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VARIATIONAL PRINCIPLES FOR SELF–ADJOINT OPERATOR

FUNCTIONS ARISING FROM SECOND–ORDER SYSTEMS

BIRGIT JACOB, MATTHIAS LANGER AND CARSTEN TRUNK

Abstract. Variational principles are proved for self-adjoint operator functions arising from vari-
ational evolution equations of the form

〈z̈(t),y〉+d[ż(t),y]+a0 [z(t),y] = 0.

Here a0 and d are densely defined, symmetric and positive sesquilinear forms on a Hilbert
space H . We associate with the variational evolution equation an equivalent Cauchy problem
corresponding to a block operator matrix A , the forms

t(λ)[x,y] := λ 2〈x,y〉+λd[x,y]+a0 [x,y],

where λ ∈ C and x,y are in the domain of the form a0 , and a corresponding operator fam-
ily T (λ) . Using form methods we define a generalized Rayleigh functional and characterize
the eigenvalues above the essential spectrum of A by a min-max and a max-min variational
principle. The obtained results are illustrated with a damped beam equation.
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