D, we obtain that t € pgir;(B/1y). So paigis1 () C pgies (B Hly), that
is, Opiss(B/1y) C ouupe1(y). Similarly, let o € prs(x) for all x € 2. Then
we consider a neighborhood U of Ly and an analytic function g : U — 2" such that
(A — 29)g(Ao) = x for all A € U. Since

(A7 — 20)A%g(Ro) = (A'B/H1A* = A0A")g(0)
= (A% — 20A")g(ho) = A'x =y

for all A9 € U, we have that Uy € pyrgi+1 (). Therefore o xpi1(y) C Oyerj(x) for all
xeZ.

(2) Let F beany closed setin C. If y € Zjupj1 (F), then it follows from part (1)

that o1 (B/™'y) C 04kpi1 () C F. Thus B/ ly € 2541 (F), and so B/ 2 i (F)

C Zpi+1(F). Similarly, if x € 21+ (F), then it follows from part (1) that 6,541 (y) C

Ouirj(x) CF. Thus Afx =y e 2748 (F), and so A* 2 (F) C Zjup1 (F). By

symmetry, we have that A/ 2, i1 (F) € 2441 (F) and B* 2 s (F) C Z i1 (F).

(|

COROLLARY 3.33. Let (A,B) € % jN.Sjy1x—1 forany k> 1 and j > 0. Then
the following statements hold. If A has SVEP, then

U ouepini (A%%) € | operi(x) = 0 (AH) = 0(AF) = o(B*).
xeZ xeZ
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LEMMA 3.34. Let (A,B) € % ;NS j11k-1 forany k>1 and j > 0. Then the
following equality holds for A # 0.

p(AHT —2) = p(A*'B/T —A) = p(ATH' B — 1)
= p(B7T AR — A1) = p(B*ATT — L) = p(BTT — Q).

Proof. 1t suffices to show that
p(BH = 2) < p(BAT! = 2) < p(A" = ),

Suppose that p(B"/— 1) :=n for any integer n > 1. Then N(B**/ —2)"~1 G N(BF/ —
A)" = N(B7 —2)"*1 =... Thus we can suppose that (B**/ — 1)"x =0 and (B**/ —
A)"~1x # 0 for some nonzero x € 2 and some n > 1. Then it follows from (A,B) €
4, that

(BkAj-H —},)an-Hx _ |:z (’ll) (BkAj+l)i(_z/)n—i Bk+jx
i=0
= B (BM —L)x=o.

Thus B /x € N(B*A/*1 —1)". Assume that B¥"/x € N(B*A/+! —1)"~!_ Then (B*A/*!
— L) 1BFix = 0, so that BX/(BF7 — 2)"~1x = 0. Hence B/ (B — A)"~1x —
A(BMT — ) =1x = (B¥/ —A)"x = 0. So (B¥*/ —A)"!x =0 for A #0. This is a
contradiction. Thus p(B*A/*! — 1) > n = p(B**/ - 1).

Now, suppose that (BFA/*1 — 1)"x = 0 and (B*A/*! — 1)"~1x # 0 for some
nonzero x € 2 and some n > 1. Since (A,B) € ;1 1, we have

AR Aty — [" (”) AN n—i:|Aj+1x
( ) () @ien)
= AL (BFATTL Q) =0
Thus A/Hlx € N(A¥H/ — )", Assume that A/"'x € N(A¥/ — 2)"~1. Then (A**/ —
L) 1A x = 0. Since (A,B) € Fj+14-1, we have A/T1(B*AT —2)1x = 0. So
BXATTY(BRATHE - QI x— A (BFATH! — 2)" 1y = (B*A7TT —4)"x = 0. Hence (B*A/*!
—A)"'x =0 for A #0. This is a contradiction. Therefore p(A*/ —1) > n =
p(B*AITT 1), O

From Lemma 3.34 we have more result as follows.

THEOREM 3.35. Let (A,B) € ;NS j41k—1 for any integer k > 1 and j = 0.
Then the following equalities hold.

Oup (A = 0, (A*BIHY) = 0, (ATT1BF)
= 0 (B1AY) = 0, (BFATT) = 6, (BH). (3.8)

Furthermore, the followings are equivalent.
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(1) a-Browder’s theorem holds for At/ .
(2) a-Browder’s theorem holds for AKB/*1.
(3) a-Browder’s theorem holds for AJHBE,
(4) a-Browder’s theorem holds for BIt1AK,
(5) a-Browder’s theorem holds for BkATHL,
(6) a-Browder’s theorem holds for BKtI,

Proof. Let A € 6,4(A¥7). Then A¥*/ — AT is upper semi-Fredholm and p(A*+/ —
AI) <o, If A #0, then it is obvious by Lemmas 3.29 and 3.34 that A € o,,(A*B/T1).
So assume that A = 0. Then A¥t/ has finite ascent, so that it has SVEP at 0. It
follows from the proof of Theorem 3.7 that A*B/! has SVEP at 0. Since A*B/*! is
upper semi-Fredholm, it has finite ascent. Therefore 0 € 6,;,(A*B/*1). Throughout this
similar way, (3.8) can be proved. Furthermore, we have that if a-Browder’s theorem
holds for one of the operators A**/, AXKB/T1 AJ+1Bk  Bitlgk = BkAi+1 and BKH,
then all of them satisfy a-Browder’s theorem from (3.7) in Theorem 3.30. [

Finally, the spectral mapping theorem for Drazin spectrum implies the following
theorem.

THEOREM 3.36. Let (A,B) € %4 jNSjy14—1 forany k> 1 and j > 0. Then

GD(AkJrj) _ GD(AkBj+1) _ GD(AjJrlBk)

= GD(Bj+1Ak) = GD(BkAj+1) = GD(Bk+j).

Proof. We observe that (AFB/*1)2 = A%+/B/*1 " Since op(TS) = op(ST) for
every operators T and S, we have op(A**t/B/1) = op(A¥B/T1A**J). By the spectral
mapping theorem of the Drazin spectrum,

{GD(AkBj+1)}2 _ GD[(AkBj-H)z} _ GD(A2k+ij+1)
— GD(AkBjJrlAAkJrj) — GD(A2k+2j) _ {GD(Ak+j)}2.

Since (A,B) € Zj; 141, it holds that (A*B/*1)2 = AKB*T2/*1. From this, we have
that {op(A*B/*1)}? = {op(B¥*/)}?. Similarly, it is obvious that {op(B*A/™!)}? =
{op(B**7)}2. Consequently, the proof is completed. [
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