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INVERSE SEMIGROUP EQUIVARIANT
KK-THEORY AND C*-EXTENSIONS

BERNHARD BURGSTALLER

(Communicated by B. Magajna)

Abstract. In this note we extend the classical result by G. G. Kasparov that the Kasparov groups
KK (A,B) can be identified with the extension groups Ext(A, B) to the inverse semigroup equiv-
ariant setting.

More precisely, we show that KK (A, B) = Extg(A ® %G, B® J4g) for every countable,
E -continuous inverse semigroup G.

For locally compact second countable groups G this was proved by K. Thomsen, and
technically this note presents an adaption of his proof.

1. Introduction

In Theorem 7.1 of [7], G. G. Kasparov shows that for every compact second count-
able group G and ungraded separable G-algebras A and B (where A is nuclear) there
exists an isomorphism between the extension group Ext(A,B) and the Kasparov group
KK'(A,B):=KK(A,B®B). In[11], K. Thomsen generalizes this result to locally com-
pact second countable Hausdorff groups G and ungraded separable G-algebras A and
B by establishing an isomorphism between Extg(A ® #G,B® %) and KKL(A,B),
where .7 = .# @ # (L*(G)). Very roughly speaking the proof is done by consid-
ering Kasparov’s proof for these more general groups G. Some unitaries which fall
out due to G-equivariance during the process of equivalently transforming Kasparov
cycles to another format called KK -cocycles are not averaged away, but kept as unitary
cocycles and then transferred into the algebra J#; by some equivariance theorems by
J. A. Mingo and W. J. Phillips [9].

In this note we prove the analogous result for countable, E -continuous inverse
semigroups G by adapting K. Thomsen’s proof.

We will here not repeat Thomsen’s complete proof but only show the modifications
that have to be made when reading Thomsen’s paper for an inverse semigroup G. We
will be mainly focused on details, leaving the greater context to the original paper by
Thomsen. The only thing we have to observe and to take care of is the G-action. The
definitions of equivariant KK -theory for groups and inverse semigroups are very close,
see Section 2, but the difference that gg~! = 1 in a group but gg~! is just a projection
in an inverse semigroup, is unavoidable. The short answer of this note is that we shall
make only the following modifications in Thomsen’s paper [11]:
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o If one side of an identity contains an action ¢4 but the other side does not, then
we have to add -1 to the other side. For example, 0, (x) =y has to be changed
t0 O(x) = -1 (y). This is obvious since o looses information by projecting

onto (ngfl .

e A unitary cocycle has to be replaced by a cocycle in the sense of Definition 4.1.
It is obvious that we cannot work with unitaries. The unitary operator definition
changes to a partial isometry definition with identical source and range projec-
tion.

e The /*(G)-space has to be completely replaced by a compatible ¢*(G)-space,
see Definition 8.4. Without a suitable change the algebra % (¢*(G)) were no
longer a G-algebra and the proof would break down. The construction of this
compatible ¢?(G)-space requires however the inverse semigroup G to be E -
continuous, see Definition 8.2.

More or less we could finish here our note, but we shall nevertheless discuss some
of the modifications in detail to convince the reader that everything goes through.

An important help, and a fact which is used again and again, is that the operator
1 € Z.#/(A) is always in the center of the multiplier algebra of a given G-algebra
(A, o). This includes also the G-algebra of adjoint-able operators . (&) of a given
G-Hilbert module &. In Thomsen’s proof @1 =1 and so @1 is absorbed by
any neighboring element via multiplication. In our proof o,,-1 often cannot vanish
in its position, but since it is in the center, can move around within an expression un-
til it is absorbed elsewhere, for example another presence of o, through the identity
Oyp-10 = 0. With that technique, Thomsen’s proof can be kept under the weaker
assumptions.

A different approach in generalizing Kasparov’s result to locally compact groups
is given by J. Cuntz [4].

The structure of this note is as follows. The Sections 2 to 7 represent corresponding
sections of Thomsen’s paper, with the same numbers and titles. There we discuss in
each section the modifications that have to be performed in the corresponding section
in [11]. Section 2 includes also a brief summary of inverse semigroup equivariant
KK -theory, and Section 7 contains the above mentioned main result in Theorems 7.1
and 7.2. The last Section 8§ presents an appendix where we introduce the compatible
¢*(G)-space and adapt certain triviality results from Mingo and Phillips [9] for this
/*(G)-space.

2. The Busby-invariant in the equivariant case

Let G denote a countable inverse semigroup. We shall denote the involution on
G by g+ g~ (determined by gg~'g = g). A semigroup homomorphism is said to
be unital if it preserves the identity 1 € G and the zero element 0 € G, provided that
the involved inverse semigroups are gifted with any of these elements. In this note, we
shall however require none of them. We consider G-equivariant KK -theory as defined
in [3] but make a slight adaption by making this theory compatible in the sense that
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we only allow for compatible Hilbert (bi)modules (cf. Definition 2.2). We are going to
recall the basic definitions of KK© .

DEFINITION 2.1. A G-algebra (A, ) is a Z/2-graded C*-algebra A with a uni-
tal semigroup homomorphism o : G — End(A) such that o, respects the grading and
Oyy1(X)y = x0ye-1(y) forall x,y €A and g € G.

DEFINITION 2.2. A G-Hilbert B-module & is a 7/2-graded Hilbert module
overa G-algebra (B, ) endowed with a unital semigroup homomorphism G — Lin(&)
(linear maps on &) such that U, respects the grading and (U, (), U, (1)) = B.((&,n)),
Ug(Eb) = Uy (8)Be(b), and U,y -1 (8)b = EP,,-1(b) forall g€ G,&,n €& and b € B.

In the last definition, U,,-1 is automatically a self-adjoint projection in the center
of Z(&) (because adjoint-able operators are B-linear and U,,-1(§)b = EB,,-1(D)),
and the G-action G — End(Z(¢&")) given by g(T') = U,TU,1 turns £(&) to a G-
algebra (¢ € G and T € Z(&)). A G-algebra (A,o) is a G-Hilbert module over
itself under the inner product {(a,b) = a*b and U := 3 := o in the last definition.
A x-homomorphism between G-algebras is called G-equivariant if it intertwines the
G-action. A G-Hilbert A,B-bimodule over G-algebras A and B is a G-Hilbert B-
module & equipped with a G-equivariant *-homomorphism A — £(&’). The compact
operators on a separable Hilbert space are written as .2, % (&) C £ (&) denotes the
compact operators on a Hilbert module &, and 6, , € % (&) the elementary compact
operators 6, ,(z) :=x(y,z) forall x,y,z € &.

DEFINITION 2.3. Let A and B be G-algebras. We define a Kasparov cycle
(&,T), where & is a G-Hilbert A, B-bimodule, to be an ordinary Kasparov cycle
(without G-action) (see [7, 8]) satisfying UgTU,-1 —TUy1 € {Se Z(&)|aS,Sa e
H (&) forall a € A} forall g € G. The Kasparov group KKY(A, B) is defined to be the
collection E%(A, B) of these cycles divided by homotopy induced by E(A, B[0,1]).

There exists an associative Kasparov product in KKC as usual (see [3]).

We list here some notions from [11]. One is given two ungraded separable G-
algebras (A, o) and (B,3). The G-algebra B is assumed to be weakly stable, that is,
there exists a G-equivariant isomorphism (B, 3) = (B® %, 3 ® id 5 ). The multiplier
and corona algebra of A is denoted by .# (A) and Q(A) := .#(A)/A, respectively.

We remark that the identity . (A) = %4 (A) fora C*-algebra A is often and freely
used. (We recall that the isomorphism is given by mapping an operator T € .Z4(A) to
the double centralizer (T,T') € .# (A), where T'(a) := (T*(a*))* forall a € A.) In
particular, .#(B® %) and Lps » (B® %) will be often identified.

DEFINITION 2.4. By using the *-isomorphism .Z(A) =~ #(A), the multiplier
algebra turns to a G-algebra (#Z(A), o) = (£ (A),®) under the G-action @ : G —
End(.Z(A)) determined by @¢(T) := 0goT o, 1 forall g€ G and T € £(A) asin
Kasparov [6, 1.4].
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Thomsen interprets o, as the strictly continuous extension of o4 from A to
A (A). We shall however always use the aforementioned explicit formula in our
computations. This G-action on the multiplier algebra induces a canonical G-action
o : G — End(Q(A)) on the corona algebra, which turns it to a G-algebra (Q(A), ).
The G-equivariant quotient map between multiplier and corona algebra is denoted
by ga: #(A) — Q(A). A G-equivariant x-homomorphism ¢ : A — B which is
quasi-unital (i.e. sSpan@(A)B = pB for some projection p € .# (B)) induces a well-
known strictly continuous *-homomorphism @ : .# (A) — .# (B) between the multi-
plier algebras, which once again induces a canonical G-equivariant *-homomorphism

~

¢:0(A) — O(B).

DEFINITION 2.5. An operator T € .Z (&) on a G-Hilbert module & with G-
action U is called G-invariantif T oUy = Uy o T (equivalently, UgTU,-1 = TUgU,-1
Of UgTUy1 = Upyy-1TU,p1 )forall g € G.

In case of a multiplier algebra, G-equivariance is also called as follows.

DEFINITION 2.6. An operatorin T € .Z ((B,3)) is called E-_invariant if T (and
consequently 7*) commutes with B, for all g € G (equivalently: B,(T)=Tp,(1) or

Bo(T) = Bge1(T) forall g € G).

The operators V;,V, € .4 ((B,B)) always denote B -invariant isometries such that
ViV +WVy =1 (cf. [2, Lemma 4.1]). They are used to form K -theoretical addition
in ./ (B) = M(.# (B)). Note that we also write sometimes simply g for the action
maps o, f3,,U, etc.

In [11, Section 2] G-equivariant extensions of G-algebras A and B are intro-
duced and identified with the set of G-equivariant *-homomorphisms from A to Q(B)
Homg(A,Q(B)). The theory of this section goes essentially literally through. The [11,
Theorem 2.1] can be ignored since it is only a continuity statement and hence trivial
under our setting.

THEOREM 2.7. Discussion of [11, Theorem 2.2].

Proof. To prove the G-equivariance of a certain *-isomorphism x : E; — E; ap-
pearing in the diagram of [1 1, Theorem 2.2], we check first that it is E -equivariant. Let
p € E and write p* = 1 — p. Then by the diagram of [11, Theorem 2.2], pkp(E;) C
j2(B) and px~'p*(j>(B)) = {0}. Hence, px~!ptoptxp=0. Notice that k' ptx
is a self-adjoint projection in %%, (E ), and hence commutes with p, whence pkIpt=
0. Similarly p* k= !p =0 and so k! intertwines p.

Let g € G. We set then, as in Thomsen’s proof, 1= k!

oY oKy, 188 ' E1—
g¢ 'E; (also the maps j; and p; in the diagram of the proof of [1 1, Theorem 2.2] have
to be restricted to j; : gg~'B — gg 'E; and p; : gg"'E; — gg~'A) and deduce that
U =idy,1p, . Hence ok =koy;. [
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3. The equivariant extension groups

Summing up [ 1, Section 3], for given G-algebras A and B an addition is intro-
duced on the set Homg (A, Q(B)) (which, recall, encodes extensions) and equivalence
relations are imposed on it. Two abelian extensions groups Extg(A,B) and Extl(A,B)
come out, and it is shown that the canonical map Extg(A, B) — Extl;(A, B) is surjective.

In this section we have to modify the definition of unitary equivalence as follows.

DEFINITION 3.1. Two G-extensions @,y € Homg(A,Q(B)) are said to be uni-
tarily equivalent if there exists a unitary u € . (B) such that forall g € G

~

L Be(as(1)) = Beg1 (an(w)).
2. (Ad qB(u))O(p = V.

Note that we made the only obvious modification in Definition 3.1 that ngfl was
added in point 1. The construction of certain equivariant paths of isometries and uni-
taries in [11, Lemma 3.3] work also inverse semigroup equivariantly. (Note that the
unitary here has nothing to do with the fact that group actions are realized by uni-
taries.) In the statements and prooﬁs of Lemma 3.2, Lemma 3.4 and Proposition 3.5
of Thomsen’s paper the identities Bg(gp(X)) = ¢gp(X) and Eg(X ) = X, respectively,
for X = V,U,S,W,W,,U,,u have to be replaced by Bg(qB(X)) = B\gg—l(CIB(X)) and

B,(X) = Byg-1(X), respectively. All these modifications are obvious. The extra terms

ﬁgg—l and ng—l may then slightly alter some computations, but since we shall demon-
strate various similar computations in the next sections we omit presenting further de-
tails in this section.

4. An appropriate picture of KK

Summarizing Section 4 of [1 1], the notion of the one-sided graded Kasparov group
]
KKL(A,B) := KK9(A,B& B) is defined, and another group KK (A, B) of equivariant
— 1
A,B-KK'-cocycles is introduced. An isomorphism KK ;(A,B) = KKL(A,B) between
both groups is then established.

In this section Thomsen recalls the definition of KK¢ -theory, for which we use
Definition 2.3. The definition of a Kasparov cycle (&,T) € E9(A,B) requires that
(g(T)—Tgg '(1))ac # (&) forall a € A and g € G. Thomsen remarks that we can
drop here a at all and require the stronger version

g(T)—Tgg™'(1) € (&) (1)

for all Kasparov cycles without changing KK -theory. This is true also in our case as
pointed out in [2]. In Section 4 Thomsen introduces the notion of a unitary cocycle, for
which we have to use the following modified version (as already pointed out in [2]).
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DEFINITION 4.1. Let (B,f3) be a G-algebra. A unitary [3-cocycle is a map u :
G — . (B) such that

Bogt = tgltg,  Ugy1 = Uglly, Ugy = Ug o (un)
forall g,heG.

This definition implies that u, is a partial isometry with identical range and source
projection. Furthermore, we have the identities

[3“ | u:ug = uguz =g and Eg(ug—l) = “Z 2)

for all g € G, see [2, Lemma 3.3]. Thus, in our setting it would be more natural
to simply speak about ““-cocycles” instead of “unitary f3-cocycles”. Informally we
remark that a unitary f3-cocycle will be used to combine it with the G-action 3 to form
anew G-action g+ (Ad ug)o B, on .#(B). Cocycles come into play as ballast under
some transformations of Kasparov cycles which are not G-equivariant, notably in [11,
Theorem 4.3]as u: G — .#(B).

The definition of an equivariant A, B- KK -cocycle changes slightly:

DEFINITION 4.2. An equivariant A,B-KK'-cocycle is a triple (7,v,p) consist-
ing of a *-homomorphism 7 : A — .# (B), a unitary f§-cocycle v: G — .#(B) (Defi-
nition 4.1) and a projection p € .# (B) such that

1. (Ad vgoﬁg) (n(a)) = n(ay(a)) (Vae A, g €G)
2. (AdvgoB,)(p) — Be1(p) € B  (Vg€G)
3. pn(a)—rm(a)p € BX (Vae€A).

Only the additional operator ng—l in the second point and the usage of the modi-

fied notion of f3-cocycles have changed. These KK -cocycles are also called triples in
[11]. The definition of a degenerate cocycle has to be similarly slightly and obviously
adapted as follows.

DEFINITION 4.3. An equivariant A, B-KK'-cocycle (m,v,p) is called degener-
ate when

(AdvgoB,)(p) = By,
pr() = x()p.

The sum of KK'-cocycles is realized by any pair (V1,V3) of G-invariant isome-
tries in ./ (B) such that V;V*+ WV, = 1.

-ilp) (Vg €0), 3)

LEMMA 4.4. In[11, Lemma 4.2] Thomsen shows that the sum of an A,B-KK'-
cocycle with a degenerate A,B-KK" -cocycle is homotopic to itself.
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Proof. In accordance to (3), we only have to alter the line

tlin& Ad [SiugS; +TiveT;'] o B (S:qS; + TipT") — (S:qS; + TipT})

in the proof of [11, Lemma 4.2] to

}E}% Ad [Sl‘ugslik + Ttngl:*] Oﬁg(Stht* + Ttth*) - ﬁgg*l (Stht* + Ep];*) D

LEMMA 4.5. After [11, Lemma 4.2], Thomsen defines a map @ : I?I/('é(AB) —
KK}(A,B) by setting ®[r,v,p| = [Ep,7,S,|, where Eg:=B®B, & =n®n and
Sp(b1,b2) = ((2p — 1)by,(1 —2p)bs) for by,by € B. The Hilbert module Ep is en-
dowed with the G-action Vg :=vgf,.

Proof. Let us check that [Ep,7,S,] is a Kasparov cycle, where we only need to
bother about the G-action. That (Ep,7) is a G-Hilbert bimodule we have already
discussed in [2]. So let us only check identity g(S,) —Syg(1) € # (Eg) from (1). We
have, by considering only the first factor B of Ep,

TgSpVg1(b1) = veBe((2p — 1)vg-1By-1(b1))
- zvgﬁg(p)ﬁg(vg’l )Bg-1(b1) — "A’Eg(vgfl)ﬂgg” (b1)
= 2(Ad vgoB,) (p) Byg-1(b1) = vgveBe1(b1)
= 2pBgg-1(b1) = Bog-1(b1) = SpigFy-1(b1)

for all by € B, because Eg(vg—l) = Vg, VgV = ngfl (see (2)), by Definition 4.2 and by

using that B is the extension of B from B to .#(B). [

The proof of [11, Theorem 4.3] is very similar to that of [10, Theorem 3.5] and
was discussed inverse semigroup equivariantly in [2, Theorem 4.4], so we omit a redis-
cussion.

LEMMA 4.6. We discuss [11, Lemma 4.4].

Proof. Thomsen notes that an application of Kasparov’s [7, Lemma 6.1] yields
a unitary in T € M>(.# (B)) which is G-invariant in Kasparov’s case but only G-
invariant modulo compacts in Thomsen’s case. Similarly, when inspecting Kasparov’s
proof of his lemma (the G-action on .# (B) is vf3 and T is derived from the operator
of a Kasparov cycle), in our case G-invariance of 7 means (according to Definition

2.3) that
ve 0\ 53— vi 0 VeBoo-1Vi 0
Didyy (T) (8 5o ) — 18PV
(O Ws%) P i )<O (we) ) ( 0w ggfl(wé)*

lies in M(B). Recall that v, and wﬁ are partial isometries with source projections

Vive = Beg-1 = B, (1) = (wg)*wi € .#(B) in the center of .#(B) by (2). [



474 B. BURGSTALLER

5. Twisted G-extensions and KK'

The aim of [1 1, Section 5] is the introduction of a twisted extension group Extg,(A,B)

and the establishment of an isomorphism Extg,(A,B) = I?I/(i; (A,B). Moreover, is is
pointed out that two elements in Extg (A, B) are identical if and only if their represen-
tatives are homotopic.

The notions of twisted extensions, unitary equivalence of twisted extensions, and
degenerate twisted extensions need not be formally altered, excepting the implicitly
self-evident fact that we have to use the modified notion of 3 -cycles of Definition 4.1.
In the proofs of this section we have however slight adaption.

At first let us observe that unitary equivalence between two twisted extensions
(¢,u) and (y,v), where @,y : A — Q(B) are G-equivariant *-homomorphisms and
u,v are B-cocycles, is an equivalence relation. Equivalence is defined through the
existence of a unitary u € .#(B) such that Adgg(u)o ¢ = y and v, (u) —uugs € B
for all g € G. Let us demonstrate symmetry of the second relation. Taking the second
relation for granted, we get

B> Eg*l (V&’Eg(u) - uug)* = Eg*l (Eg(u*)ﬁg(vgfl) - Eg(ug*I )M*)
= I/L*Bg—lg(vg—l) —Mg—lﬁg—l(l/l*) = M*Vg—l — Mg—lBg—l(M*
by identities (2), the compatibility of the f3-action, and the fact that ngl g(Vg—l) =

” o N . ). .
ﬁg—lgvg—l o—1g = Vg1 by ﬁg—lg = Vg1V, by identities (2), as required.

PROPOSITION 5.1. Between [11, Lemma 5.1] and [11, Lemma 5.2], Thomsen
— 1
shows that there is a group homomorphism A : Extc, ((A, o), (B, ﬁ)) — KK;(A,B).

Proof. Thomsen considers a twisted extension (¢,u) € Extg,(A,B), where ¢ :
A — Q(B) is a G-equivariant *x-homomorphism and u a f3-cocycle. Then an inverse
twisted extension (y,v) € Extg,(A,B) to this one is chosen, that is, there is a de-
generate twisted extension (A,w) € Extg,(A,B) such that (¢ + y,u+v) is unitarily
equivalent to (A,w). One deduces that there exists a unitary T € .# (B) such that

Adgp(T)o(p+y) =2,
weBo(T) = T(ViugVi' +Vav,Vy')  €B (Vg €G)

in Thomsen’s paper as well as here as the formal definitions around twisted extensions
are unchanged. Then Thomsen states that one has

Adwgo B (TVIV/'T*)
= AdToAd(u+v),0B,(ViVi) = TWVT*  (3€G) (4)
in . (B) modulo B. This changes in our setting. We compute in .# (B) modulo B
Adwg o B (TVIVIT*) = weB,(T)ViVy Bo(T) W}
= T(ViugVi +VaveVs') ViVy (ViujVi' + Vavs Vi )T
= TViuguy Vi T* = Bou t TVIViT Byt = Bt (TVIVIT),
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because ﬁggfl = ugu;‘,, see (2), is in the center of .#(B). So we have an additional
ng—l in identity (4). Hence (%,m TViViT") isa KK I_cocycle in the sense of Defini-
tion 4.2, where A : A — .#(B) is so chosen that 1 = ggoA and Adw, oﬁgoz =Aoay.

This KK'-cocycle can be interpreted as an element in KK é (A,B) (homotopy classes
of KK'(A,B)-cocycles).
To see the well-definedness of the just constructed assignment Extg,(A,B) —

—~ 1

KK(A,B), Thomsen considers another pair (y!,v!), (11, w!) € Extg,(A,B) instead
of (y,v),(A,w) € Extg,(A,B). To the other pair is associated a unitary T' € . (B)
instead of 7. There are shown the existence of homotopies

AW, TWViVITYY ~ (U, w2 TVIVET) ~ (A, w, TV VT?),
where § = TT'", u = AdSoA! and w? = Swi,ﬁg(S*) € . (B). Let us check that
(U, w2, TV, V' T*) € 15(16 (A,B), so is a triple in the sense of Definition 4.2. Using that
B,g—1 is in the center of .7 (B), we have
AdwioB,opu(a) = AdSwiB,(S*)oB,0AdSoA1(a)
— SWLB,S" Byt BeSAT(@)S" Byt BoSBy 1wl 'S™ = (0(a)), and
AdWZo B (TVIVIT*) = SwiBeS By 1 BeTVIV T By1BeSB, 1wy S*
=TT Wy, T T* TViVy T*TT" B,wy T'T*
=TT By 1 (T'VIVIT)TIT* = B ((TVIViT*)  mod B® X
This proves the first two relations of Definition 4.2, and the third one is similar. The

verification of the remaining parts is technically very similar to the last computations
and thus we omit a further discussion. [

[11, Lemma 5.2] goes through unchanged.

THEOREM 5.2. In[11, Theorem 5.3] it is remarked that the map A : Extg,;((A, ),
—~— 1
(B,B)) — KK;(A,B) is an isomorphism.

Proof. The proof goes through unchanged. We only inspect the surjectivity proof,
where from a given A,B-KK'-cocycle (m,v,p) a *-homomorphism ¢ : A — Q(B)
via @(a) = qp(m(a)p) and then a twisted extension (¢,v) € Extg,;(A,B) is defined.
Checking that it is a twisted extension, we compute

Adgs(ve) o Beop(a) = qa(AdveB(n(a)p)) = qs(veB(m(@)V;Bee 1(p)
= qB(ve By (n(a))vy) g8(p) = ¢(0g(a))
by Definition 4.2 and f3,,-1 = v,v; (identities (2)). [J

Also [11, Theorem 5.5] goes essentially through unchanged and involves only
similar verifications and computations already having been demonstrated.
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6. Removing the twist

The aim of this section is the construction of a connection between twisted and
untwisted extension groups, see Lemma 6.4 below. Here the paper [9] of Mingo and
Phillips is essential and its adaption to inverse semigroups is presented in Section 8§ as
an appendix.

LEMMA 6.1. (Cf. Lemma 6.1 of [11]) We discuss here [11, Lemma 6.1], whose
statement changes slightly. Obviously, in the statement of [11, Lemma 6.1] we have to
use the identities

Be(45()) Wi (@) = Bt (95()) i (),
B, @ idy, (amy8)(Ur)) = I&;@M (@) (U)

instead of the corresponding identities in Thomsen’s paper without the appearances of
the B,,-1 expressions.

Proof. In the proof of [11, Lemma 6.1] the identity [11, (6.1)] changes to

By @ idy, (ap(8)) w1 (a) = Byg 1 @ idus, (an(S)) v (a).

The function ¢ appearing in [11] takes the new form ¢ (g)=P;®idp, (S)—B,,-1 @ idwm, (S).
Thomsen then applies Kasparov’s technical [8, Theorem 1.4], for which we use the cor-
responding and quite similar technical [3, Theorem 5.1] (the function y there has to be
ignored).

In item “2.” of the proof of [11, Lemma 6.1] we must replace the occurrences
Be ®idu,(Y)X —YX by

By @ idpty (V)X — Bg1 @ idys, (V)X

for Y = 8,85 and X = x,xS. The application of Kasparov’s technical theorem yields
positive elements m,n € .# (D) satisfying

By @ idp, (m) — ﬁggfl ® idp, (m), Bg @ idu, (S)n — ﬂggfl ® idy, (S)n,
nﬁg ® idy, (S)—n og1 & idy, (S) e D

rather than the corresponding relations without the appearance of ngfl ®idy, as in
Thomsen’s paper. [J

Assume from now on that G is E -continuous!
For the definition of E -continuity see Definition 8.2 or Lemma 8.3. From now on,
everywhere where Thomsen uses the G -Hilbert space L?(G) with its right regular rep-

<

resentation we have to use the G-Hilbert Cy(X)-module ¢2(G) defined in Definition
8.4 (there we need E -continuity). For simplicity, we shall thus also switch to the nota-

tion L*(G) := €A2(G) The actions on .Z(L?(G)) and .# (L*(G)) are the usual induced
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ones. For every G-Hilbert B-module or G-algebra &, L>(G)® & in Thomsen [11] has
to be replaced by the compatible tensor product L?(G) ®* & (cf. Definition 8.7), and
likewise .# (L*(G))® & in Thomsen [11] by # (L*(G)) ®X & here. Every occurrence
of the Hilbert space C in [11] has to be substituted by the G-Hilbert Cy(X)-module
Co(X). This also includes, that we shall substitute the compact operators on a separable
Hilbert space, %, with its trivial G-action by the G-algebra .# (Cy(X)*) and write
the G-algebra # ® A isomorphically as % ® A = # (Co(X)*) @X A as G-algebras.

(The isomorphism is of course given by ¢;; @ a 01(,-) 0 ®a (position i and j).)
Co(X)"Co(X)
Analogously as in Thomsen [1 1] one defines the G-algebra

He = A (Co(X)™) &% # (L*(G)).

For convenience of the reader, and since we are using a different L?(G)-space
in our setting which requires higher attention if indeed everything works, we shall lay
out more details and larger parts from Thomsen’s proof than above in the rest of this
section.

LEMMA 6.2. (Cf. Lemma 6.2 of [11]) Let [(@,u)] € Extg,(A,B) be a twisted ex-
tension. Write p for the G-action on J#¢. Then there is a unitary w € .4 (B2X #¢)
such that

w(itg @ 1) (Be @ pg) = (Be ® pg)w. (5)

Proof. Let the G-action on L?(G) (see Definition 8.4) be denoted by 7. We have
two G-actions on B* % L*(G), namely f, := (uyf,)” ® T, and v, := (B,)*®7, for
g € G. The two corresponding G -Hilbert B-modules B* ®* L*(G) are G-equivariantly
isomorphic by Lemma 8.8. Hence, there exists a unitary v € Z3(B~ ®@* L*(G)) in-
tertwining the aforementioned two G-actions. Consider the isomorphism of Hilbert
B-modules, see Kasparov [6, Theorem 2.1],

Y Lo(L*(G) &% B™) — . (A (L*(G) &% B™)) : Y(T) = (T1,T2),

where (77,T5) is the double centralizer given by 7j(6yy) = Orxy and To(6yy) = Oy 14y
for x,y € L*(G) @% B>.

Note that y is G-equivariant for both actions induced by p and v, respectively,
on the domain of 7, and their corresponding induced actions on the range of y, respec-
tively, since

(8(T)),(6yy) = Ot 1xy = Oerg1xge1y =80T og71(9x7y)

1

by compatibility of the inner product (i.e. gg~'(x,y) = (gg~'x,y)) and the identity

8(6:y)(2) = g(x(3.87'(2))) = Ogr0(2)
forall g € G and x,y,z € L?>(G) ®* B*. Notice that

H(L*(G) @Y B*) = ¢ (L*(G)) @X # (B”) = # (L*(G)) @ (# ® B)
=~ # (L*(G)) @* (A (Co(X)”) &% B) 2 #2* B
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isomorphically as G-algebras by P.-Y. Le Gall [5, Proposition 4.2.(a)]. We may thus
identify the range of y with . (B®X .#5).

Set w:=y(v). Recall that v, = vov. Hence Vgvv,-1 =VvlUgV,-1. Since UgV,-1 =
(g @ 1)(Bgg-1 @ pgg-1), We obtain from y(vevv,-1) = y(v)¥(UgV,-1) that

(Bg @ pg)w(By-1 @ Ppy-1) = wlitgByg—1 @ Pg-1)-

Multiplying from right with B, ® p,, and noting that B,-1, @ p,-1, is in the center,
yields the claim. [J]

DEFINITION 6.3. (Cf. [11] after Lemma 6.2) For a G-algebra (C,y) and a ho-
momorphism ¢ € Homg(A,Q(B)) we denote by ¢&idc € Homg(A®X C,Q(B®X C))
the canonical map @®idc(a®c) = qz'(p(a)) @ c+B2XC.

LEMMA 6.4. (Cf. [11] after Lemma 6.2) For every twisted extension [(@,u)] €
Extg,(A,B) choose a unitary w € .4 (B®% ) according to Lemma 6.2. Then there
exists a homomorphism

0: Extg, (A, ), (B,B)) — Extg(A®* #5,0(B&* #5))
defined by ©([@,u]) = [Adqpyx 4, (W) o (9®id 1))

Proof. Recall from Section 5 of [11] that Extg, consists of twisted extension
divided by the equivalence relation ~ that two twisted extensions ey,e are equivalent
if adding both with two (possibly different) degenerate twisted extensions, then they
are unitarily equivalent, and finally considering in this quotient space only invertible
extensions with respect to addition (direct sum of extensions). The extension group
Extg is defined analogously, without the word “twisted” everywhere.

At first we are going to prove that ©(¢,u) is indeed in Extg. For T € .# (B®%
) we have

Ad(w) 0 Ad(ug ® 1¢;,) © By @ pg (T)
= w(tg @ L) (B @ Pe) T (Bg-1 ® pyg-1) (1 @ Lgg )w"
= (B PIWTW (it 1 @ L) (Bt © Pyt
= (B @ p)WTw (Bg1 @ py1)
= Bc@pgo Ad(w) (T) (©)
in .Z(B®* %) by Lemma 6.2 and (2). Since (@,u) is a twisted extension, and so
Adgp(ug)oByo@(a) = @(0y(a)), see [11, Section 5], we get

Adqpex (g ® 1) 0 Bg @ pg o (p&idx;) = (&id x;;) o (0t ® pg).
Applying Adgpgx 4, (w) on this identity shows with identity (6) that

Adgpex . (W) o (9Bid ;) € Homg(A®Y H5,0(B &~ Ag)), (7)
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in other words, this map is G-equivariant. Hence, ©(¢,u) is in Extg.

If (¢,u) is a degenerate twisted extension, thatis, Ad(ug)of,0¢(a) = @(ag(a))
with @ € Homg (A, # (B)), see [ 11, Section 5], then similar as above we achieve

Ad(w) o (¢p&id 4,) € Homg (A % Hg,.# (B2* X5)).

In other words, if (@,u) is degenerate, so is O(P,u).

Our next aim is to show that © respects unitary equivalence. Assume that two
twisted extensions (¢@,u) and (y,v) are unitarily equivalent, (¢@,u) = (y,v), see [,
Section 5]. That means, that there exists a unitary s € .# (B) such that

Adgp(s)o@ =y,  veB,(s)—suz €B (8)

forall g € G. Let t € .#(B®X %) denote the unitary w for the twisted extension
(y,v) from Lemma 6.2. From (8) it follows

Adqpex 5 (t(s® L )W) 0 Adgpx (W) 0 (9®id ¢;;)
= Adqpex (1) o (W&id 1) )
Moreover, computing Be®pg(w")=(B,e-1@Pge-1)(uz@1)w* by multiplying (5) from

the right with 8,-1 ® p,-1 and taking the adjoint, and similarly computing B, ® p,(t) =
1(vg @ 1)(Byg-1 @ Pyg-1), we have for all m € .#(B) and k € g (in A4 (B* X5))

(Be@ Py (1(s 2 1)0") = Byt @ Pt (s @ 1)w) Jw(m @ k)
_ (z(vg®1)ﬁg®pg(s®1)(u;®1)w*—z(ng,l(s)®5gg,l(1))w*)w(m®k)w*
= t((vng (8)ugm — ng—l (s)m) ®ﬁg(l)k> w* € B&X 45

by the fact that vng(s)uZi — Bgg-1(s) € B by (8) and (2).
The last computation shows that

Be @ Pe (e, (15 )W) ) Addpox g, (w) 0 (9Bid )

= By 1 ® Pyt (q3®x% (t(s® 1)w*)> Adqpex 4, (W) o (@®id ). (10)

An application of Lemma 6.1 to identities (9) and (10) (recall (7)) shows that (¢, u) +
0 (sum operator, cf. [11, Lemma 3.1]) and 0+ ©(y,v) are unitarily equivalent in the
sense of Definition 3.1.

We leave the verification of the last claim, that ® respects direct sums, and so also
invertible elements go to invertible elements, to the reader by verbatim following the
corresponding proof in the last part of [11, Section 6]. [J

7. Equivariant KK -theory and C* -extensions

The aim of [11, Section 7] is the proof of the main result, the identification of
extension groups with Kasparov groups, see Theorems 7.1 and 7.2.
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Again, in this section we must replace the tensor products A ® %5 and so on by the
balanced tensor products A ®X g and so forth. For the discussion in [11, Section 7.2]
we remark that %G is equivalentto Cy(X) in KK. This was proved in [1, Proposition
5.14]. (Note that .# (L*(G)) is equivalent to .# (L*(G) @ Cy(X)) which is equivalent
to # (Co(X)) in KK9.)

We begin by restating the main results of Thomsen’s paper, slightly adapted to our
setting. These are, of course, also the main results of this note. Recall from [1 1, Section
4] that KKL(A,B) := KK%(A,B® B), where A and B are trivially graded and B® B is
obviously graded by the flip operator.

THEOREM 7.1. (Cf. Theorem 7.1 of [11]) Assume that G is a countable, E -con-
tinuous inverse semigroup. We may identify the KKCI; -groups with the extension groups
of the stabilized G-algebras. More precisely, for all ungraded separable G-algebras
A and B, where B is stable, we have

KKL(A,B) = Extg(A®X X5, BRX X5) = Exty(AX A5, BoX #g)
>~ Extg,(A,B) = KK¢(A,B).

The last two isomorphisms are a restatement of [1 1, Theorem 4.3] and [1 1, Theo-
rem 5.3]. Of course, the first two isomorphisms hold also for unstable B. The following
theorem just states that the second isomorphism is canonical.

THEOREM 7.2. (Cf. Theorem 7.2 of [11]) Assume that G is E -continuous. Let
@,y € Homg (A®* #G,0(B@X #g)) be invertible G-extensions. Then [@] = [y] in
Extg(A®X #5,BR% ;) if and only if ¢ and y are homotopic, that is, there is an
invertible extension ® € Homg (A % H#5,0(IB 2X ,%/G)) such that oo ® = ¢ and
Tio®d=1y.

LEMMA 7.3. [11, Lemma 7.3] holds verbatim. (Recall that an operator u €
A ((A, o)) is o-invariant if ogou =uo ot forall g€ G.)

Proof. In[11, Lemma 7.3] we have to alter two lines in its proof. We have to take

i, (5 g0 ) )= oo (75 5) )

B i (ames W) (757 0) = Buc it (ames ) (V70

and

instead of the corresponding identities without appearance of ﬁgg_/l@sz in Thom-
sen’s paper. Of course, instead of [1 1, Lemma 6.1] we have to apply Lemma 6.1 in the
proof. [

Most of the remainder of Section 7 of Thomsen’s paper after [1 1, Lemma 7.3] is
dedicated to the following lemma stated at the beginning of [1 1, Section 7.3].
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LEMMA 7.4. There exists a well-defined, injective map

K : Homg (A @X #6,0(B&* HG)) /] ~
—  Homg (A®" A6 &% A6, 0(B&* A% Hg)) ) ~

given by [y — [y&id x|, where ~ denotes the equivalence relation on Homg(A,Q(B))
whose quotient defines the set of invertible elements called Extg(A,B).

Proof. As in Thomsen [11] we remark that x is similarly defined like © of
Lemma 6.3 and so the proof that k is well-defined is similar as the corresponding
proof there by an application of Lemma 6.1.

After [11, Lemma 7.3] Thomsen considers the G-equivariant Hilbert space C &
L?(G) which in our case turns to the G-Hilbert Cy(X)-module Co(X)® L*(G) with
diagonal G-action 7, (4,y) :=g(A) @ g(y) forall g€ G,A € Co(X) and y € L*(G).
This induces a canonical G-action on the C*-algebra

HG = H(Co(X)™) @F A (Co(X) & L*(G)).

We proceed then as in Thomsen’s paper after [11, Lemma 7.3]. Thomsen considers a
similar map, k" say, which replaces the new copies of % in the image of k by ;"
and maps [y] to [y&.%;"]. A G-invariant projection e € % is chosen for which we
take e:=ey; ®ey € K, where )] = 61,0 1cy00) € H(Co(X)BL*(G)), H (Co(X)™)
denotes the corner projection. By Corollary 8.10 we may choose a G-invariant isome-
try V € #(B&X #5@X %) such that VV* = Ly (Bex #;) ®e. We can then literally
proceed as in Thomsen’s paper to show that k™ is injective. Also the remaining proof
where it is shown that x is injective goes verbatim through in our setting (with only
obvious adaption as taking A ®X % rather than A® .#;). A certain G-invariant isom-
etry W € 4 (A@X g ®% ;") with range projection 1 #(AcX HgeX A 1S then again
chosen by Corollary 8.10. [

8. Adaption of a paper of Mingo and Phillips

In this section we introduce the compatible (*(G)-space @(G) for an inverse
semigroup G which replaces the corresponding classical space for groups with its reg-
ular representation. This new notion is necessary for Zz(G) to become a G-Hilbert
Co(X)-module, and so particularly .Z(£%>(G)) a G-algebra. The classical £?(G)-space
would not become a G-Hilbert C-module. Moreover, we restate some central results
from the paper of Mingo and Phillips [9] for this new ¢2-space. All from this section is
actually taken from [1].

DEFINITION 8.1. Define X to be the locally compact Hausdorff space and Gelfand
spectrum of the commutative C* -algebra C*(E)) which is freely generated by the com-
muting, self-adjoint projections e € E . Thatis, Co(X) = C*(E) via l, < e forall e € E
(so we identify in our notation the projection e with its carrier set in X). We turn this
C* -algebra to a G-algebra under the G-action g(1,) :=1,,,1 forall g€ G and e € E.
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In the next few paragraphs (until Lemma 8.5) we shall identify elements ¢ € E
with its characteristic function 1, in Cy(X). Write Alg*(E) for the dense *-subalgebra
of Co(X) generated by the characteristic functions 1, for all e € E. Moreover, write
V; fi : X — C for the pointwise supremum of a family of functions f; : X — C. We
shall use the well-known order relation on G defined by g < & iff g = eh for some
eck.

DEFINITION 8.2. An inverse semigroup G is called E -continuous if the function
\/{e € E|e < g} € CX (in precise notation: \/{1, € Co(X)|e €E,e < g} € C¥)isa
continuous function in Co(X) forall g € G.

LEMMA 8.3. An inverse semigroup G is E-continuous if and only if for every
8 € G there exists a finite subset F C E suchthat \/{e € E|le < g} =\{e€ Fle<g}.

Proof. If \/[{e € E|e < g} = 1x € Cy(X) for a clopen subset K C X then K must
be compact. Hence K = [J{carrier(1,) C X|e € E, e < g} allows a finite subcover-
ing. O

DEFINITION 8.4. (Compatible L?(G)-space) Let G be an E -continuous inverse
semigroup. Write ¢ for the linear span of all functions ¢ : G — C (in the linear space
CO) defined by

Pg(t) = 1<y

(characteristic function) for all g,z € G. Endow ¢ with the G-action g(¢y,) := @, for
all g,h € G. Turn ¢ to an Alg*(E)-module by setting Ee :=e(&) for all £ € ¢ and
e € E. Define an Alg*(E)-valued inner product on ¢ by

(Qg, On) = \/{eEE|eg=eh7e<gg71hh71}. (11)

The norm completion of ¢ is a G-Hilbert Cyp(X)-module denoted by E/E(G)

We discuss the last definition. At first notice that (g, @) = gg~'\V{e € E|e =
ehg™'} (observe that e = ehg™! implies e < hg~'gh™!), so that by E -continuity
(@g, @) isin Cp(X) and actually evenin Alg*(E) by Lemma 8.3, and e € E in (11) can
be replaced by e € F for some finite subset F C E. The identities (@, @;) = (@p, @),
(@g:0nf) = (P, ) = (@g: ) [+ J((Pg,Pn)) = (i(@g),j(¢n)) forall g,h,j € G and
f € E are easy to check. We note that (11) is positive definite. Indeed, assume
(x,x) =0 for x =Y, i@, with nonzero A; € C and g; € G mutually different.
Choose g; such that no other g; satisfies gjg;l < gigi_l. Hence, (@g;,;;) = gjg;1
but (@g;,0q,) # & jgjfl for all combinations where i # k. By linear independence of the
projections E in Alg"(E) A; must be zero; contradiction. The last proof also shows
the following lemma.

LEMMA 8.5. The vectors (@g)gcc EE(G) are linearly independent.
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Every G-algebra (A, o) is endowed with a *-homomorphism 7 : Cy(X) = C*(E)
— ZA (A) given by m(e)(a) = a.(a) forall e € E and a € A. If G has a unit than A
is a Cy(X)-algebra in the sense of Kasparov [8, Definition 1.5]; but this extra property
is unimportant in this note.

DEFINITION 8.6. We define (cf. Kasparov [8, Definition 1.6]) the balanced tensor
product A ®* B of two G-algebras A and B as the quotient of A ®,,, B divided by the
relations e(a) @b =a®e(b) forall e € E,ac A and b € B.

DEFINITION 8.7. Let & be a G-Hilbert B-module. Then L?(G,&) := (2(G) @%
& is a G-Hilbert B-module, where ®* denotes the Cy(X)-balanced exterior tensor
product as defined by Le Gall [5, Definition 4.2] (or in this case equivalently, the inter-
nal tensor product ®c, (x))-

LEMMA 8.8. (Cf. Lemma 2.3 of [9]) If & and & are G-Hilbert A-modules which
are isomorphic as Hilbert A-modules then L*(G, &) and L*(G, &) are isomorphic as
G-Hilbert A-modules.

Proof. Let u € £(&,4) be a unitary operator. Note that gg~! € .Z(&;) com-
mutes with u for all g € G since u is A-linear and gg='(&)a = Egg~'(a) for all
& € &,a € A. Then it can be checked that V : L?(G, &) — L*(G, &) givenby V(. ®
&) == @, @ gug'(&) defines an isomorphism of G-Hilbert A-modules. We show that
V is G-equivariant. For 7 € G we have

h(V(pe®&)) = hog @ hgug™'h™'h(§)
= Qg @ hg(u)(h(5))
=V (h(py®8)),

because h~'h € Z(&;) commutes with gug™' € £(&1,6).
For the inner product note that (@g, @) = X cp f for a finite set F C E with
fe=fhand f <gg 'hh~! by Lemma 8.3, so that

(V(gg@8),V(gnam)) = Y, f@(feug ' f(§), fhun™" f(n))

feF
= (@&, qpm). O

COROLLARY 8.9. (Cf. Theorem 2.4 of [9]) Let & be a G-Hilbert A-module which
is countably generated and full as a Hilbert A-module. Then L*(G,&)> is isomorphic
to L*(G,A)” by a G-equivariant isomorphism of Hilbert A-modules.

Proof. Same proof as in Mingo and Phillips [9], Theorem 2.4, but by applying
Lemma 8.8 instead of [9, Lemma 2.3]. [
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COROLLARY 8.10. (Cf. Corollary 2.6 of [9]) Let (A, @) be a G-algebra and sup-

pose that A has a strictly positive element. If p € .#(A) is a full G-invariant pro-
Jection then p @1 45y ~ L)@ Ly(ng) (Murray—von Neumann equivalence) in
M (ARX ) by a G-invariant partial isometry.

Proof. The proof of the original goes verbatim through. The usage of the balanced

tensor product @ instead of ® is obligatory. [
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