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NOTE ON SOME OPERATOR EQUATIONS

AND LOCAL SPECTRAL PROPERTIES

IL JU AN AND EUNGIL KO

(Communicated by R. Curto)

Abstract. In this paper we define Sk, j by the set of solutions (A,B) of the operator equations
AkBj+1Ak = A2k+ j and BkAj+1Bk = B2k+ j . Then we observe the set Sk, j is increasing for all
integers k � 1 and j � 0 .

Now let a pair (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 . We show that
if any one of the operators A , AB , BA , and B has Bishop’s property (β) , then all others have
the same property. Furthermore, we prove that the operators Ak+ j , AkBj+1 , Aj+1Bk , Bj+1Ak ,
BkAj+1 and Bk+ j have the same spectra and spectral properties. Finally, we investigate their
Weyl type theorems.

1. Introduction

Let X and Y be infinite dimensional Banach spaces and let B(X ,Y ) denote
the algebra of bounded linear operators from X to Y , and abbreviate B(X ,X ) to
B(X ) . Let K(X ) be the ideal of all compact operators in B(X ) . If T ∈ B(X ) ,
we shall write N(T ) and R(T ) for the null space and range of T . Also, let α(T ) :=
dimN(T ) , β (T ) := dimN(T ∗) , and let σ(T ) , σp(T ) , σa(T ) , σr(T ) , σc(T ) , p0(T ) ,
and π0(T ) denote the spectrum, the point spectrum, the approximate point spectrum,
the residual spectrum, and the continuous spectrum of T , respectively. For T ∈ B(X ) ,
the smallest nonnegative integer p such that N(T p) = N(T p+1) is called the ascent of
T and denoted by p(T ) . If no such integer exists, we set p(T ) = ∞ . The smallest non-
negative integer q such that R(Tq) = R(Tq+1) is called the descent of T and denoted
by q(T ) . If no such integer exists, we set q(T ) = ∞ .

The famous “reversal of product” for inverse says that if A ∈ B(X ,Y ) and C ∈
B(Y ,Z ) are invertible, then so is CA ∈ B(X ,Z ) , with (CA)−1 = A−1C−1 . In gen-
eral, the sum of two invertible operators need not be invertible. However it is well
known that if A and C are in B(X ) , then

I−CA is invertible ⇐⇒ I−AC is invertible.
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More generally, we consider that for any integers k � 1 and j � 0,

I−Cj+1Ak is invertible ⇐⇒ I−AkC j+1 is invertible.

Indeed, assume that I−Cj+1Ak is surjective, that is, (I−Cj+1Ak)X = X . For arbi-
trary y ∈ X , there exists x ∈ X such that Cj+1y = (I−Cj+1Ak)x . Thus AkC j+1y =
Ak(I−Cj+1Ak)x = (I−AkC j+1)Akx , so that

y = AkC j+1y+(I−AkC j+1)y = (I−AkC j+1)Akx+(I−AkC j+1)y

= (I−AkC j+1)(Akx+ y) ∈ (I−AkC j+1)X .

Hence (I−AkC j+1)X = X . Conversely, we have the similar method. It follows that
for any integers k � 1 and j � 0,

I−Cj+1Ak is surjective ⇐⇒ I−AkC j+1 is surjective.

We now assume that I−Cj+1Ak is injective. If (I−AkC j+1)x = 0, then x = AkC j+1x .
Hence Cj+1x = Cj+1AkC j+1x , so that (I −Cj+1Ak)Cj+1x = 0. Since I −Cj+1Ak

is injective, we have that Cj+1x = 0, which implies that AkC j+1x = 0. Since (I −
AkC j+1)x = 0, we get that x = 0. Thus I −AkC j+1 is injective. Conversely, we have
the similar method. Therefore this means that for any integers k � 1 and j � 0,

I−Cj+1Ak is injective ⇐⇒ I−AkC j+1 is injective.

As mentioned in [2] we replace from I−AkC j+1 to certain I−AkBj+1 and specifically
we will suppose that AkBj+1Ak = AkC j+1Ak . The special case is of interest to us, the
case AkBj+1Ak = A2k+ j , in which Cj+1 = Aj for any integer j � 0.

Now we let a pair (A,B) be the solution of the operator equations

AkBj+1Ak = A2k+ j and BkAj+1Bk = B2k+ j. (1.1)

In particular, when k = 1 and j = 0, the operators A and B are solutions of the system
of operator equations

ABA = A2 and BAB = B2. (1.2)

This means that if a pair (A,B) of Banach space operators is the solution of the operator
equations (1.2), then so is this of the operator equations (1.1). In [10], I. Vidav proved
that A and B are self-adjoint operators satisfying the operator equations (1.2) if and
only if A = PP∗ and B = P∗P for some idempotent operator P . Also, the common
spectral properties of the operators A and B satisfying the operator equations (1.2)
have been studied by C. Schmoeger [9]. In particular, it is possible to relate the various
spectra, the single-valued extension property and Bishop’s property (β ) of A and B ,
which has been carried out by [5]. So we extend the previous results for the operator
equations (1.2) to those for the operator equations (1.1). We start our program with the
following section.
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2. Preliminaries

An operator T ∈ B(X ) is called upper semi-Fredholm if it has closed range and
finite dimensional null space and is called lower semi-Fredholm if it has closed range
and its range has finite co-dimension. If T ∈ B(X ) is either upper or lower semi-
Fredholm, then T is called semi-Fredholm, and index of a semi-Fredholm operator
T ∈ B(X ) is defined by

i(T ) := α(T )−β (T ).

If both α(T ) and β (T ) are finite, then T is called Fredholm. T ∈ B(X ) is called
Weyl if it is Fredholm of index zero. The essential spectrum σe(T ) , the Weyl spectrum
σw(T ) and the Browder spectrum σb(T ) of T ∈ B(X ) are defined as follows.

σe(T ) := {λ ∈ C : T −λ is not Fredholm},
σw(T ) := {λ ∈ C : T −λ is not Weyl},

and
σb(T ) := {λ ∈ C : T −λ is not Browder},

respectively. Evidently

σe(T ) ⊆ σw(T ) ⊆ σb(T ) = σe(T )∪ accσ(T ),

where we write acc K for the accumulation points of K ⊆ C .
By definition,

σea(T ) := ∩{σa(T +K) : K ∈ K(X )}
is the essential approximate point spectrum,

σab(T ) := ∩{σa(T +K) : TK = KT and K ∈ K(X )}
is the Browder essential approximate point spectrum.

If we write iso K = K \ acc K, then we let

π00(T ) := {λ ∈ iso σ(T ) : 0 < α(T −λ ) < ∞ },
πa

00(T ) := {λ ∈ iso σa(T ) : 0 < α(T −λ ) < ∞ },
p00(T ) := σ(T )\σb(T ),

and
pa

00(T ) := σa(T )\σab(T ).

We say that Weyl’s theorem holds for T ∈ B(X ) if there is equality

σ(T )\σw(T ) = π00(T ),

that Browder’s theorem holds for T ∈ B(X ) if there is equality

σ(T )\σw(T ) = p00(T ),
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that a-Weyl’s theorem holds for T ∈ B(X ) if there is equality

σa(T )\σea(T ) = πa
00(T ),

and that a-Browder’s theorem holds for T ∈ B(X ) if there is equality

σa(T )\σea(T ) = pa
00(T ).

It is known [3, 4, 6] that we have

a -Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem;

a -Weyl’s theorem ⇒ a -Browder’s theorem ⇒ Browder’s theorem.

Let A be a unital algebra. We say that an element x∈A is Drazin invertible of degree
k if there exists an element a ∈ A such that

xkax = xk, axa = a, and xa = ax.

Let a ∈ A . Then the Drazin spectrum is defined by

σD(a) := {λ ∈ C : a−λ is not Drazin invertible}.

It is well known that T is Drazin invertible if and only if it has finite ascent and descent,
which is also equivalent to the fact that

T = T1⊕T2, where T1 is invertible and T2 is nilpotent.

In terms of local spectral theory ([1], [8]) recall the following definitions.

DEFINITION 2.1. Let T ∈ B(X ) .
(1) An operator T has Bishop’s property (β ) if for every open subset U of

C and every sequence of analytic functions fn : U → X with the property that (T −
λ ) fn(λ )→ 0 as n→∞ , uniformly on all compact subsets of U , it follows that fn(λ )→
0 as n → ∞ , uniformly on all compact subsets of U .

(2) An operator T has the single valued extension property at λ0 ∈C , abbreviated
T has SVEP at λ0 if for every open neighborhood U of λ0 the only analytic function
f : U −→ X which satisfies the equation

(T −λ ) f (λ ) = 0

is the constant function f ≡ 0 on U . The operator T is said to have SVEP if T has
SVEP at every λ ∈ C .

In general, the following implications hold:

Bishop’s property (β ) =⇒ SVEP.
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Evidently, every operator T , as well as its dual T ∗ , has SVEP at every point of the
boundary ∂σ(T ) of the spectrum σ(T ) , in particular, at every isolated point of σ(T ) .
We also have (see [1, Theorem 3.8])

p(T −λ ) < ∞ =⇒ T has SVEP at λ , (2.1)

and dually
q(T −λ ) < ∞ =⇒ T ∗ has SVEP at λ . (2.2)

It is well known from [1] that if T −λ is semi-Fredholm, then the implications (2.1)
and (2.2) are equivalent.

3. Local spectral properties and some operator equations

Throughout this paper we define Sk, j by the set of solutions (A,B) of the operator
equations

AkB j+1Ak = A2k+ j and BkA j+1Bk = B2k+ j

for all integers k � 1 and j � 0. In particular, if a pair (A,B) ∈ S1,0 , then ABA = A2

and BAB = B2 . Then the following inclusions are satisfied.

PROPOSITION 3.1.
(1) S1,0 ⊂ Sk, j for all integers k � 1 and a fixed integer j � 0 .
(2) Sk, j ⊂ Sk+1, j for every k ∈ N and all integer j � 0 .

Proof. (1) Suppose that (A,B) ∈ S1,0 . Then AnB = ABn and BnA = BAn for
n � 2. Then for all integer k, j � 1,

AkBj+1Ak = Ak−1ABj+1Ak = Ak−1Aj+1BAk = Ak+ j−1ABAAk−1 = A2k+ j,

and

BkAj+1Bk = Bk−1BAj+1Bk = Bk−1Bj+1ABk = Bk+ j−1BABBk−1 = B2k+ j.

Hence (A,B) ∈ Sk, j , so that this inclusion is satisfied.
(2) Suppose that (A,B) ∈ Sk, j for every k ∈ N and all integer j � 0. We first fix

j � 0. Then AkBj+1Ak = A2k+ j and BkAj+1Bk = B2k+ j . Thus we have that

Ak+1Bj+1Ak+1 = AAkBj+1AkA = A2(k+1)+ j,

and
Bk+1Aj+1Bk+1 = BBkAj+1BkB = B2(k+1)+ j.

Thus (A,B) ∈ Sk+1, j for every k ∈ N and a fixed integer j � 0. �

From Proposition 3.1, it is obvious that the set Sk, j is nonempty. Moreover, we
observe the following remark.
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REMARK 3.2. Set S∞, j :=
⋃∞

k=1 Sk, j for a fixed integer j � 0. Then

S1, j ⊂ S2, j ⊂ ·· · ⊂ Sk, j ⊂ Sk+1, j ⊂ ·· · ⊂ S∞, j.

However, the following example says that S1, j 
= S1, j+1 holds for integers j � 0.

EXAMPLE 3.3. If A =
(

ωI 0
0 ωI

)
and B =

(
ωI 0
0 ωI

)
are in B(X ⊕X ) , where

ω2n+1 = 1 and ω ∈ C\ {1} , then by the induction,

(A,B) ∈ S1,n for integers n � 1.

But, (A,B) 
∈S1,n−1∪S1,n+1 for integers n � 1. In fact, assume that there exists some
integer m � 1 such that (A,B) ∈ S1,m−1 ∪S1,m+1 . If (A,B) ∈ S1,m−1 , then ABmA 
=
Am+1 and BAmB 
= Bm+1 since ω2m+1 = 1. If (A,B) ∈ S1,m+1 , then ABm+2A 
= Am+3

and BAm+2B 
= Bm+3 since ω2m+1 = 1. Hence we have a contradiction. Thus (A,B) ∈
S1,n−1∪S1,n+1 . Moreover, it follows that S1, j 
⊂ S1, j+1 holds for all integers j � 1.

EXAMPLE 3.4. In general, if (A,B)∈S1,0 , then it follows that the equality AnB =
ABn holds for n � 2. However, this equality is not satisfied when (A,B)∈Sk, j , for any
nonnegative integers k and j . Let’s consider the operator matrices A and B defined in
Example 3.3. Then a pair (A,B) is in Sk, j for k = 1 and any integer j � 1. By the
straightforward calculation, we have that AnB 
= ABn for n � 2.

From Example 3.4 we can guess the following proposition.

PROPOSITION 3.5. If (A,B) ∈ Sn+1,n for any integer n � 0 , then for k � n+1

Ak+2n+1Bk = AkBk+2n+1 and Bk+2n+1Ak = BkAk+2n+1.

Proof. Suppose that (A,B)∈Sn+1,n for any integer n � 0. Then An+1Bn+1An+1 =
A3n+2 and Bn+1An+1Bn+1 = B3n+2 . We show that for every integer k � n+1, Ak+2n+1Bk

= AkBk+2n+1 and Bk+2n+1Ak = BkAk+2n+1 . If k = n + l for l � 1, Ak+2n+1Bk =
Al−1A3n+2Bn+l = Al−1An+1Bn+1An+1Bn+1Bl−1 = An+lB3n+l+1 = AkBk+2n+1 , and sim-
ilarly, Bk+2n+1Ak = BkAk+2n+1 . This proof is complete. �

Now we show that the operators A , AB , BA and B have the property (β ) in
common. For this we need the following lemma.

LEMMA 3.6. Let (A,B) ∈ Sk, j for any integer k � 1 and j � 0 . Then the fol-
lowings are satisfied.

(1) Ak+ j has property (β ) if and only if AkB j+1 has property (β ) .
(2) Bk+ j has property (β ) if and only if BkA j+1 has property (β ) .
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Proof. (1) Suppose that AkBj+1 has property (β ) at μ ∈ C . Let U be an open
neighborhood of μ and fn : U → X be a sequence of analytic functions such that
(Ak+ j −λ ) fn(λ ) → 0 in U .

Then AkBj+1(Ak+ j − λ ) fn(λ ) → 0 and (A2k+2 j − λAkBj+1) fn(λ ) → 0. Since
A2k+2 j fn(λ ) = λ 2 fn(λ ) in U , we have that (AkBj+1 − λ )(−λ fn(λ )) → 0. But,
AkBj+1 has property (β ) at μ ∈ C , hence −λ fn(λ ) → 0 so that fn(λ ) → 0 for all
λ in U . Thus Ak+ j has property (β ) at μ .

Conversely, assume that Ak+ j has property (β ) at μ ∈ C . Let gn : U → X
be a sequence of analytic functions such that (AkBj+1 − λ )gn(λ ) → 0 in U . Then
AkBj+1(AkBj+1−λ )gn(λ )→ 0, so that (A2k+ jB j+1−λAkBj+1)gn(λ )→ 0. Hence we
have (Ak+ j−λ )(AkBj+1gn(λ ))→ 0. Since Ak+ j has property (β ) at μ , AkBj+1gn(λ )
→ 0. But, (AkBj+1−λ )gn(λ )→ 0 in U , thus gn(λ )→ 0 for all λ in U . So AkBj+1

has property (β ) at μ . Since μ is arbitrary in C , this is complete.
(2) The proof is obvious by the similar process as above. �

As some applications of Lemma 3.6, we get the following theorem.

THEOREM 3.7. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the following statements are equivalent.

(1) A has property (β ) .
(2) AB has property (β ) .
(3) BA has property (β ) .
(4) B has property (β ) .

Proof. Suppose that A has property (β ) . Then it follows from [1, Theorem 2.40]
that Ak+ j has property (β ) . So we first show that BkAj+1 has property (β ) . Let
fn : U → X be a sequence of analytic functions for every open neighborhood U of
λ0 ∈ C . Suppose that (BkAj+1 − λ ) fn(λ ) → 0. Then Aj+1(BkAj+1 − λ ) fn(λ ) → 0.
Since (A,B) ∈ S j+1,k−1 , we have (Ak+ j −λ )Aj+1 fn(λ ) → 0. And then Aj+1 fn(λ ) →
0. But, BkAj+1 fn(λ ) = λ fn(λ ) , hence λ fn(λ ) → 0. Since λ is arbitrary in U , we
have fn(λ ) → 0. Thus BkAj+1 has property (β ) . So it follows from Lemma 3.6 that
Bk+ j has property (β ) . Therefore B has property (β ) .

Conversely, suppose that B has property (β ) . Then Bk+ j has property (β ) . So we
only need to prove that AkBj+1 has property (β ) by Lemma 3.6. Assume that g : W →
X is the analytic function for every open neighborhood W of μ0 ∈ C and (AkBj+1−
μ) fn(μ) → 0. Then Bj+1(AkBj+1− μ) fn(μ) → 0. Since (A,B) ∈ S j+1,k−1 , we have
(Bk+ j − μ)Bj+1 fn(μ) → 0. And then Bj+1 fn(λ ) → 0. But, (AkBj+1− μ) fn(μ) → 0,
hence μ fn(μ)→ 0. Since μ is arbitrary in W , we have fn(μ)→ 0. Thus AkBj+1 has
property (β ) , so that Ak+ j has. Consequently, A has property (β ) . �

REMARK 3.8. Similarly, Theorem 3.7 holds for the single-valued extension prop-
erty. This means that if one of A , AB , BA , or B has SVEP whenever (A,B) ∈
Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0, then all of the operators A , AB ,
BA , and B have SVEP.
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If (A,B) ∈ S1,0 , then the operators A , AB , BA , and B have the spectrum, point
spectrum, approximate point spectrum, residual spectrum, essential spectrum, and Weyl
spectrum in common (see, [5] and [9]). So we extend these to the operators Ak+ j ,
AkBj+1 , Aj+1Bk , Bj+1Ak , BkAj+1 , and Bk+ j when (A,B) ∈ Sk, j ∩S j+1,k−1 for any
integer k � 1 and j � 0. We shall require the following results.

LEMMA 3.9. Let (A,B) ∈ Sk, j for any integer k, j � 0 . Then the followings are
satisfied for λ 
= 0 .

N(Ak+ j −λ I) = N(AkBj+1−λ I) and N(Bk+ j −λ I) = N(BkAj+1−λ I) .

Proof. (1) Let x ∈ N(Ak+ j − λ I) . Then Ak+ jx = λx , so that AkBj+1Ak+ jx =
λAkBj+1x . Hence A2k+2 jx = λAkBj+1x and λAkBj+1x = A2k+2 jx = λ 2x . Since λ 
= 0,
AkBj+1x = λx . So x ∈ N(AkBj+1−λ I) . Thus N(Ak+ j −λ I)⊆ N(AkBj+1−λ I) .

Conversely, suppose that x ∈ N(AkBj+1 − λ I) . Then AkBj+1x = λx , so that
AkBj+1AkBj+1x = λAkBj+1x and then Ak+ jAkB j+1x = λAkBj+1x . Thus λAk+ jx =
λ 2x , which implies that Ak+ jx = λx . Hence x ∈ N(Ak+ j − λ I) . Consequently, The
first equality holds. From similar argument, the second statement can be proved. �

LEMMA 3.10. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the following properties hold for λ 
= 0 .

(1) N(Ak+ j −λ I) = N(AkBj+1−λ I) = N(Aj+1Bk −λ I) .
(2) N(Bk+ j −λ I) = N(BkAj+1−λ I) = N(Bj+1Ak −λ I) .

Proof. From Lemma 3.9 we only need to show that N(Ak+ j −λ I) = N(Aj+1Bk −
λ I) . Let x∈N(Ak+ j−λ I) . Then Ak+ jx = λx , so that λ 2x =A2k+2 jx =Aj+1BkAk+ jx =
λAj+1Bkx . Since λ 
= 0, we have that Aj+1Bkx = λx . So x ∈ N(Aj+1Bk −λ I) . Thus
N(Ak+ j −λ I)⊆ N(Aj+1Bk −λ I) .

Conversely, let x ∈ N(Aj+1Bk − λ I) . Then Aj+1Bkx = λx , so that λAk+ jx =
Ak+2 j+1Bkx = Aj+1BkAj+1Bkx = λ 2x . Hence N(Aj+1Bk −λ I)⊆N(Ak+ j −λ I) , which
completes the proof. �

Lemmas 3.9 and 3.10 ensure that the following proposition holds.

PROPOSITION 3.11. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j �
0 . Then the followings are equivalent for λ 
= 0 .

(1) N(Ak+ j −λ I) = {0}.
(2) N(AkBj+1−λ I) = {0}.
(3) N(Aj+1Bk −λ I) = {0}.
(4) N(Bj+1Ak −λ I) = {0}.
(5) N(BkAj+1−λ I) = {0}.
(6) N(Bk+ j −λ I) = {0}.
Proof. We only need to show that (1)⇒ (4) and (6)⇒(3) from Lemma 3.10. Let

N(Ak+ j −λ I) = {0} . Assume that (Bj+1Ak−λ )y = 0 for some nonzero y∈X . Then
0 = Ak(Bj+1Ak − λ )y = (A2k+ j − λAk)y = (Ak+ j − λ )Aky . Hence Aky ∈ N(Ak+ j −
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λ I) = {0} , so that λy = 0. Since λ 
= 0, y = 0, but this is a contradiction. Thus
N(Bj+1Ak −λ I) = {0} , which completes the implication (1)⇒ (4). By similar way, it
is shown that (6)⇒(3). �

LEMMA 3.12. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the followings hold for λ 
= 0 .

(1) Bk(N(Ak+ j −λ I)) = N(Bk+ j −λ I) .
(2) Ak(N(Bk+ j −λ I)) = N(Ak+ j −λ I) .

Proof. Let x ∈ N(Ak+ j − λ I) . Then Ak+ jx = λx . So B2k+ jAk+ jx = λB2k+ jx ,
and this implies that BkAj+1BkAj+1Ak−1x = λB2k+ jx . Hence BkA2k+2 jx = λB2k+ jx ,
so that λ 2Bkx = λB2k+ jx . Since λ 
= 0, B2k+ jx = λBkx and then (Bk+ j −λ I)Bkx = 0.
Thus Bkx ∈ N(Bk+ j −λ I) , which implies that Bk(N(Ak+ j −λ I))⊆ N(Bk+ j −λ I) .

Conversely, if x∈N(Bk+ j−λ I) , then BkAj+1x = λx by Lemma 3.9. So Ak+2 j+1x
= Aj+1BkAj+1x = λAj+1x , hence (Ak+ j −λ )Aj+1x = 0. Thus Aj+1x ∈ N(Ak+ j −λ I) ,
so that λx = BkAj+1x ∈ Bk(N(Ak+ j −λ I)) . Since λ 
= 0, we get that x ∈ Bk(N(Ak+ j −
λ I)) . Consequently, Bk(N(Ak+ j − λ I)) = N(Bk+ j − λ I) . By the similar way, it is
shown that Ak(N(Bk+ j −λ I)) ⊆ N(Ak+ j −λ I) . Hence we complete our proof. �

PROPOSITION 3.13. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j �
0 . Then we have the following equalities for λ 
= 0 .

α(Ak+ j −λ I) = α(AkBj+1−λ I) = α(Aj+1Bk −λ I)

= α(Bj+1Ak −λ I) = α(BkAj+1−λ I) = α(Bk+ j −λ I).

Proof. We first show that

N(Ak)∩N(Bk+ j −λ I) = {0} and N(Bk)∩N(Ak+ j −λ I) = {0}. (3.1)

Assume that there exists a nonzero x∈X such that Akx = 0 and Bk+ jx = λx . Then we
have that λ 2x = B2k+2 jx = Bj+1AkBk+ jx = λBj+1Akx = 0. However, x is a nonzero
element, so that λ = 0. This is a contradiction. Thus N(Ak)∩N(Bk+ j − λ ) = {0} .
Similarly, the second equality of (3.1) can be proved, so that the restrictions of Ak to
N(Bk+ j −λ ) and Bk to N(Ak+ j −λ ) are injective. Therefore the proof follows from
Lemmas 3.10 and 3.12. �

LEMMA 3.14. Let (A,B) ∈ Sk, j for any nonnegative integer k, j . Then we have
the following equalities.

(1) σp(Ak+ j)\{0}= σp(AkBj+1)\{0} and σp(Bk+ j)\{0} = σp(BkAj+1)\{0} .
(2) σa(Ak+ j)\ {0}= σa(AkBj+1)\ {0} and σa(Bk+ j)\ {0}= σa(BkAj+1)\ {0} .

Proof. (1) The proof is obvious from Lemma 3.9.
(2) Let λ ∈σa(Ak+ j)\{0} . Then there exists a sequence (xn)⊂X with ‖xn‖= 1

for all n ∈ N such that (Ak+ j −λ I)xn → 0 as n → ∞ . Let zn := (Ak+ j −λ I)xn . Then
Ak+ jxn = λxn + zn and zn → 0 as n → ∞ . So

A2k+2 jxn = λAk+ jxn +Ak+ jzn = λ 2xn + λ zn +Ak+ jzn.
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But, A2k+2 jxn = AkBj+1Ak+ jxn = λAkBj+1xn +AkBj+1zn . Thus

(λAkBj+1−λ 2)xn = (λ I +Ak+ j −AkBj+1)zn −→ 0 as n → ∞. (3.2)

For λ 
= 0, (AkBj+1−λ )xn → 0 as n → ∞ , so that λ ∈ σa(AkBj+1)\ {0} .
Conversely, let λ ∈ σa(AkBj+1) \ {0} . Then there exists a sequence (yn) ⊂ X

with ‖yn‖ = 1 for all n ∈ N such that (AkBj+1 − λ I)yn → 0 as n → ∞ . Let wn :=
(AkBj+1−λ I)yn . Then AkBj+1yn = λyn +wn and wn → 0 as n → ∞ . So

A2k+ jB j+1yn = λAkBj+1yn +AkBj+1wn = λ 2yn + λwn +AkBj+1wn.

However, A2k+ jB j+1yn = Ak+ j(λyn +wn) = λAk+ jyn +Ak+ jwn . Thus

(λAk+ j −λ 2I)yn = (λ I +AkBj+1−Ak+ j)wn −→ 0 as n → ∞.

For λ 
= 0, (Ak+ j − λ I)yn → 0 as n → ∞ , so that λ ∈ σa(Ak+ j) \ {0} . Therefore
σa(Ak+ j) \ {0} = σa(AkBj+1) \ {0} . The second equality can be proved by similar
process. �

THEOREM 3.15. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the following statements hold.

(1) σp(Ak+ j)\{0}= σp(AkBj+1)\{0}= σp(Aj+1Bk)\{0}= σp(Bj+1Ak)\{0}=
σp(BkAj+1)\ {0}= σp(Bk+ j)\ {0} .

(2) σa(Ak+ j)\{0}= σa(AkBj+1)\{0}= σa(Aj+1Bk)\{0}= σa(Bj+1Ak)\{0}=
σa(BkAj+1)\ {0}= σa(Bk+ j)\ {0} .

Proof. (1) The proof follows from Lemma 3.10.
(2) It is sufficient to show that σa(Aj+1Bk) \ {0} = σa(Ak+ j) \ {0} = σa(Bk+ j) \

{0} by Lemma 3.14. To show the first equality, we let λ ∈ σa(Aj+1Bk) \ {0} . Then
there exists a sequence (xn) ⊂ X with ‖xn‖ = 1 for all n ∈ N such that (Aj+1Bk −
λ I)xn → 0 as n → ∞ . Let zn := (Aj+1Bk − λ I)xn . Then Aj+1Bkxn = λxn + zn and
zn → 0 as n → ∞ . So

Ak+2 j+1Bkxn = λAj+1Bkxn +Aj+1Bkzn = λ 2xn + λ zn +Aj+1Bkzn.

However, Ak+2 j+1Bkxn = Ak+ j(Aj+1Bkxn) = λAk+ jxn +Ak+ jzn . Thus

(λAk+ j −λ 2I)xn = (λ I +Aj+1Bk −Ak+ j)zn −→ 0 as n → ∞.

For λ 
= 0, (Ak+ j −λ I)xn → 0 as n → ∞ , so that λ ∈ σa(Ak+ j)\ {0} .
Conversely, let λ ∈ σa(Ak+ j)\{0} . Then there exists a sequence (yn) ⊂ X with

‖yn‖ = 1 for all n ∈ N such that (Ak+ j −λ I)yn → 0 as n → ∞ . Let wn := (Ak+ j −
λ I)yn . Then Ak+ jyn = λyn +wn and wn → 0 as n → ∞ . So

A2k+2 jyn = λAk+ jyn +Ak+ jwn = λ 2yn + λwn +Ak+ jwn.

But, A2k+2 jyn = Aj+1BkAk+ jyn = λAj+1Bkyn +Aj+1Bkwn . Thus

(λAj+1Bk −λ 2)yn = (λ I +Ak+ j −Aj+1Bk)wn −→ 0 as n → ∞.
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For λ 
= 0, (Aj+1Bk −λ )yn → 0 as n → ∞ , so that λ ∈ σa(Aj+1Bk)\ {0} . Therefore
σa(Aj+1Bk)\ {0}= σa(Ak+ j)\ {0} .

Now, we let λ ∈ σa(Ak+ j)\{0} . From (3.2) in the proof of Lemma 3.14, we have
that

(λBk+2 j+1−λ 2Bj+1)xn = un,

where un := (λBj+1+Bj+1Ak+ j−Bk+2 j+1)zn → 0 as n→∞ . Hence λ (Bk+ j−λ I)Bj+1xn

= un , so that for λ 
= 0,

(Bk+ j −λ I)Bj+1xn =
1
λ

un. (3.3)

From this, there is a positive integer m such that Bj+1xn 
= 0 for n � m and ‖Bj+1xn‖−1

is bounded. Let yn := ‖Bj+1xn‖−1Bj+1xn for n � m . Then ‖yn‖ = 1. It follows from
(3.3) that for n � m ,

(Bk+ j −λ I)yn = ‖Bj+1xn‖−1(Bk+ j −λ I)Bj+1xn

= (λ‖Bj+1xn‖−1)un.

Therefore (Bk+ j−λ )yn → 0 as n→∞ . So λ ∈ σa(Bk+ j)\{0} . Similarly, the opposite
inclusion is satisfied. Consequently, this complete the proof by Lemma 3.14. �

COROLLARY 3.16. Let (A,B)∈Sk, j∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then we have the following equalities.

(1) σp(Ak+ j) = σp(BkAj+1) = σp(Bj+1Ak) .
(2) σp(Bk+ j) = σp(AkBj+1) = σp(Aj+1Bk) .
(3) σa(Ak+ j) = σa(BkAj+1) = σa(Bj+1Ak) .
(4) σa(Bk+ j) = σa(AkBj+1) = σa(Aj+1Bk) .

Proof. (1) We suppose that N(Ak+ j −λ I) = {0} . It was already shown by Propo-
sition 3.11 when λ 
= 0. So we assume that λ = 0. Then we have that for every
x ∈ X ,

Ak+ j(BkAj+1−Ak+ j)x = (Ak+ jBkA j+1−A2k+2 j)x

= (Ak−1Aj+1BkAj+1−A2k+2 j)x = 0.

Similarly, Ak+ j(Bj+1Ak −Ak+ j)x = 0 for every x ∈ X . Since Ak+ j is injective, we
have that (BkAj+1 −Ak+ j)x = 0 and (Bj+1Ak −Ak+ j)x = 0 for every x ∈ X . Thus
Ak+ j = BkAj+1 = Bj+1Ak for k � 1 and j � 0.

Therefore σp(Ak+ j) = σp(BkAj+1) = σp(Bj+1Ak) for k � 1 and j � 0.
(2) It is shown by similar process as the proof of (1).
(3) Suppose that λ ∈ σa(Ak+ j) . It was already shown by Theorem 3.15 when

λ 
= 0. So we assume that λ = 0. Then Ak+ j is bounded below. It follows from the
proof in part (1) that these can be proved. �

Theorem 3.15 shows that the only 0 can fail to be in the point spectrum and ap-
proximate point spectrum of the operators Ak+ j , AkBj+1 , Aj+1Bk , Bj+1Ak , BkAj+1 ,
and Bk+ j . Evidently, the operators have the same point spectrum and approximate point
spectrum whenever j = 0 in Theorem 3.15.
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COROLLARY 3.17. Let (A,B)∈Sk, j∩S j+1,k−1 for any integer k � 1 and j = 0 .
Then the following equalities hold.

(1) σp(Ak+ j)= σp(AkBj+1)= σp(Aj+1Bk)= σp(Bj+1Ak)= σp(BkAj+1)= σp(Bk+ j) .
(2) σa(Ak+ j)= σa(AkBj+1)= σa(Aj+1Bk)= σa(Bj+1Ak)= σa(BkAj+1)= σa(Bk+ j) .

Proof. (1) Suppose that N(AkB−λ I) = {0} for any integer k � 1. If λ 
= 0, then
it is shown by Proposition 3.11. So we assume that λ = 0. Then AkB(AkB−Bk) =
AkBAkB−AkBk+1 = 0. Since AkB is injective, we have that AkB = Bk for any integer
k � 1. Thus we get that for every x ∈ X ,

AkB(B2k−1−B2k−2)x = (AkB2k −AkB2k−1)x = (AkBkABk −A2kBk)x = 0

Thus B2k−1 = B2k−2 for any integer k � 1. Since N(B) ⊂ N(Bk) = {0} , it follows
that B = I . So Bk = I for all integer k � 1. It follows from the equation BkABk = B2k

that A = I , which implies that Ak = I for all integer k � 1. This means that Ak+ j =
AkBj+1 = Aj+1Bk = Bj+1Ak = BkAj+1 = Bk+ j = I . So the proof is complete.

(2) It is immediately shown by the proof in (1) and Theorem 3.15. �

Under the similar conditions, we have more results for the residual spectrum,
spectrum, and continuous spectrum of the operators Ak+ j , AkBj+1 , Aj+1Bk , Bj+1Ak ,
BkAj+1 , and Bk+ j .

PROPOSITION 3.18. Let (A,B)∈Sk, j∩S j+1,k−1 for any k � 1 and j � 0 . Then
the following equalities hold.

σr(Ak+ j)\ {0}= σr(AkBj+1)\ {0}= σr(Aj+1Bk)\ {0}
= σr(Bj+1Ak)\ {0}= σr(BkAj+1)\ {0}= σr(Bk+ j)\ {0}.

Proof. It suffices to show that

σr(Ak+ j)\ {0} ⊆ σr(AkBj+1)\ {0} ⊆ σr(Aj+1Bk)\ {0}⊆ σr(Bk+ j)\ {0}. (3.4)

Let λ ∈ σr(Ak+ j)\{0} . Then λ 
∈σp(Ak+ j) and R(Ak+ j −λ I) 
= X . Thus N(A∗k+ j−
λ I∗) 
= {0} . Since (A∗,B∗) ∈Sk, j ∩S j+1,k−1 , by Proposition 3.11, N(B∗k+ j −λ I∗) 
=
{0} . However, it follows from Lemma 3.10 that

N(AkBj+1−λ I)∗ = N(B∗ j+1A∗k −λ I∗) = N(B∗k+ j −λ I∗) 
= {0}.
Thus R(AkBj+1−λ I) 
= X . By Theorem3.15, λ 
∈σp(AkBj+1) , so that λ ∈σr(AkBj+1)
\ {0} . Hence σr(Ak+ j) \ {0} ⊆ σr(AkBj+1) \ {0} . Now, let λ ∈ σ(AkBj+1) \ {0} .
Then λ 
∈ σp(AkBj+1) and R(AkBj+1−λ I) 
= X . So N(AkBj+1−λ I)∗ 
= {0} . Since
(A∗,B∗) ∈ Sk, j ∩S j+1,k−1 , by Lemma 3.10,

N(B∗kA∗ j+1−λ I∗) = N(B∗ j+1A∗k −λ I∗) = N(AkBj+1−λ I)∗ 
= {0}.
Hence R(Aj+1Bk −λ I) 
= X . Since λ 
∈ σp(Aj+1Bk) by Theorem 3.15, we have that
λ ∈ σr(Aj+1Bk)\ {0} . Similarly, if λ ∈ σr(Aj+1Bk)\ {0} , then it follows that

N(B∗k+ j −λ I∗) = N(B∗kA∗ j+1−λ I∗) = N(Aj+1Bk −λ I)∗ 
= {0},
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and so R(Bk+ j −λ I) 
= X . Since λ 
∈ σp(Bk+ j) , we have that λ ∈ σr(Bk+ j) \ {0} .
Therefore (3.4) is proved. �

COROLLARY 3.19. Let (A,B)∈Sk, j∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then we have the following equalities.

(1) σr(Ak+ j) = σr(BkAj+1) = σr(Bj+1Ak) .
(2) σr(Bk+ j) = σr(AkBj+1) = σr(Aj+1Bk) .

Proof. The proof follows from Proposition 3.18 and Corollary 3.16. �

COROLLARY 3.20. Let (A,B)∈Sk, j∩S j+1,k−1 for any integer k � 1 and j = 0 .
Then the following equalities hold.

σr(Ak+ j) = σr(AkBj+1) = σr(Aj+1Bk) = σr(Bj+1Ak) = σr(BkAj+1) = σr(Bk+ j).

Proof. The proof is immediately shown by Corollary 3.17 and Proposition 3.18. �

We next find the following spectral relations.

THEOREM 3.21. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . Then
the following equalities hold.

σ(Ak+ j) = σ(AkBj+1) = σ(Aj+1Bk) = σ(Bj+1Ak) = σ(BkAj+1) = σ(Bk+ j).

Proof. We first show that

σ(Ak+ j)\ {0}⊆ σ(AkBj+1)\ {0} ⊆ σ(Aj+1Bk)\ {0} ⊆ σ(Bk+ j)\ {0}. (3.5)

Let λ ∈ σ(Ak+ j)\ {0} . Assume that λ ∈ ρ(AkBj+1) . Then α(AkBj+1 −λ I) = 0 and
λ 
∈ σa(AkBj+1) . By Proposition 3.13 and Theorem 3.15, we have that α(Ak+ j −λ I) =
0 and λ 
∈ σa(Ak+ j) . Therefore

γ(Ak+ j −λ I) = in f{‖(Ak+ j −λ I)x‖ : x ∈ X and ‖x‖ = 1} > 0,

so that R(Ak+ j −λ I) is closed. From this, Ak+ j −λ I is upper semi-Fredholm. Since
λ ∈ ρ(B∗ j+1A∗k) , we have α(B∗ j+1A∗k − λ I∗) = {0} and λ 
∈ σa(B∗ j+1A∗k) . But,
(A∗,B∗)∈Sk, j∩S j+1,k−1 , hence it follows that α(B∗k+ j−λ I)= {0} and λ 
∈σa(B∗k+ j) .
Thus we get that

β (Ak+ j −λ I) = α(A∗k+ j −λ I∗) = α(B∗k+ j −λ I∗) = 0.

Thus λ ∈ ρ(Ak+ j) , but this is a contradiction. Hence σ(Ak+ j) \ {0} ⊆ σ(AkBj+1) \
{0} .

Now, let λ ∈ σ(AkBj+1) \ {0} and assume that λ ∈ ρ(Bk+ j) . Then α(Bk+ j −
λ I)= 0 and λ 
∈σa(Bk+ j) . By Propositions 3.13 and Theorem3.15, we have α(AkBj+1

−λ I) = 0 and λ 
∈ σa(AkBj+1) . Therefore γ(AkBj+1−λ I) > 0, so that AkBj+1 −λ I
is upper semi-Fredholm. Since λ ∈ ρ(B∗k+ j) , we have α(B∗k+ j − λ I) = {0} and
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λ 
∈ σa(B∗ j+1A∗k) . So it follows that β (AkBj+1−λ I) = α(B∗ j+1A∗k −λ I) = 0. Thus
λ ∈ ρ(AkBj+1) , but this is a contradiction. Hence σ(AkBj+1) \ {0} ⊆ σ(Bk+ j) \ {0} .
Therefore (3.5) is proved. Now, we assume that Ak+ j is invertible. Then it follows from
the equation AkBj+1Ak = A2k+ j that Bj+1 is also invertible, so that Bj+1Ak = Ak+ j .
Since the equation Bj+1AkBj+1 = Bk+2 j+1 holds, we have that AkBj+1 = Bj+1Ak =
Bk+ j . Also it follows from the equation Aj+1BkAj+1 = Ak+2 j+1 that BkAj+1 = Aj+1Bk =
Ak+ j . Therefore the proof is completed. �

COROLLARY 3.22. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . If A
has the property (β ) and σ(A) has nonempty interior in C , then B, AB, and BA have
a nontrivial invariant subspace.

Proof. From Theorems 3.7 and 3.21 we get that B , AB , and BA have the property
(β ) and their spectra have nonempty interior in C . Hence the proof follows from
[8]. �

COROLLARY 3.23. Let (A,B) ∈ Sk, j ∩S j+1,k−1 . Then the following equalities
hold for any integer k � 1 and j � 0 .

σc(Ak+ j)\ {0}= σc(AkBj+1)\ {0}= σc(Aj+1Bk)\ {0}
= σc(Bj+1Ak)\ {0}= σc(BkAj+1)\ {0}= σc(Bk+ j)\ {0}.

Moreover, for any integer k � 1 and j = 0 we have that

σc(Ak+ j) = σc(AkBj+1) = σc(Aj+1Bk) = σc(Bj+1Ak) = σc(BkAj+1) = σc(Bk+ j).

Let T̂ denote the coset in B(X )/K(X ) . Then it is obvious that for T ∈ B(X )
we have σe(T ) = σ(T̂ ) . From this argument, we get the following corollary.

COROLLARY 3.24. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . Then
the following equalities hold.

σe(Ak+ j) = σe(AkBj+1) = σe(Aj+1Bk) = σe(Bj+1Ak) = σe(BkAj+1) = σe(Bk+ j).

Proof. Since (Â, B̂) ∈ Sk, j ∩S j+1,k−1 , it follows from Theorem 3.21. �

We next study how Weyl type theorems hold for the operators Ak+ j , AkBj+1 ,
Aj+1Bk , Bj+1Ak , BkAj+1 , and Bk+ j in common. We first begin with the following
lemma.

LEMMA 3.25. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . If λ 
∈
σe(Ak+ j) , then the following equalities hold.

ind(Ak+ j −λ I) = ind(AkBj+1−λ I) = ind(Aj+1Bk −λ I)

= ind(Bj+1Ak −λ I) = ind(BkAj+1−λ I) = ind(Bk+ j −λ I). (3.6)
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Proof. Suppose that λ 
= 0. Since (A∗,B∗) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and
j � 0, it follows from Proposition 3.13 and Corollary 3.24 that

β (Ak+ j −λ I) = β (AkBj+1−λ I) = β (Aj+1Bk −λ I)

= β (Bj+1Ak −λ I) = β (BkAj+1−λ I) = β (Bk+ j −λ I),

which implies that (3.6) holds for λ 
= 0. Now we suppose that λ = 0. Then Ak+ j

is Fredholm, so that Âk+ j is invertible. Since (Â, B̂) ∈ Sk, j ∩S j+1,k−1 , we have that

Âk+ j = ÂkB j+1 = Â j+1Bk = B̂ j+1Ak = B̂kA j+1 = B̂k+ j by the similar argument in the
proof of Theorem 3.21. Hence we get that

ind(Ak+ j) = ind(AkBj+1) = ind(Aj+1Bk)

= ind(Bj+1Ak) = ind(BkAj+1) = ind(Bk+ j).

Therefore the proof is complete. �

LEMMA 3.26. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the following equalities hold.

(1) σw(Ak+ j)=σw(AkBj+1)=σw(Aj+1Bk)=σw(Bj+1Ak)=σw(BkAj+1)=σw(Bk+ j) .
(2) σb(Ak+ j)=σb(AkBj+1)=σb(Aj+1Bk)=σb(Bj+1Ak)=σb(BkAj+1)=σb(Bk+ j) .

Proof. (1) It follows from Corollary 3.24 and Lemma 3.25.
(2) It is well known that for an operator T ∈ B(X ) , T − λ I is Browder if and

only if T −λ I is Weyl and T has SEVP at λ (see [1]). Thus if one of the operators
Ak+ j −λ I , AkBj+1−λ I , Aj+1Bk −λ I , Bj+1Ak −λ I , BkAj+1 −λ I , and Bk+ j −λ I is
Browder, then all of them are Browder by part (1) and the proof in Theorem 3.7. �

The following proposition is obvious from Lemma 3.26.

PROPOSITION 3.27. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j �
0 . Then the followings are equivalent.

(1) Browder’s theorem holds for Ak+ j .
(2) Browder’s theorem holds for AkB j+1 .
(3) Browder’s theorem holds for A j+1Bk .
(4) Browder’s theorem holds for B j+1Ak .
(5) Browder’s theorem holds for BkA j+1 .
(6) Browder’s theorem holds for Bk+ j .

Furthermore, we can easily prove from Theorem 3.21 and Proposition 3.13 that

π00(Ak+ j)\ {0}= π00(AkBj+1)\ {0}= π00(Aj+1Bk)\ {0}
= π00(Bj+1Ak)\ {0}= π00(BkAj+1)\ {0}= π00(Bk+ j)\ {0}.

Hence we have the following results from these arguments.
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THEOREM 3.28. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Suppose that the range of T is closed whenever 0∈ isoσ(T ) , where T ∈{Ak+ j,AkBj+1,
Aj+1Bk,Bj+1Ak,BkAj+1,Bk+ j} . Then the following statements are equivalent.

(1) Weyl’s theorem holds for Ak+ j .
(2) Weyl’s theorem holds for AkB j+1 .
(3) Weyl’s theorem holds for A j+1Bk .
(4) Weyl’s theorem holds for B j+1Ak .
(5) Weyl’s theorem holds for BkA j+1 .
(6) Weyl’s theorem holds for Bk+ j .

Proof. Suppose that Weyl’s theorem holds for Ak+ j . It follows from Proposition
3.13, Theorem 3.21 and Lemma 3.26 that for λ 
= 0,

λ ∈ σ(AkBj+1)\σw(AkBj+1) ⇔ λ ∈ π00(AkBj+1).

So we only need to show that the above equivalence holds for λ = 0. Assume that
0 ∈ σ(AkBj+1)\σw(AkBj+1) . Then 0 ∈ σ(Ak+ j)\σw(AkBj+1) . Since Weyl’s theorem
holds for Ak+ j , we have that 0∈ π00(Ak+ j) . Thus 0∈ isoσ(AkBj+1) and α(AkBj+1) >
0. Since AkBj+1 is Weyl, α(AkBj+1) < ∞ . Hence 0 ∈ π00(AkBj+1) . Now, suppose
that 0∈ π00(AkBj+1) . Then 0∈ isoσ(AkBj+1) and 0 < α(AkBj+1) < ∞ . Since AkBj+1

has closed range by hypothesis, AkBj+1 is upper semi-Fredholm. Since B∗ j+1A∗k has
SVEP at 0, we have β (AkBj+1) � α(AkBj+1) < ∞ . Hence AkBj+1 is Fredholm. Also
AkBj+1 has SVEP at 0, hence ind(AkBj+1) = 0. Thus AkBj+1 is Weyl, so that 0 ∈
σ(AkBj+1) \σw(AkBj+1) . Consequently, Weyl’s theorem holds for AkBj+1 . The rest
of the equivalences can be proved by the similar process. �

For an operator T ∈ B(X ) , it is well known that σle(T ) = σa(T̂ ) and σre(T ) =
σa(T̂ ∗) . So we have the following lemma.

LEMMA 3.29. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j � 0 .
Then the following equalities hold.

(1) σle(Ak+ j) \ {0} = σle(AkBj+1) \ {0} = σle(Aj+1Bk) \ {0} = σle(Bj+1Ak) \
{0} = σle(BkAj+1)\ {0}= σle(Bk+ j)\ {0} .

(2) σre(Ak+ j) \ {0} = σre(AkBj+1) \ {0} = σre(Aj+1Bk) \ {0} = σre(Bj+1Ak) \
{0} = σre(BkAj+1)\ {0}= σre(Bk+ j)\ {0} .

In particular, if j = 0 then we have that
(3) σle(Ak+ j) = σle(AkBj+1) = σle(Aj+1Bk) = σle(Bj+1Ak) = σle(BkAj+1) =

σle(Bk+ j) .
(4) σre(Ak+ j) = σre(AkBj+1) = σre(Aj+1Bk) = σre(Bj+1Ak) = σre(BkAj+1) =

σre(Bk+ j) .

Proof. (1) The proof follows from Theorem 3.15. Since (Â∗, B̂∗)∈Sk, j∩S j+1,k−1

for any integer k � 1 and j � 0, (2) holds again from Theorem 3.15. Furthermore, (3)
and (4) are immediately shown by Corollary 3.17. �
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THEOREM 3.30. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j = 0 .
Then the following equalities hold.

σea(Ak+ j) = σea(AkBj+1) = σea(Aj+1Bk)

= σea(Bj+1Ak) = σea(BkAj+1) = σea(Bk+ j). (3.7)

Furthermore, If the range of T is closed whenever 0 ∈ isoσa(T ) , where T ∈ {Ak+ j,
AkBj+1,Aj+1Bk,Bj+1Ak,BkAj+1,Bk+ j} , then the followings are equivalent.

(1) a-Weyl’s theorem holds for Ak+ j .
(2) a-Weyl’s theorem holds for AkB j+1 .
(3) a-Weyl’s theorem holds for A j+1Bk .
(4) a-Weyl’s theorem holds for B j+1Ak .
(5) a-Weyl’s theorem holds for BkA j+1 .
(6) a-Weyl’s theorem holds for Bk+ j .

Proof. Suppose that λ 
∈ σea(Ak+ j) . Then Ak+ j−λ I is upper semi-Fredholm and
ind(Ak+ j −λ I) � 0. Since AkBj+1 −λ I is upper semi-Fredholm by Lemma 3.29 (3),
we only need to show that ind(AkBj+1 −λ I) � 0. If β (AkBj+1 −λ I) = ∞ , then it is
obvious. So we assume that β (AkBj+1−λ I) < ∞ . Then AkBj+1−λ I is Fredholm and
hence it follows from Lemma 3.25 that ind(AkBj+1−λ I) = ind(Ak+ j −λ I) � 0. Thus
λ 
∈ σea(AkBj+1) . The same process can be applied to the rest, so that (3.7) is proved.
Now we observe that from Corollary 3.17 and Proposition 3.13

πa
00(A

k+ j)\ {0}= πa
00(A

kBj+1)\ {0}= πa
00(A

j+1Bk)\ {0}
= πa

00(B
j+1Ak)\ {0}= πa

00(B
kAj+1)\ {0}= πa

00(B
k+ j)\ {0}.

Suppose that a -Weyl’s theorem holds for Ak+ j . Then it is obvious that for λ 
= 0,

λ ∈ σa(AkBj+1)\σea(AkBj+1) ⇔ λ ∈ πa
00(A

kBj+1).

So we only need to prove that the above equivalence holds for λ = 0. Assume that
0 ∈ σa(AkBj+1) \σea(AkBj+1) . Then 0 ∈ σa(Ak+ j) \σea(Ak+ j) . Since a -Weyl’s the-
orem holds for Ak+ j , we have that 0 ∈ πa

00(A
k+ j) . Thus 0 ∈ isoσa(AkBj+1) and

α(AkBj+1) > 0. Since AkBj+1 is upper semi-Fredholm, α(AkBj+1) < ∞ . Hence
0 ∈ πa

00(A
kBj+1) . Now, assume that 0 ∈ πa

00(A
kBj+1) . Then 0 ∈ isoσa(AkBj+1) and

0 < α(AkBj+1) < ∞ . Since AkBj+1 has closed range by hypothesis, AkBj+1 is up-
per semi-Fredholm. Since AkBj+1 has SVEP at 0, we have that p(AkBj+1) < ∞ , so
that ind(AkBj+1) � 0. Thus 0 ∈ σa(AkBj+1) \σea(AkBj+1) . Consequently, a -Weyl’s
theorem holds for AkBj+1 . The rest of the equivalences can be proved by similar pro-
cess. �

For an operator T ∈B(X ) , a hole in σe(T ) is a bounded component of C\σe(T ) .
A pseudohole in σe(T ) is a component of σe(T ) \ σle(T ) or σe(T ) \ σre(T ) . The
spectral picture of an operator T ∈ B(X ) (notation : SP(T )) is the structure consisting
of the set σe(T ) , the collection of holes and pseudoholes in σe(T ) , and the indices
associated with these holes and pseudoholes.
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THEOREM 3.31. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j = 0 .
Then the following equalities hold.

SP(Ak+ j) = SP(AkBj+1) = SP(Aj+1Bk) = SP(Bj+1Ak) = SP(BkAj+1) = SP(Bk+ j)

Proof. If λ belongs to a hole or pseudohole in σe(Ak+ j) , then all the indices of
the operators Ak+ j −λ I , AkBj+1−λ I , Aj+1Bk −λ I , Bj+1Ak −λ I , BkAj+1−λ I , and
Bk+ j −λ I are equal by Lemma 3.25. Thus it follows from Corollary 3.24 and Lemma
3.29 that all of the operators Ak+ j , AkBj+1 , Aj+1Bk , Bj+1Ak , BkAj+1 , and Bk+ j have
the same spectral picture, which completes the proof. �

PROPOSITION 3.32. If (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 , then
the following properties hold.

(1) σBk+ j(Bj+1y) ⊆ σAkB j+1(y) ⊆ σAk+ j(x) for y := Akx , and σAk+ j(Aj+1z) ⊆
σAkB j+1(z) ⊆ σBk+ j(x) for z := Bkx for all x ∈ X .

(2) B j+1XAkB j+1(F) ⊆ XBj+1(F) , AkXAk+ j (F) ⊆ XAkB j+1(F) , A j+1XBkA j+1(F)
⊆ XAj+1(F) , and BkXBk+ j(F) ⊆ XBkA j+1(F) for any closed set F ∈ C .

Proof. (1) It suffices to show the first inclusions. Let y := Akx ∈ X be given for
each x ∈ X and let μ ∈ ρAkB j+1(y) . Then we can choose a neighborhood D of μ and
an analytic function f : D →X such that (AkBj+1−λ ) f (λ ) = y for all λ ∈ D . Since

(Bk+ j −λ )Bj+1 f (λ ) = (Bk+2 j+1−λBj+1) f (λ )
= (Bj+1AkBj+1−λBj+1) f (λ ) = Bj+1y

for all λ ∈ D , we obtain that μ ∈ ρBk+ j(Bj+1y) . So ρAkB j+1(y) ⊆ ρBk+ j(Bj+1y) , that
is, σBk+ j(Bj+1y) ⊆ σAkB j+1(y) . Similarly, let μ0 ∈ ρAk+ j(x) for all x ∈ X . Then
we consider a neighborhood U of μ0 and an analytic function g : U → X such that
(Ak+ j −λ0)g(λ0) = x for all λ0 ∈U . Since

(AkBj+1−λ0)Akg(λ0) = (AkBj+1Ak −λ0A
k)g(λ0)

= (A2k+ j −λ0A
k)g(λ0) = Akx = y

for all λ0 ∈U , we have that μ0 ∈ ρAkB j+1(y) . Therefore σAkB j+1(y) ⊆ σAk+ j(x) for all
x ∈ X .

(2) Let F be any closed set in C . If y ∈ XAkB j+1(F) , then it follows from part (1)
that σBj+1(Bj+1y)⊆σAkB j+1(y)⊆F . Thus Bj+1y∈XBj+1(F) , and so Bj+1XAkB j+1(F)
⊆XBj+1(F) . Similarly, if x∈XAk+ j(F) , then it follows from part (1) that σAkB j+1(y)⊆
σAk+ j(x) ⊆ F . Thus Akx = y ∈ X AkB j+1

(F) , and so AkXAk+ j (F) ⊆ XAkB j+1(F) . By
symmetry, we have that Aj+1XBkA j+1(F)⊆XAj+1(F) and BkXBk+ j(F)⊆XBkA j+1(F) .

�

COROLLARY 3.33. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . Then
the following statements hold. If A has SVEP, then⋃

x∈X

σAkB j+1(Akx) ⊆
⋃

x∈X

σAk+ j(x) = σsu(Ak+ j) = σ(Ak+ j) = σ(Bk+ j).
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LEMMA 3.34. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . Then the
following equality holds for λ 
= 0 .

p(Ak+ j −λ ) = p(AkBj+1−λ ) = p(Aj+1Bk −λ )

= p(Bj+1Ak −λ I) = p(BkAj+1−λ ) = p(Bk+ j −λ ).

Proof. It suffices to show that

p(Bk+ j −λ ) � p(BkAj+1−λ ) � p(Ak+ j −λ ).

Suppose that p(Bk+ j−λ ) := n for any integer n � 1. Then N(Bk+ j−λ )n−1 � N(Bk+ j−
λ )n = N(Bk+ j −λ )n+1 = · · · . Thus we can suppose that (Bk+ j −λ )nx = 0 and (Bk+ j −
λ )n−1x 
= 0 for some nonzero x ∈ X and some n � 1. Then it follows from (A,B) ∈
Sk, j that

(BkAj+1−λ )nBk+ jx =
[ n

∑
i=0

(
n
i

)
(BkAj+1)i(−λ )n−i

]
Bk+ jx

= Bk+ j(Bk+ j −λ )nx = 0.

Thus Bk+ jx∈N(BkAj+1−λ )n . Assume that Bk+ jx∈N(BkAj+1−λ )n−1 . Then (BkAj+1

− λ )n−1Bk+ jx = 0, so that Bk+ j(Bk+ j − λ )n−1x = 0. Hence Bk+ j(Bk+ j − λ )n−1x−
λ (Bk+ j − λ )n−1x = (Bk+ j − λ )nx = 0. So (Bk+ j − λ )n−1x = 0 for λ 
= 0. This is a
contradiction. Thus p(BkAj+1−λ ) � n = p(Bk+ j −λ ) .

Now, suppose that (BkAj+1 − λ )nx = 0 and (BkAj+1 − λ )n−1x 
= 0 for some
nonzero x ∈ X and some n � 1. Since (A,B) ∈ S j+1,k−1 , we have

(Ak+ j −λ )nA j+1x =
[ n

∑
i=0

(
n
i

)
(Ak+ j)i(−λ )n−i

]
Aj+1x

= Aj+1(BkAj+1−λ )nx = 0.

Thus Aj+1x ∈ N(Ak+ j − λ )n . Assume that Aj+1x ∈ N(Ak+ j − λ )n−1 . Then (Ak+ j −
λ )n−1Aj+1x = 0. Since (A,B) ∈ S j+1,k−1 , we have Aj+1(BkAj+1 −λ )n−1x = 0. So
BkAj+1(BkAj+1−λ )n−1x−λ (BkAj+1−λ )n−1x = (BkAj+1−λ )nx = 0. Hence (BkAj+1

− λ )n−1x = 0 for λ 
= 0. This is a contradiction. Therefore p(Ak+ j − λ ) � n =
p(BkAj+1−λ ) . �

From Lemma 3.34 we have more result as follows.

THEOREM 3.35. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any integer k � 1 and j = 0 .
Then the following equalities hold.

σab(Ak+ j) = σab(AkBj+1) = σab(Aj+1Bk)

= σab(Bj+1Ak) = σab(BkAj+1) = σab(Bk+ j). (3.8)

Furthermore, the followings are equivalent.
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(1) a-Browder’s theorem holds for Ak+ j .
(2) a-Browder’s theorem holds for AkB j+1 .
(3) a-Browder’s theorem holds for A j+1Bk .
(4) a-Browder’s theorem holds for B j+1Ak .
(5) a-Browder’s theorem holds for BkA j+1 .
(6) a-Browder’s theorem holds for Bk+ j .

Proof. Let λ ∈σab(Ak+ j) . Then Ak+ j−λ I is upper semi-Fredholm and p(Ak+ j−
λ I) < ∞ . If λ 
= 0, then it is obvious by Lemmas 3.29 and 3.34 that λ ∈ σab(AkBj+1) .
So assume that λ = 0. Then Ak+ j has finite ascent, so that it has SVEP at 0. It
follows from the proof of Theorem 3.7 that AkBj+1 has SVEP at 0. Since AkBj+1 is
upper semi-Fredholm, it has finite ascent. Therefore 0 ∈ σab(AkBj+1) . Throughout this
similar way, (3.8) can be proved. Furthermore, we have that if a -Browder’s theorem
holds for one of the operators Ak+ j , AkBj+1 , Aj+1Bk , Bj+1Ak , BkAj+1 , and Bk+ j ,
then all of them satisfy a -Browder’s theorem from (3.7) in Theorem 3.30. �

Finally, the spectral mapping theorem for Drazin spectrum implies the following
theorem.

THEOREM 3.36. Let (A,B) ∈ Sk, j ∩S j+1,k−1 for any k � 1 and j � 0 . Then

σD(Ak+ j) = σD(AkBj+1) = σD(Aj+1Bk)

= σD(Bj+1Ak) = σD(BkAj+1) = σD(Bk+ j).

Proof. We observe that (AkBj+1)2 = A2k+ jB j+1 . Since σD(TS) = σD(ST ) for
every operators T and S , we have σD(A2k+ jB j+1) = σD(AkBj+1Ak+ j) . By the spectral
mapping theorem of the Drazin spectrum,

{σD(AkBj+1)}2 = σD[(AkBj+1)2] = σD(A2k+ jB j+1)
= σD(AkBj+1AAk+ j) = σD(A2k+2 j) = {σD(Ak+ j)}2.

Since (A,B) ∈ S j+1,k−1 , it holds that (AkBj+1)2 = AkBk+2 j+1 . From this, we have
that {σD(AkBj+1)}2 = {σD(Bk+ j)}2 . Similarly, it is obvious that {σD(BkAj+1)}2 =
{σD(Bk+ j)}2 . Consequently, the proof is completed. �
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