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VARIATIONAL PRINCIPLES FOR SELF-ADJOINT OPERATOR
FUNCTIONS ARISING FROM SECOND-ORDER SYSTEMS

BIRGIT JACOB, MATTHIAS LANGER AND CARSTEN TRUNK

Abstract. Variational principles are proved for self-adjoint operator functions arising from vari-
ational evolution equations of the form

(&(1),y) +0[2(1),y] + a0 [z(1),5] = 0.

Here ap and 0 are densely defined, symmetric and positive sesquilinear forms on a Hilbert
space H. We associate with the variational evolution equation an equivalent Cauchy problem
corresponding to a block operator matrix <7, the forms

() [x,y] i= A% (x,y) + A0[x,y] + a0 [x, )],

where A € C and x,y are in the domain of the form ag, and a corresponding operator fam-
ily T(2). Using form methods we define a generalized Rayleigh functional and characterize
the eigenvalues above the essential spectrum of </ by a min-max and a max-min variational
principle. The obtained results are illustrated with a damped beam equation.
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