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Abstract. In this paper matrices A are considered that have the property that A∗HA = H , where
H = H∗ is invertible. A canonical form is given for the pair of matrices (A,H) under transfor-
mations (A,H) → (S−1AS,S∗HS) , where S is invertible, in which the canonical form for the
A -matrix is the usual Jordan canonical form. The real case is studied as well.

1. Introduction and preliminaries

Let H = H∗ be an invertible Hermitian matrix. A matrix A is called H -unitary
if A∗HA = H . Note that for an invertible matrix S the matrix S−1AS is S∗HS -unitary.
The class of H -unitary matrices has been studied extensively, and canonical forms
for pairs (A,H) under the transformation (A,H) → (S−1AS,S∗HS) exist both for the
complex case (see [6]) and for the real case (see [13] and [16]).

Such canonical forms were developed from the canonical form of pairs (A,H)
where H = H∗ is invertible and A is H -selfadjoint using the idea of the Cayley trans-
form, see [6], [14], and by direct methods in [17, 18], see also the early treatments
in [15] and [8]. These canonical forms do not have the matrix A in Jordan canonical
form, and even then the canonical form for the matrix H may be fairly complicated.
There are different approaches as well, for special cases. In [1], besides a canonical
form for the general case, the diagonalizable case was treated. Starting from a classifi-
cation of indecomposable blocks for H -normal matrices for the case when H has only
one negative eigenvalue, a canonical form for H -unitary matrices for that special case
has been developed in [7]. In [12, 13] H -unitary matrices are treated as a subclass of
polynomially H -normal matrices. The class of H -unitary matrices is a special case of
H -expansive matrices: a matrix A is called H -expansive if A∗HA−H � 0. It is there-
fore possible to simplify the simple form for H -expansive matrices as described in [4]
even further to arrive at a canonical form for H -unitary matrices. Closest to the spirit
of our approach comes [11], although that paper does not result in a complete canonical
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form. However, several of the intermediate results we shall use in the treatment of the
real case are already available from [11].

We will consider both the real and complex cases. More precisely, we firstly dis-
cuss the real case, i.e., H = HT real symmetric and invertible and A real. Recall that
a real matrix A is called H -orthogonal if AT HA−H = 0. Clearly this is the real case
of H -unitary matrices, and we shall use the term H -unitary throughout the paper also
for the real case. We consider the complex case: H = H∗ complex Hermitian and in-
vertible and A complex in the final section of the paper, but start with an analysis of the
real case.

Obviously the H -unitary matrices form a subclass of the H -expansive matrices for
which AT HA−H � 0. It is the aim of this paper to show that the methods we developed
to arrive at a simple form for H -expansive matrices (see [4] and [10]) may be carried
further for H -unitary matrices. We shall do this all the way through to a canonical form
for H , with A already in Jordan canonical form. This novel approach leads to a more
transparent canonical form for the matrix pair (A,H) , with A in standard real Jordan
canonical form. The methods we use in the complex case are similar to the ones in the
real case.

We shall denote by Jn(λ ) the n×n Jordan block with eigenvalue λ . Since we are
interested in the real Jordan canonical form, we shall denote the real Jordan block with

eigenvalues α ± iβ by Jn(γ) , where γ =
[

α β
−β α

]
, so

Jn(γ) =

⎡
⎢⎢⎢⎢⎣

γ I2
. . .

. . .

. . . I2
γ

⎤
⎥⎥⎥⎥⎦ . (1)

Throughout, we shall also denote by toep(s1, · · · ,sn) the upper triangular Toeplitz ma-
trix with the numbers s1, · · · ,sn on the first row.

Let us first recall some general properties of H -orthogonal and H -unitary matri-
ces. If A is H -unitary and λ ∈ σ(A) then (λ )−1 is an eigenvalue of A as well. If we
are considering a real matrix A , eigenvalues come in four different kinds:

1. Quadruples λ , λ , 1
λ , (λ )−1 with λ /∈ R and |λ | �= 1.

2. Pairs λ , 1
λ with λ ∈ R , λ �= ±1.

3. Pairs λ = α ± iβ , α2 + β 2 = 1, β �= 0, so |λ | = 1.

4. λ = 1 or λ = −1.

Let us agree to denote the (sum of the) root spaces corresponding to such a quadru-
ple, resp. pairs, resp. eigenvalue by Rλ (A) . Then these spaces are mutually H -
orthogonal (see e.g. [2, 3, 6, 9] or [16]).

Thus we may restrict attention to matrices for which the spectrum is one of these
four kinds.
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It is proved in [13], see also [6, 16] and [8], that a pair (A,H) , where H = HT is
invertible and A is H -unitary may be decomposed as follows.

PROPOSITION 1.1. Let H = HT be invertible and let A be H -unitary. Then there
is an invertible matrix S such that

S−1AS = ⊕k
j=1Aj, STHS = ⊕k

j=1Hj, (2)

where in each pair (Aj,Hj) the matrix Hj = HT
j is invertible, and Aj is Hj -unitary,

and each pair is of one of the following five indecomposable forms

(i) (real non-unimodular eigenvalues)

A j = Jn j(λ )⊕ Jn j

(
1
λ

)
with λ �= ±1, λ ∈ R, Hj =

[
0 H12

HT
12 0

]
(3)

(ii) (complex non-unimodular eigenvalues)

A j = Jn j (γ)⊕ Jn j(γ
−1) (4)

where γ =
[

α β
−β α

]
with α2 + β 2 �= 1, β �= 0,

Hj =
[

0 H12

HT
12 0

]

(iii) (unimodular non-real eigenvalues)

A j = Jn j(γ) where γ =
[

α β
−β α

]
with α2 + β 2 = 1, β �= 0, (5)

(iv) (±1 , odd partial multiplicity)

A j = Jn j(±1), with n j odd, (6)

(v) (±1 , even partial multiplicities)

A j = Jn j(±1)⊕ Jn j(±1) with n j even Hj =
[

0 H12

HT
12 0

]
. (7)

The matrices Hj , and in particular the form of the matrices H12 in (3), (4), (7)
may be further reduced to a canonical form as is described in the main results of this
paper.

In particular, note that even sized blocks with eigenvalue one or minus one come
in pairs. This was proved in e.g. [12], see in particular Proposition 3.4 there and its
proof, and also in [1], Proposition 3.1.

As a consequence of this, all one needs to do to arrive at a canonical form for the
pair (A,H) is to derive canonical forms for each of these five indecomposable blocks.
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In this approach, we begin with case (5), continuing with cases (6) and (7), which will
be treated together in one section, after which we discuss case (3) and finally case (4).

Before stating the result on the general canonical form, let us introduce some spe-
cial matrices. Whenever n > 1 is an odd integer, we define the following matrices
Pn, P̂n, Pn(λ ), P̂n(γ) and Pn(γ) in Definitions 1,2 and 3, respectively.

DEFINITION 1. We define for odd n > 1 the n+1
2 × n−1

2 matrix Pn =
[
pi j
] n+1

2 , n−1
2

i=1, j=1
as follows:

pi j = 0 when i+ j � n−1
2

,

pi n−1
2 −i+1 = (−1)

n−1
2 −i+1 for i = 1, . . . ,

n+1
2

−1,

p n+1
2 j = (−1) j · 1

2
for j = 1, . . . ,

n−1
2

,

and all other entries are defined by pi j+1 = −(pi j + pi+1 j) .

Next, define P̂n =
[
p̂i j
] n+1

2 , n−1
2

i=1, j=1 by p̂i j = |pi j| . Observe that for the entries of P̂n

we have p̂i j+1 = p̂i j + p̂i+1 j .

To get a feeling for how such a matrix looks, we give P11 below:

P11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 0 1 − 9

2

0 0 −1 7
2 − 16

2

0 1 − 5
2

9
2 − 14

2

−1 3
2 − 4

2
5
2 − 6

2

− 1
2

1
2 − 1

2
1
2 − 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Also, P9 is the submatrix of P11 formed by deleting the last column and first row.
Observe that the recursion for the entries of Pn actually holds for all its entries,

provided the first column and last row are given, or the last column and first row. Also
note that the recursion is the same as the one for Pascal’s triangle, modulo a minus sign.
The recursion p̂i j+1 = p̂i j + p̂i+1 j for the entries in P̂n is exactly the same as the one
for Pascal’s triangle, but the entries in P̂n are not the numbers in the Pascal triangle
because the starting values are different: if we consider the entries in the first column
and last row of P̂n as the starting values, then the nonzero starting numbers are 1, 1

2
rather than 1,1 as would be the case for the Pascal triangle.

For the numbers pi j and p̂i j we can give somewhat more complicated but still

explicit formulas. With the understanding that

(
j
k

)
= 0 whenever k < 0 or j < k .

pi j =
(−1) j

2

((
j +1

n+1
2 − i

)
−
(

j−1
n+1
2 − i−2

))
,
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and also

p̂i j =
1
2

((
j +1

n+1
2 − i

)
−
(

j−1
n+1
2 − i−2

))
.

Indeed, it can be easily checked that these numbers satisfy the recursion and the initial
values given in Definition 1.

DEFINITION 2. For λ ∈ R \ {−1,1} and n > 1 an odd integer, we define the
n+1
2 × n−1

2 matrix Pn(λ ) as follows:

Pn(λ ) =
[
pi jλ

n+1
2 + j−i

] n+1
2 , n−1

2

i=1, j=1
(8)

where pi j are the entries of the matrix Pn introduced above.

For example, P5(λ ) is the 3×2 matrix given by

P5(λ ) =

⎡
⎣ 0 λ 4

−λ 2 3
2 λ 3

− 1
2λ 1

2 λ 2

⎤
⎦ .

For γ =
[

α β
−β α

]
we define the following matrices:

DEFINITION 3. Let n > 1 be an odd integer, then the n+1
2 × n−1

2 block matrices
P̂n(γ) and Pn(γ) with two by two matrix blocks are defined as:

P̂n(γ) =
[
pi j(γT )

n+1
2 + j−i

] n+1
2 , n−1

2

i=1, j=1
with α2 + β 2 = 1, β �= 0; (9)

Pn(γ) =
[
pi jK1γ n+1

2 + j−i
] n+1

2 , n−1
2

i=1, j=1
, with α2 + β 2 �= 1; (10)

where pi j are the entries of the matrix Pn introduced earlier, and K1 =
[
0 1
1 0

]
.

For example, P5(γ) is the 3×2 block matrix given by

P5(γ) =

⎡
⎣ 0 K1γ4

−K1γ2 3
2K1γ3

− 1
2K1γ 1

2K1γ2

⎤
⎦ .

We also introduce for odd n the n+1
2 × n+1

2 matrix Zn which has zeros everywhere,
except in the ( n+1

2 , n+1
2 )-entry, where it has a one. For instance, Z5 is given by

Z5 =

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦ .
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We shall also make use of the matrices Zn ⊗ I2 , which is the (n+ 1)× (n+ 1) matrix
which has zeros everywhere except in the two by two lower right block where it has

I2 , and Zn ⊗K1 , where K1 =
[
0 1
1 0

]
, i.e., the (n+1)× (n+1) matrix which has zeros

everywhere except in the two by two lower right block where it has K1 .
Whenever n > 1 is an even integer, we define analogously the following matrices

Qn, Q̂n, Qn(λ ), Q̂n(γ) and Qn(γ) in Definitions 4,5 and 6, respectively

DEFINITION 4. For even n the n
2 × n

2 matrix Qn =
[
qi j
] n

2 , n
2

i=1, j=1 is defined as fol-
lows:

qi j = 0 when i+ j � n
2
,

qi n
2−i+1 = (−1)

n
2−i for i = 1, . . . ,

n
2
,

q n
2 j = (−1) j−1 for j = 1, . . . ,

n
2
,

and all other entries are defined by qi j+1 = −(qi j +qi+1 j) .

Also define Q̂n =
[
q̂i j
] n

2 , n
2

i=1, j=1 by q̂i j = |qi j| . Observe that q̂i j+1 = q̂i j + q̂i+1 j .

Again, we give an example: Q10 is given by

Q10 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 −1 4
0 0 1 −3 6
0 −1 2 −3 4
1 −1 1 −1 1

⎤
⎥⎥⎥⎥⎦ .

Also, Q8 is formed from this by deleting the first row and last column.
Note that the numbers involved, apart from a minus sign, are exactly the numbers

from Pascal’s triangle, so in this case, with n even, we can give a precise formula: when
i+ j � n

2 +1 we have

qi j = (−1) j−1
(

j−1
n
2 − i

)
,

and also

q̂i j =
(

j−1
n
2 − i

)
.

DEFINITION 5. For λ ∈ R \ {−1,1} and n > 1 an even integer, then the n
2 × n

2
matrix Qn(λ ) is defined as follows:

Qn(λ ) =
[
qi jλ

n
2 + j−i−1

] n
2 , n

2
i=1, j=1

(11)

where qi j are the entries of the matrix Qn introduced earlier.

For γ =
[

α β
−β α

]
we define the following matrices:
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DEFINITION 6. Let n > 1 be an even integer, then the n
2 × n

2 block matrix Q̂n(γ)
is defined as follows:

Q̂n(γ) =
[
qi jH0(γT )

n
2+ j−i

] n
2 , n

2
i=1, j=1

with α2 + β 2 = 1, β �= 0; (12)

and the n
2 × n

2 block matrix Qn(γ) is defined as:

Qn(γ) =
[
qi jK1γ

n
2 + j−i−1

] n
2 , n

2
i=1, j=1

with α2 + β 2 �= 1; (13)

where qi j are the entries of the matrix Qn introduced earlier, H0 =
[

0 1
−1 0

]
and K1 =[

0 1
1 0

]
.

With all these definitions in hand we are now ready to state the main theorem of the
paper, giving a canonical form for a pair of real matrices (A,H) , where A is H -unitary,
with A in real Jordan canonical form.

THEOREM 1.1. Let A be H -unitary, with both A and H real. Then the pair
(A,H) can be decomposed as follows. There is an invertible real matrix S such that

S−1AS = ⊕p
l=1Al, STHS = ⊕p

l=1Hl,

where each pair (Al,Hl) is of one of the following forms for some n depending on l

(i) σ(Al) = {1} and the pair (Al,Hl) has one of the following two forms:

Case 1

(
Jn(1),ε

[
Zn Pn

PT
n 0

])
with n odd, and ε = ±1 .

Case 2

⎛
⎜⎜⎝Jn(1)⊕ Jn(1),

⎡
⎢⎢⎣

0 0 0 Qn

0 0 −QT
n 0

0 −Qn 0 0
QT

n 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ with n even.

(ii) σ(Al) = {−1} and the pair (Al,Hl) has one of the following two forms:

Case 1

(
Jn(−1),ε

[
Zn Pn(−1)

Pn(−1)T 0

])
with n odd, and ε = ±1 .

Case 2

⎛
⎜⎜⎝Jn(−1)⊕ Jn(−1),

⎡
⎢⎢⎣

0 0 0 Qn(−1)
0 0 −Qn(−1)T 0
0 −Qn(−1) 0 0

Qn(−1)T 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

with n even.

(iii) σ(Al) = {α ± iβ} with α2 + β 2 = 1 and β �= 0 , and the pair (Al,Hl) has one

of the following two forms with γ =
[

α β
−β α

]
:
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Case 1

(
Jn(γ),ε

[
Zn ⊗ I2 P̂n(γ)
P̂n(γ)T 0

])
with n odd, and ε = ±1 .

Case 2

(
Jn(γ),ε

[
0 Q̂n(γ)

Q̂n(γ)T 0

])
with n even, and ε = ±1 .

(iv) σ(Al) = {λ , 1
λ } with λ ∈ R\ {−1,1} and the pair (Al ,Hl) is of the form(

Jn(λ )⊕ Jn( 1
λ ),

[
0 H12

HT
12 0

])
, where H12 is of one of the following two forms,

depending on whether n is odd or even:

Case 1 n is odd: H12 =
[

Zn Pn(λ )
Pn( 1

λ )T 0

]
.

Case 2 n is even: H12 =
[

0 Qn(λ )
− 1

λ 2 Qn( 1
λ )T 0

]
.

(v) σ(Al)= {α± iβ ,(α± iβ )−1} with α2 +β 2 �= 1 and β �= 0 , and the pair (Al,Hl)

is of the form

(
Jn(γ)⊕ Jn(γ−1),

[
0 H12

HT
12 0

])
, where H12 is of one of the follow-

ing two forms, depending on whether n is odd or even:

Case 1 n is odd: H12 =
[

Zn ⊗K1 Pn(γ)
Pn(γ−1)T 0

]
.

Case 2 n is even: H12 =
[

0 Qn(γ)
−γ−2Qn(γ−1)T 0

]
.

Note that the columns of the matrix S in the theorem form a special real Jordan
basis for A .

The theorem should be compared with the canonical form obtained in [13], in
particular with Theorem 5.5 there.

The proof of the theorem will be given in the next sections. In Section 2 the case
of part (iii) is treated, in Section 3 parts (i) and (ii) are proved, in Section 4 part (iv) is
dealt with, and finally in Section 5 part (v) is proved.

The final section of the paper, Section 6, deals with complex H -unitary matrices,
i.e., the case where H = H∗ is an invertible Hermitian matrix and A satisfies A∗HA =
H . A canonical form for this case, similar to the one in Theorem 1.1 is presented in
Theorem 6.1.

2. The case of non-real eigenvalues on the unit circle

In the construction of the simple form for the H -expansive case a number of lem-
mas were stated and proved and the lemmas in [10] and [4] are also applicable in the
H -unitary case. For the convenience of the reader, we state the lemmas without proofs.
The proofs can be found in Section 2 of [4] (see also Section 3.2 in [10]).
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2.1. Preliminary lemmas

For a matrix X , we usually use the notation Xi j to denote the (i, j)-th scalar entry.
We denote a block matrix X by X = (Xi, j) , where Xi, j is the (i, j)-th block entry of X .

Let A be H -expansive and assume that A is in real Jordan canonical form (e.g., see
[6], Section A2 and [19], Chapter 6). Furthermore, let λ = α ± iβ be a pair of complex
conjugate eigenvalues of A with |λ | = 1 (i.e. α2 + β 2 = 1) and assume β �= 0. We
therefore look at the case where the eigenvalues lie on the unit circle, but are not ±1.

With this notation we have the following lemmas which will be used in the deriva-
tion of the canonical form.

LEMMA 2.1. Let γ =
[

α β
−β α

]
be such that β �= 0 and α2 + β 2 = 1 . If

H =
[

h11 h12

h12 h22

]

and γT Hγ −H � 0 , then γT Hγ −H = 0 and H = h11I.

The following notation is used in the sequel:

E = {aI +bH0 |a,b ∈ R}, H0 =
[

0 1
−1 0

]
.

LEMMA 2.2. If K,L ∈ E then:

KL = LK (14)

KKT = KT K = (k2
11 + k2

12)I. (15)

LEMMA 2.3. Let γ =
[

α β
−β α

]
be such that β �= 0 and α2 + β 2 = 1 . If

Y =
[

y11 y12

y21 y22

]

is any non-symmetric real matrix with γTYγ −Y = 0 , then Y ∈ E . Conversely, if Y ∈ E
then γTYγ −Y = 0 .

For convenience we introduce K0 =
[
1 0
0 −1

]
and K1 =

[
0 1
1 0

]
.

LEMMA 2.4. Let γ be defined as before, let X , Y be any 2×2 real matrices not
necessarily symmetric and suppose that γT X +γTY γ−Y = 0 . Then X = x11K0 +x12K1 .
Furthermore if X = x11I + x12H0 , then it follows that X = 0 and γTYγ −Y = 0 and
thus Y ∈ E .
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LEMMA 2.5. Let γ =
[

α β
−β α

]
be such that α2 + β 2 = 1 , and let X , Y and W

be of the form aI +bH0 and let Z be any 2×2 real matrix such that

W + γTY +Xγ + γTZγ −Z = 0. (16)

Put Ψ = −γ2 . Then,

X = ΨTY − γTW, Xγ + γTY = −W, γT Zγ −Z = 0 (17)

and Z ∈ E .

Setting W = 0 in Lemma 2.5 yields the following corollary.

COROLLARY 2.1. Let γ =
[

α β
−β α

]
be such that α2 + β 2 = 1 and X = x11I +

x12H0 , Y = y11I + y12H0 and let Z be any 2×2 real matrix, satisfying

Xγ + γTY + γTZγ −Z = 0. (18)

Put Ψ =−γ2 . Then X = ΨTY and Y = ΨX . Furthermore, Xγ +γTY = 0 and γT Zγ −
Z = 0 , hence Z ∈ E . In particular, if Z is symmetric, then Z = cI for some constant c.

Observe that an H -unitary matrix A is in particular also H -expansive. Recall that
in order to derive a canonical form for H -unitary matrices we only need to consider
the indecomposable blocks. In this section we are concerned with the case where A
consist of one Jordan block with non-real eigenvalues α ± iβ on the unit circle, i.e.,

with γ =
[

α β
−β α

]
, where α2 + β 2 = 1 and β �= 0, and

A =

⎡
⎢⎢⎢⎢⎣

γ I2
. . .

. . .

. . . I2
γ

⎤
⎥⎥⎥⎥⎦ . (19)

Furthermore, let H be denoted by

H =
[
Hi, j

]n
i, j=1 (20)

where each Hi, j is a 2× 2 matrix. Then the simple form obtained for the matrix H
in the H -expansive case can now be simplified even further. From the H -expansive
case we have, for example when n = 5, that our matrix H has the following form (see
Section 3.1.1 in [10]; also [4]):

H =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 c3(ΨT )2

0 0 0 c3ΨT ∗
0 0 c3I ∗ ∗
0 c3Ψ ∗ ∗ ∗

c3Ψ2 ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎦ (21)
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However, using Lemma 2.1, Lemma 2.3, Lemma 2.4, and Corollary 2.1 the entries
denoted by ∗ can now be determined in the H -unitary case to obtain a canonical form
for H .

2.2. On the structure of H -unitary matrices: results that hold for any Jordan
basis

The following relations for the block entries in the matrix H in (20) can be derived
from Lemma 2.1, Lemma 2.3, Lemma 2.4, and Corollary 2.1, namely

Hi, j = ai jI +bi jH0, ai j,bi j ∈ R, (22)

Hi, j+1 = ΨT Hi+1, j − γTHi, j (23)

and
Hi,i = ciI, (24)

where ci = (H[ n+1
2 ],[ n+1

2 ])ii and i �
[

n+1
2

]
or j �

[
n+1
2

]
. Moreover, it was shown in [4]

and [10] that Lemmas 2.1, 2.3, 2.4, and Corollary 2.1 imply that Hi, j = 0 for i+ j � n .
The following lemma gives a useful expression for the (i, j)-th entry of AT HA−

H , which is needed in the sequel.

LEMMA 2.6. For an H -unitary matrix A, with A as in (19), and H as in (20) we
have for i > 1, j > 1

0 = (AT HA−H)i, j =
[
0 · · · 0 I γT 0 · · · 0

]
H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
I
γ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−Hi, j

= Hi−1, j−1 +Hi−1, jγ + γTHi, j−1 + γTHi, jγ −Hi, j. (25)

We will show by induction that the relations (22),(23) and (24) hold for all i, j =
1, . . . ,n in the H -unitary case. Relation (24) follows from (22) and the fact that H must
be symmetric. Assume (22) holds for i+ j � k (and k < n ). We now show that (22)
also holds for i+ j � k+1. By Lemma 2.6, replacing j by j +1, we have

0 = (AT HA−H)i, j+1 = Hi−1, j +Hi−1, j+1γ + γT Hi, j + γTHi, j+1γ −Hi, j+1.

From our induction hypothesis we know that Hi−1, j,Hi−1, j+1 and Hi, j are in E , i.e.,
they are of the form aI +bH0 , for some a and b . Hence we have from Lemma 2.5 that

γT Hi, j+1γ −Hi, j+1 = 0.



750 GROENEWALD, JANSE VAN RENSBURG AND RAN

Thus, from Lemma 2.3 we have Hi, j+1 ∈ E , i.e.,

Hi, j+1 = ai, j+1I +bi, j+1H0.

Now consider (23). This relation holds for all blocks, but it is only of interest for
the nonzero block entries. Assume (23) holds for i + j � k . We now show that (23)
also holds for i+ j � k + 1. Again by Lemma 2.6, replacing i with i+ 1 and j with
j +1, we have

0 = (AT HA−H)i+1, j+1 = Hi, j +Hi, j+1γ + γTHi+1, j + γTHi+1, j+1γ −Hi+1, j+1.

Since (22) holds, (we have that Hi, j, Hi, j+1 and Hi+1, j are in E ) we immediately have
by Lemma 2.5 that

Hi, j+1 = ΨT Hi+1, j − γTHi, j.

Hence (23) holds for i+ j � k+1. This establishes (22), (23) and (24) for all i and j .
The blocks Hi,i+1 have a particular structure because of (23). Indeed, for those

blocks we have Hi,i+1 = ΨT Hi+1,i− γT Hi,i . Using (24) and the fact that Hi+1,i = HT
i,i+1

we see that Hi,i+1 satisfies

Hi,i+1 = ΨT HT
i,i+1− γT ci.

This leads us to consider matrices that satisfy this equation.

LEMMA 2.7. If H = aI + bH0 satisfies H = ΨT HT − γT c for some c ∈ R then
b = c

2β + α
β a. In particular, in that case

H = aI +
(

c
2β

+
α
β

a

)
H0 =

(
c

2β
+

a
β

γT
)

H0.

Proof. Insert H = aI + bH0 in H = ΨT HT − γT c , using ΨT = −(γT )2 = (β 2 −
α2)I +2αβH0, γT = αI−βH0 , to see that

aI +bH0 = ((β 2 −α2)I +2αβH0)(aI−bH0)− (αI−βH0)c
= ((β 2 −α2)a+2αβb−αc)I+(−(β 2−α2)b+2αβa+ βc)H0,

where we also used H2
0 = −I . It follows that

a = (β 2−α2)a+2αβb−αc

b = −(β 2−α2)b+2αβa+ βc.

Now recall α2 + β 2 = 1, so

(α2 + β 2)a = (β 2 −α2)a+2αβb−αc

(α2 + β 2)b = −(β 2−α2)b+2αβa+ βc.
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This is equivalent to

2α2a−2αβb = −αc

2β 2b−2αβa = βc.

Dividing the first equation by α and the second by −β , we see 2αa−2βb = −c from
both equations. This gives b = c

2β + α
β a as claimed.

Next, the first form of H now follows directly. To see the second, consider
βHH0 = aβH0− ( 1

2c+aα)I = −a(αI−βH0)− 1
2cI = −aγT − 1

2cI . Thus,

H =
a
β

γT H0 +
c

2β
H0

as desired. �

When n is even, we have Hn
2 , n

2
= 0, and so from (24) c n

2
= 0. Hence by (23)

Hn
2 , n

2 +1 = ΨT HT
n
2 , n

2 +1 − c n
2
γT = ΨT HT

n
2 , n

2 +1 . Thus we have, applying Lemma 2.7 with
c n

2
= 0 that

Hn
2 , n

2 +1 =
[

β α
−α β

]
d, (26)

for some real number d = a
β .

Since every Hi, j is determined by blocks in the antidiagonal on which it is, and on
the antidiagonal above it by (23), we see that from (24) and (26) the matrix H is com-
pletely determined by at most n real parameters, one for each non-zero antidiagonal.

We now rephrase Lemma 2.7 in the following manner.

LEMMA 2.8. Let γ =
[

α β
−β α

]
, and let X be of the form aI +bH0 such that

γX + γT XT + cI = 0, (27)

for any real c, then c = 2(bβ −aα) .

Proof. Let γ and X be as in the lemma. A straightforward calculation yields

γX + γTXT =
[
2(aα −bβ ) 0

0 2(aα −bβ )

]
.

Hence, c = 2(bβ −aα) . �

2.3. Towards a canonical form

Up to this point we have considered the form that H has for any real Jordan basis
for A . However, by choosing an appropriate Jordan basis it is possible to achieve a
canonical form for H .
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First we give a more general form for the new Jordan basis to be constructed.

Again we consider the case of one Jordan block A = Jn(γ) , where γ =
[

α β
−β α

]
with

α2 +β 2 = 1, β �= 0. Let x1,x2, . . . ,x2n−1,x2n be the basis. We denote by X1,X2, . . . ,Xn

the 2n×2 matrices with columns x1,x2; x3,x4; . . . ; x2n−1,x2n , respectively. Note that

AX1 = X1γ, AXj = Xjγ +Xj−1 for j = 2, . . . ,n.

Construct a new Jordan basis as follows: Let

Z1 = X1h1, Z2 = X2h1 +X1h2, Z3 = X3h1 +X2h2 +X1h3, etc,

where the h j ’s are 2×2 matrices of the form aI +bH0 . So, in general

Zj =
j

∑
i=1

Xih j−i+1.

From the specific form of h j we have that γh j = h jγ (see Lemma 2.2). Thus indeed
for j = 2, . . . ,n we have

AZj = AXjh1 +
j−1

∑
i=1

AXih j−i+1

= Xjγh1 +Xj−1h1 +
j−1

∑
i=2

(Xiγ +Xi−1)h j−i+1 +X1γh j−1+1

= Xjh1γ +Xj−1h1 +
j−1

∑
i=1

Xih j−i+1γ +
j−1

∑
i=2

Xi−1h j−i+1

= (Xjh1 +
j−1

∑
i=1

Xih j−i+1)γ +(Xj−1h1 +
j−2

∑
i=1

Xih j−i)

= Zjγ +Zj−1.

With respect to this new Jordan basis we have a new form for H . Indeed, let S =
[Z1 Z2 . . . Zn] be the 2n× 2n matrix formed with the Zi ’s as block columns. Then
S−1AS = A and we compute STHS = [(ST HS)i, j]ni, j=1 . The (i, j)-th entry then is

(STHS)i, j = ZT
i HZj

=

(
i

∑
k=1

Xkhi−k+1

)T

H

(
j

∑
l=1

Xlh j−l+1

)

=
i

∑
k=1

j

∑
l=1

hT
i−k+1Hk,lh j−l+1. (28)

Using these relations it may be possible to choose the matrices h j , for j = 1, . . . ,n−
1, such that STHS is brought into a canonical form.
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Observe that the relation of the new basis to the old one is well-understood: Z =
X · toep(h1,h2, · · · ,hn) , i.e., the basis transformation is achieved by multiplying with a
2×2 block Toeplitz matrix.

We now state two more new lemmas that are of importance in the derivation of the
canonical form of H .

LEMMA 2.9. If H ∈ E and the number c is such that diag(Hγ) = − 1
2cI , and

H = ΨT HT − γT c, then there exists a matrix h ∈ E so that

H +(h+hTΨT ) = −1
2
cγT

and any such h is given by

h = −1
2
H +dγT

for any d ∈ R .

Proof. Consider, for h ∈ E the expression

Hγ +(h+hTΨT )γ = Hγ +(hγ −hTγT ) = Hγ +(hγ − γThT ).

Now hγ − γT hT is skew symmetric, so the diagonal of the matrix above is the same as
the diagonal of Hγ , which is − 1

2cI .
It remains to show that the h may be chosen so that the off-diagonal of Hγ +

(hγ − γT hT ) is zero. Setting H = aI + bH0 and h = a1I + b1H0 then the (1,2)-entry
of Hγ +(hγ − γThT ) becomes

aβ +bα +2(b1α +a1β ) = α(b+2b1)+ β (a+2a1). (29)

Obviously, one choice of a1,b1 that makes this zero is a1 = − 1
2a and b1 = − 1

2b so
that h = − 1

2H . Since (29) is a linear equation in two unknowns, there is one degree of
freedom. One checks that setting h = − 1

2H +dγT gives all solutions. �

LEMMA 2.10. Given a diagonal matrix c1I and a number 0 �= c2 ∈ R , then there
exists an h ∈ E such that

c1I + c2(Ψh+hTΨT ) = 0. (30)

Proof. Let h = aI +bH0 , then

Ψh+hTΨT = 2((β 2−α2)a+2αβb)I.

In order to obtain equation (30), we have to choose a, b such that

c1 +2c2((β 2 −α2)a+2αβb) = 0.
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We may take either a = 0, then b = − c1
4c2αβ providing that αβ �= 0. Or, if b = 0 then

a = − c1
2c2(β 2−α2) if β �= ±α . Obviously, still one degree of freedom remains in the

matrix h . �

From here on we distinguish between the cases where n is odd or n is even. We
start with the case that n is odd.

Proof of Case 1, part (iii) of Theorem 1.1. An important observation to be made
is that from equation (23) it follows that in order to prove part (iii) in Theorem 1.1 it
suffices to show that, by an appropriate change of basis,we can make the block Hn+1

2 , n+1
2

equal to εI2 , make the blocks Hj, j with j > n+1
2 equal to zero, make the block Hn+1

2 , n+3
2

equal to −ε 1
2 γT , and finally, make the blocks Hj+1, j with j > n+1

2 also equal to zero.
Indeed, once this is accomplished, all other entries can be deduced using (23).

Recall that we already know that the central 2×2 block entry Hn+1
2 , n+1

2
is a mul-

tiple of the identity. Now take S1 = toep(h1,0, · · · ,0) , where h1 ∈ E is invertible, and
put H(1) = ST

1 HS1 . Then by (28) we have that

H(1)
n+1
2 , n+1

2
= hT

1 Hn+1
2 , n+1

2
h1 = h1h

T
1 Hn+1

2 , n+1
2

.

So we see that we can scale the entry in the
(

n+1
2 , n+1

2

)
-position to εI2 , where ε =±1.

Once that is done, we can pull out ε in front of the whole matrix H , and this way

we may assume without loss of generality that H(1)
n+1
2 , n+1

2
= I2 . From now on we shall

assume that this is the case.
Next, we shall construct in a sequential way matrices

S j = toep(I2,0, · · · ,0,h j,0, · · ·0)

with a matrix h j ∈ E on the j th diagonal such that H( j) = ST
j H

( j−1)S j has the form

as described in part (iii) of Theorem 1.1 at least for the block entries H( j)
k,l with k+ l �

n+ j .
First we consider the block entry in the position

(
n+1
2 , n+3

2

)
. By (23) we know

H(1)
n+1
2 , n+3

2
= ΨT H(1)

n+3
2 , n+1

2
− γTH(1)

n+1
2 , n+1

2
.

Using H(1)
n+3
2 , n+1

2
= (H(1)

n+1
2 , n+3

2
)T and H(1)

n+1
2 , n+1

2
= I2 , this becomes

H(1)
n+1
2 , n+3

2
= ΨT (H(1)

n+1
2 , n+3

2
)T − γT .

By Lemma 2.7 it follows that H(1)
n+1
2 , n+3

2
= ( 1

2β + a
β γT )H0 for some real number a . In

particular

H(1)
n+1
2 , n+3

2
γ =

1
2β

H0γ +
a
β

H0,
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so diag(H(1)
n+1
2 , n+3

2
γ) = − 1

2 I2 . Hence H(1)
n+1
2 , n+3

2
satisfies all conditions of Lemma 2.9.

By (28), with S2 = toep(I2,h2,0, · · · ,0) we have for H(2) = ST
2 H(1)S2

H(2)
n+1
2 , n+3

2
= h2 +H(1)

n+1
2 , n+3

2
+hT

2 H(1)
n−1
2 , n+3

2
.

Using (23) again to determine H(1)
n−1
2 , n+3

2
= ΨT , we have that

H(2)
n+1
2 , n+3

2
= h2 +H(1)

n+1
2 , n+3

2
+hT

2 ΨT .

By Lemma 2.9 (with c = 1), there is a choice of h2 such that

H(2)
n+1
2 , n+3

2
= −1

2
γT .

One also easily checks that for i+ j � n+1 the entries H(2)
i, j = H(1)

i, j .

Next, we turn our attention to the block entry in the
(

n+3
2 , n+3

2

)
position. Consider

S3 = toep(I2,0,h3,0 · · · ,0) and put H(3) = ST
3 H(2)S3 . By (28) we have

H(3)
n+3
2 , n+3

2
= H(2)

n+3
2 , n+3

2
+H(2)

n+3
2 , n−1

2
h3 +hT

3 H(2)
n−1
2 , n+3

2

= H(2)
n+3
2 , n+3

2
+H(2)

n+3
2 , n−1

2
h3 +hT

3 (H(2)
n+3
2 , n−1

2
)T .

Now H(2)
n+3
2 , n−1

2
= H(1)

n+3
2 , n−1

2
= Ψ , so

H(3)
n+3
2 , n+3

2
= H(2)

n+3
2 , n+3

2
+ Ψh3 +hT

3 ΨT .

Since H(2)
n+3
2 , n+3

2
is a symmetric matrix in E , it is a multiple of I2 , say c1I2 for some

real number c1 . Hence, applying Lemma 2.10, we see that h3 can be chosen so that

H(3)
n+3
2 , n+3

2
= 0. In addition, by (28) H(3)

i, j = H(2)
i, j for i+ j � n+2.

The next step is to consider the block entry in the position
(

n+5
2 , n+3

2

)
. Put

S4 = toep(I2,0,0,h4,0, · · · ,0),

and H(4) = ST
4 H(3)S4 . Then by (28) we have

H(4)
n+5
2 , n+3

2
= H(3)

n+5
2 , n+3

2
+H(3)

n+5
2 , n−3

2
h4 +hT

4 H(3)
n−1
2 , n+3

2
.

We have already established that H(3)
n−1
2 , n+3

2
= ΨT , and by (23) we have

ΨT H(3)
n+5
2 , n−3

2
− γTH(3)

n+3
2 , n−3

2
= H(3)

n+3
2 , n−1

2
= Ψ.
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Since H(3)
n+3
2 , n−3

2
= 0, this gives H(3)

n+5
2 , n−3

2
= Ψ2 . Hence

H(4)
n+5
2 , n+3

2
= H(3)

n+5
2 , n+3

2
+ Ψ2h4 +hT

4 ΨT .

Equivalently,

H(4)
n+3
2 , n+5

2
= H(3)

n+3
2 , n+5

2
+ Ψh4 +hT

4 (ΨT )2. (31)

In addition, we know by (23) that

(H(3)
n+5
2 , n+3

2
)T = H(3)

n+3
2 , n+5

2
= ΨT H(3)

n+5
2 , n+3

2
− γTH(3)

n+3
2 , n+3

2
,

and since H(3)
n+3
2 , n+3

2
= 0, this gives (H(3)

n+5
2 , n+3

2
)T = ΨT H(3)

n+5
2 , n+3

2
. So,

H(3)
n+3
2 , n+5

2
γ = −γT H(3)

n+5
2 , n+3

2
= −(H(3)

n+3
2 , n+5

2
γ)T ,

which shows that the diagonal of H(3)
n+3
2 , n+5

2
γ is zero. So, H(3)

n+3
2 , n+5

2
satisfies the condi-

tions of Lemma 2.9 with c = 0. Hence, there is an h ∈ E such that

H(3)
n+3
2 , n+5

2
+h+hΨT = 0.

Comparing with (31) we see that taking Ψh4 = h , i.e., h4 = ΨT h , yields H(4)
n+3
2 , n+5

2
= 0

as desired. Also note that for i+ j � n+3 we have H(4)
i, j = H(3)

i, j .
Finally, we provide an induction argument to finish the proof for the case where

n is odd. Suppose S1,S2, . . . ,Sk have been chosen so that H(k) has all the entries H(k)
i, j

with i+ j � n+ k−1 as in part (iii), Case 1, of Theorem 1.1. Put

Sk+1 = toep(I2,0, · · · ,0,hk+1,0, · · · ,0),

and H(k+1) = ST
k+1H

(k)Sk+1 . Then by (28) we have

H(k+1)
i, j = (ST

k+1H
(k)S+1)i, j

= H(k)
i, j +H(k)

i, j−khk+1 +hT
k+1H

(k)
i−k, j +hT

k+1H
(k)
i−k, j−khk+1. (32)

We claim that H(k+1)
i, j = H(k)

i, j for i+ j � n+k . Indeed, if i+ j � n+k , then i+ j−k � n

and so H(k)
i, j−k = 0, H(k)

i−k, j = 0 and H(k)
i−k, j−k = 0. Now consider i + j = n + k + 1.

Then still H(k)
i−k, j−k = 0. Also i+ j− k = n+ 1, so the entries H(k)

i, j−k = H(k)
i,n−i+1 , and

H(k)
i−k, j = H(k)

i−k,n+k−i+1 are on the main anti-diagonal. By the argument above they are

equal to the corresponding entries of H(1) , and so they are equal to the corresponding
entries in the form of part (iii), Case 1 of Theorem 1.1. From this, one has that

H(k)
i,n−i+1 = (ΨT )

n+1
2 −i

H(k)
i−k,n+k−i+1 = (ΨT )

n+1
2 −i+k.
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Then (32) becomes

H(k+1)
i,n+k+1−i = H(k)

i,n+k+1−i +(ΨT )
n+1
2 −ihk+1 +hT

k+1(Ψ
T )

n+1
2 −i+k. (33)

Now we distinguish between k even and k odd. When k is odd we are interested
in the entry with n+ k+1− i = i+1, i.e., the entry just above the main diagonal. For
this entry we have i = n+k

2 , so the equation above becomes

H(k+1)
n+k
2 , n+k+2

2
= H(k)

n+k
2 , n+k+2

2
+(ΨT )

1−k
2 hk+1 +hT

k+1(Ψ
T )

k+1
2

= H(k)
n+k
2 , n+k+2

2
+ Ψ

k−1
2 hk+1 +hT

k+1(Ψ
T )

k−1
2 ΨT .

In addition, because H(k)
n+k
2 , n+k

2
= 0 by the induction hypothesis, we have that the diag-

onal of H(k)
n+k
2 , n+k+2

2
γ is zero. Then we can apply Lemma 2.9 with c = 0 to ensure the

existence of an h such that

H(k)
n+k
2 , n+k+2

2
+h+hTΨT = 0.

Taking h = Ψ k−1
2 hk+1 , we arrive at the desired zero entry.

When k is even we are interested in the entry with n+ k+1− i = i , i.e., the entry
on the main diagonal. For this entry we have i = n+k+1

2 , so the equation (33) becomes

H(k+1)
n+k+1

2 , n+k+1
2

= H(k)
n+k+1

2 , n+k+1
2

+(ΨT )
−k
2 hk+1 +hT

k+1(Ψ
T )

k
2

= H(k)
n+k+1

2 , n+k+1
2

+ Ψ
k
2 hk+1 +hT

k+1(Ψ
T )

k
2 .

Since H(k)
n+k+1

2 , n+k+1
2

is on the main diagonal, it is a symmetric matrix in E , and therefore

it is of the form c1I2 for some real number c1 . By Lemma 2.10 there is a matrix h such
that

H(k)
n+k+1

2 , n+k+1
2

+ Ψh+hTΨT = 0.

Now take hk+1 so that Ψ
k−2
2 hk+1 = h , i.e., hk+1 = (ΨT )

k−2
2 h , to obtain that for this

choice of hk+1 we have the desired H(k+1)
n+k+1

2 , n+k+1
2

= 0.

This proves part (iii), Case 1 in Theorem 1.1. �

Before turning to the proof in the case when n is even, we prove a lemma that will
be useful.

LEMMA 2.11. Given a diagonal matrix cI2 there is a matrix h ∈ E such that

cI +(γTh−hTγ)H0 = 0.
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Proof. Let h = aI +bH0 , then one computes

(γT h−hTγ)H0 = 2(βa−αb)I2.

Taking a = −β c
2 and b = α c

2 this becomes zero. �
Proof of Case 2, part (iii) of Theorem 1.1. For the case when n is even, it suffices

to prove that we can make the block-entry Hn
2 , n

2 +1 equal to εH0γT , make the blocks
Hj, j with j > n

2 equal to zero, and finally, make the blocks Hj+1, j with j > n
2 also

equal to zero. Indeed, again all other entries can then be deduced from (23).
The equation (23) relates the block entries Hn

2 , n
2 +1 and Hn

2 +1, n
2

= HT
n
2 , n

2 +1 :

Hn
2 , n

2 +1 = ΨT Hn
2 +1, n

2
− γTHn

2 , n
2

= ΨT Hn
2+1, n

2

because Hn
2 , n

2
= 0. In particular, multiplying by γ and using the commutativity of E ,

we obtain
γHn

2 , n
2+1 = −γT Hn

2 +1, n
2

= −(γHn
2 , n

2 +1)
T .

So, γHn
2 , n

2 +1 is skew-symmetric. It follows that γHn
2 , n

2+1 = cH0 for some real number
c , i.e.,

Hn
2 , n

2 +1 = cH0γT .

To achieve the form in Case 2 of part (iii) in the theorem for this entry we need to show
that it is possible to make c = ±1. This can be achieved as follows.

Put S1 = toep(h1,0 · · · ,0) , for some h1 in E and H(1) = ST
1 HS1 . Then H(1)

i, j =

h1hT
1 Hi, j . Taking h1 = 1√

|c| I we obtain H(1)
n
2 , n

2 +1 = εH0γT , with ε = ±1. Taking ε in

front of the matrix we may assume in the remainder of the proof that H(1)
n
2 , n

2 +1 = H0γT .

Next, we consider the entry of H(1) in the position ( n
2 + 1, n

2 + 1) . Since this is
on the main diagonal it is a multiple of the identity. Put S2 = toep(I2,h2,0, · · · ,0) and
H(2) = ST

2 H(1)S2 . Then by (28) we have

H(2)
i, j = H(1)

i, j +H(1)
i, j−1h2 +hT

2 H(1)
i−1, j +hT

2 H(1)
i−1, j−1h2.

As in the case when n is odd we see from this that H(2)
i, j = H(1)

i, j for i+ j � n+1, as in

this case H(1)
i−1, j = 0,H(1)

i, j−1 = 0 and H(1)
i−1, j−1 = 0. For i = j = n

2 +1 we obtain that

H(2)
n
2 +1, n

2 +1 = H(1)
n
2 +1, n

2 +1 +H(1)
n
2 +1, n

2
h2 +hT

2 H(1)
n
2 , n

2 +1

= H(1)
n
2 +1, n

2 +1 + γHT
0 h2 +hT

2 H0γT

= H(1)
n
2 +1, n

2 +1 +hT
2 γT H0− γh2H0

= H(1)
n
2 +1, n

2 +1 +(γThT
2 −h2γ)H0.

It is an easy check that (γT hT
2 − h2γ)H0 , being the product of two skew-symmetric

matrices in E is actually a diagonal matrix. Then by Lemma 2.11 it is possible to

choose h2 so that H(2)
n
2 +1, n

2 +1 = 0.
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Next, let us consider the block entry in the position ( n
2 +1, n

2 +2) . First, by (23)

H(2)
n
2 +1, n

2 +2 = ΨT H(2)
n
2 +2, n

2+1 − γTH(2)
n
2+1, n

2 +1 = ΨT H(2)
n
2 +2, n

2 +1.

Multiplying by γ to obtain

γH(2)
n
2 +1, n

2 +2 = −γT H(2)
n
2 +2, n

2 +1 = −(γH(2)
n
2 +1, n

2 +2)
T .

So, H(2)
n
2 +1, n

2 +2 = cH0γT for some real number c . Put S3 = toep(I2,0,h3,0, · · · ,0) and

H(3) = ST
3 H(2)S3 . Again by (28)

H(3)
i, j = H(2)

i, j +H(2)
i, j−2h3 +hT

3 H(2)
i−2, j +hT

3 H(2)
i−2, j−2h3.

It follows that for i+ j � n+2 we have H(3)
i, j = H(2)

i, j . Also,

H(3)
n
2 +1, n

2 +2 = H(2)
n
2 +1, n

2 +2 +H(2)
n
2 +1, n

2
h3 +hT

3 H(2)
n
2−1, n

2 +2.

Now H(2)
n
2 +1, n

2
= −H0γ , and by (23) we have

H(2)
n
2−1, n

2 +2 = ΨT H(2)
n
2 , n

2 +1 = H0γT ΨT = −H0(γ3)T .

So
H(3)

n
2 +1, n

2 +2 = H(2)
n
2 +1, n

2 +2−H0γh3 +hT
3 H0γT ΨT .

Now use the fact that H(2)
n
2 +1, n

2+2 = cH0γT to rewrite this as

H(3)
n
2 +1, n

2 +2 = cH0γT −H0γh3 +hT
3 H0γT ΨT = H0γT (cI + Ψh3 +hT

3 ΨT ).

Applying Lemma 2.10 we see that there exists an h3 ∈ E such that H(3)
n
2 +1, n

2 +2 = 0.

As in the case when n is odd, we now proceed with induction. Suppose S1,S2, . . . ,Sk

have been chosen so that H(k) has all the entries H(k)
i, j with i+ j � n+ k−1 as in part

(iii), Case 2, of Theorem 1.1. Put

Sk+1 = toep(I2,0, · · · ,0,hk+1,0, · · · ,0),

and H(k+1) = ST
k+1H

(k)Sk+1 . Then (32) holds again, and so H(k+1)
i, j = H(k)

i, j for i+ j �
n+k . Now consider i+ j = n+k+1. Then still H(k)

i−k, j−k = 0. Also i+ j−k= n+1, so

the entries H(k)
i, j−k = H(k)

i,n−i+1 , and H(k)
i−k, j = H(k)

i−k,n+k−i+1 are on the main anti-diagonal.

By the argument above they are equal to the corresponding entries of H(1) , and so they
are equal to the corresponding entries in the form of part (iii), Case 2 of Theorem 1.1.
As before, one has that

H(k)
i,n−i+1 = (−1)

n
2−iH0(γT )n+1−2i

H(k)
i−k,n+k−i+1 = (−1)

n
2−i+kH0(γT )n+1−2i+2k
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Then (32) becomes

H(k+1)
i,n+k+1−i = H(k)

i,n+k+1−i +(−1)
n
2−iH0(γT )n+1−2ihk+1

+hT
k+1(−1)

n
2−i+kH0(γT )n+1−2i+2k.

Now we distinguish between k even and k odd. For k even we are interested in
the off-diagonal block with i+ 1 = n+ k + 1− i , i.e., i = n+k

2 and the block entry is

H(k+1)
n+k
2 , n+k

2 +1
. For this entry (32) becomes

H(k+1)
n+k
2 , n+k

2 +1
= H(k)

n+k
2 , n+k

2 +1
+(−1)−

k
2 H0(γT )1−khk+1 +hT

k+1(−1)
k
2 H0(γT )k+1

= H(k)
n+k
2 , n+k

2 +1
+(−1)

k
2 (H0γk−1hk+1−hT

k+1(γ
T )k−1H0ΨT )

= H(k)
n+k
2 , n+k

2 +1
+(−1)

k
2 (H0γk−1hk+1 +(H0γk−1hk+1)T ΨT ).

Also, because of (23) applied to H(k)
n+k
2 , n+k

2 +1
one easily sees that H(k)

n+k
2 , n+k

2 +1
satis-

fies the conditions of Lemma 2.9. Applying that lemma there is an h ∈ E such that

H(k)
n+k
2 , n+k

2 +1
+(h+ hTΨT ) = 0. Now take hk+1 so that h = (−1)

k
2 H0γk−1hk+1 , which

is possible, to achieve H(k+1)
n+k
2 , n+k

2 +1
= 0 as desired.

When k is odd, we are interested in the diagonal block with i = n+ k+1− i , i.e.,
i = n+k+1

2 . For this entry (32) becomes

H(k+1)
n+k+1

2 , n+k+1
2

= H(k)
n+k+1

2 , n+k+1
2

+(−1)
−k−1

2 H0(γT )−khk+1 +hT
k+1(−1)

k−1
2 H0(γT )k

= H(k)
n+k+1

2 , n+k+1
2

+(−1)
−k−1

2 ((γkhk+1−hT
k+1(γ

T )k)H0.

Applying Lemma 2.11 we see that it is possible to choose hk+1 so that H(k+1)
n+k+1

2 , n+k+1
2

= 0

as desired. This concludes the proof of Case 2, part (iii) of Theorem 1.1. �

3. The case of eigenvalues ±1

We consider now the case where A is H -unitary and σ(A) ⊂ {±1} . As stated in
the introduction, the indecomposable blocks are the ones where either A is similar to
one Jordan block with odd size, or to a pair of Jordan blocks with equal even size.

Recall from the introduction the definition of the matrices Pn , Pn(−1) , Qn and
Qn(−1) .

THEOREM 3.1. (i) Let A be H -unitary and σ(A) = {1} . Then the pair (A,H)
can be decomposed as

S−1AS = ⊕p
l=1Al, STHS = ⊕p

l=1Hl,
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where the pair (Al,Hl) is of one of the following two forms for some n depending on l

Case 1

(
Jn(1),ε

[
Zn Pn

PT
n 0

])
with n odd, and ε = ±1 .

Case 2

⎛
⎜⎜⎝Jn(1)⊕ Jn(1),

⎡
⎢⎢⎣

0 0 0 Qn

0 0 −QT
n 0

0 −Qn 0 0
QT

n 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ with n even.

(ii) Let A be H -unitary and σ(A) = {−1} . Then the pair (A,H) can be decom-
posed as

S−1AS = ⊕p
l=1Al, STHS = ⊕p

l=1Hl,

where the pair (Al,Hl) is of one of the following two forms for some n depending on l

Case 1

(
Jn(−1),ε

[
Zn Pn(−1)

Pn(−1)T 0

])
with n odd, and ε = ±1 .

Case 2

⎛
⎜⎜⎝Jn(−1)⊕ Jn(−1),

⎡
⎢⎢⎣

0 0 0 Qn(−1)
0 0 −Qn(−1)T 0
0 −Qn(−1) 0 0

Qn(−1)T 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠

with n even.

Proof. (i), Case 1. There is an invertible matrix S that decomposes the pair to
a block diagonal where the blocks with odd size n in A are similar to Jn(1) , and the
remaining blocks of even size are similar to Jn(1)⊕ Jn(1) .

We start with the case n odd. We may assume that A = Jn(1) with respect to a
basis {x1, . . . ,xn} . Denote H =

[
Hi j

]n
i, j=1 (so Hi j = 〈Hxj,xi〉). From [10], see also

[4], we know the following:

Hi j = 0 when i+ j � n,

and
Hi j +Hi j+1 +Hi+1 j = 0. (34)

For sake of convenience, denote c := Hn+1
2

n+1
2

. Then c is real as H is real sym-

metric. Also, since H is invertible, c �= 0. By repeated application of (34) we have
that along the main anti-diagonal of H the entries alternate between c and −c , that is,
Hin+1−i = (−1)

n+1
2 −ic . This determines all entries Hi j for i+ j < n+2. In particular,

the n+1
2 × n+1

2 upper left corner of H is given by c ·Zn .
By (34) we have

Hn+1
2

n+1
2

+Hn+1
2 +1 n+1

2
+Hn+1

2
n+1
2 +1 = 0.

By symmetry of H we have that Hn+1
2 +1 n+1

2
= Hn+1

2
n+1
2 +1 . Combining these two brings

up that

Hn+1
2

n+1
2 +1 = −1

2
c.
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Repeated application of (34), combined with knowledge of the entries on the antidiag-
onal i + j = n + 1 now determines the entries on the antidiagonal i + j = n + 2. We
obtain for i = 2, . . . , n+1

2 that Hin+2−i = pi n+3
2 −ic . This determines all entries of Hi j

for i+ j < n+3.
If we show that there is an invertible S such that S−1AS = A and the right lower

corner of STHS is zero, then by repeated application of (34) the bottom row of the
right upper corner of STHS has entries alternating between − 1

2c and 1
2c . From there

on going up, again by repeated application of (34) proves that the upper right corner
of STHS is given by c ·Pn . This proves Case 1, upon realising that by scaling of the
Jordan chain we can make c = ±1.

So it remains to find such an S . We do this by changing the Jordan basis step by
step. First we define a new Jordan basis as follows: let

z(2)
j = x j, for j = 1,2, and z(2)

j = x j +h2x j−2 for j > 2.

Here h2 is a real number to be determined. Observe that this is indeed a Jordan basis.
Set

S2 =
[
z(2)
1 z(2)

2 · · · z(2)
n

]
.

Then S−1
2 AS2 = A . Put H(2) = ST

2 HS2 . Then for i+ j < n+3 one checks that H(2)
i j =

Hi j . Moreover, by the scalar analogue of (28) we have

H(2)
n+3
2

n+3
2

= Hn+3
2

n+3
2

+h2

(
Hn+3

2
n+3
2 −2 +Hn+3

2 −2 n+3
2

)
= Hn+3

2
n+3
2
−2ch2.

Obviously, taking h2 = 1
2cHn+3

2
n+3
2

we obtain that H(2)
n+3
2

n+3
2

= 0.

Using (34) we also have

0 =H(2)
n+3
2

n+3
2

+H(2)
n+3
2

n+3
2 +1

+H(2)
n+3
2 +1 n+3

2

=2H(2)
n+3
2

n+3
2 +1

.

It follows that H(2)
n+3
2

n+3
2 +1

= 0. Using (34) this determines all entries H(2)
i j with i+ j <

n+5.
Next, define a new Jordan basis by setting

z(4)
j = z(2)

j , for j = 1,2,3,4, and z(4)
j = z(2)

j +h4z
(2)
j−4 for j > 4.

Put S4 =
[
z(4)
1 · · · z(4)

n

]
. Then S−1

4 AS4 = A . We define H(4) = ST
4 H(2)S4 . Then one

easily checks that H(4)
i j = H(2)

i j for all entries with i+ j < n+5, and that by the scalar
analogue of (28)

H(4)
n+5
2

n+5
2

= H(2)
n+5
2

n+5
2

+h4

(
H(2)

n+5
2

n+5
2 −4

+H(2)
n+5
2 −4 n+5

2

)

= H(2)
n+5
2

n+5
2

+2ch4.
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Obviously, taking h4 = − 1
2cH(2)

n+5
2

n+5
2

we obtain that H(4)
n+5
2

n+5
2

= 0. Now we can con-

tinue as above to show that H(4)
n+5
2

n+5
2 +1

= 0. Using (34) this determines all entries H(4)
i j

with i+ j < n+7.
Continuing this way, by induction suppose that for some j we have already made

the diagonal entries h n+2 j+1
2

n+2 j+1
2

zero by consecutively using S2,S4, . . . ,S2 j . It then

follows as above that also h n+2 j+1
2

n+2 j+1
2 +1

= 0. Then construct S2 j+2 such that the next

diagonal entry is zero, and hence also the entry adjacent to it on the first super-diagonal.
Then S = Sn−1Sn−3 · · ·S4S2 such that the lower right corner of STHS is zero. Indeed,
by construction the diagonal and first super-diagonal are zero. Repeated application of
(34) then proves that the second super-diagonal is zero. But then again applying (34)
this can be lifted to the third super-diagonal. By induction we get that the full lower
right corner of ST HS is zero.

(ii), Case 1. This case is proved analogously, replacing everywhere the use of (34)
by the use of

Hi j −Hi j+1−Hi+1 j = 0, (35)

which follows immediately from AT HA = H .

(i), Case 2. We may assume, based on [12] that in this case

A = Jn(1)⊕ Jn(1), H =
[

0 H(0)

(H(0))T 0

]

for an invertible n× n matrix H(0) . By [4], see also [10], we have that H(0)
i j = 0 for

i+ j � n . Moreover, from AT HA = H we have that

Jn(1)T H(0)Jn(1) = H(0),

and so
H(0)

i j +H(0)
i j+1 +H(0)

i+1 j = 0, (36)

(compare (34)). However, in contrast with the case when n is odd, here H(0) is not a
symmetric matrix.

Consider S = Ŝ⊕ S̃ , where Ŝ and S̃ are n×n upper triangular Toeplitz matrices.
Then S−1AS = A , and

STHS =
[

0 ŜT H(0)S̃
S̃T (H(0))T Ŝ 0

]
.

We shall show that it is possible to take S̃ = I and to choose Ŝ so that ŜTH(0) has the
form given in part (i), Case 2 of the theorem, that is,

H̃ = ŜT H(0) =
[

0 Qn

−QT
n 0

]
.
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In order to achieve this, it suffices, in view of (36) to show that Ŝ can be chosen
such that

H̃n
2

n
2 +1 = 1,

H̃n
2 + j n

2+ j = 0, for j = 1, . . . ,
n
2
,

H̃n
2 + j n

2+ j+1 = 0, for j = 1, . . . ,
n
2
−1.

Let Ŝ = toep(h1, · · · ,hn) , and compute H̃i j = (ŜTH(0))i j :

H̃i j =

⎧⎨
⎩

0 if i+ j � n,

h1H
(0)
i j +h2H

(0)
i−1 j + · · ·+hi+ j−nH

(0)
n+1− j j if i+ j > n.

(37)

Put S1 = h1In , and H(1) = ST
1 H(0) . Take i+ j = n+1 and i = n

2 , j = n
2 +1. Then

H(1)
n
2

n
2 +1 = h1H

(0)
n
2

n
2 +1.

Because of the invertibility of H(0) we can take h1 so that 1
h1

= H(0)
n
2

n
2+1 , and hence

H(1)
n
2

n
2 +1 = 1. By (36) this ensures that the entries of H(1) on the anti-diagonal i+ j =

n+1 are alternatingly +1 and −1.
Now put S2 = toep(1,h2,0, · · · ,0) , and let H(2) = ST

2 H(1) . Then for i+ j > n

H(2)
i j = H(1)

i j +h2H
(1)
i j .

In particular, if i+ j = n+1 we have

H(2)
in+1−i = H(1)

in+1−i +h2H
(1)
i−1n+1−i = H(1)

in+1−i,

and so H(2)
i j = H(1)

i j for i+ j � n+1. Further, for i+ j = n+2 we have

H(2)
in+2−i = H(1)

in+2−i +h2H
(1)
i−1n+2−i.

Now H(2)
i−1n+2−i = ±1. In particular, for i = n

2 +1, we have

H(2)
n
2 +1 n

2 +1 = H(1)
n
2 +1 n

2 +1 +h2H
(1)
n
2

n
2 +1 = H(1)

n
2 +1 n

2 +1 +h2.

Choosing h2 = −H(1)
n
2 +1 n

2 +1 we see that H(2)
n
2 +1 n

2 +1 = 0. Together with (36) this also

determines the values H(2)
i j with i+ j = n+2, and they are exactly as in the statement

of the theorem.
Next, put S3 = toep(1,0,h3,0, · · · ,0) and H(3) = ST

3 H(2) . By (37) we have for
i+ j > n

H(3)
i j = H(2)

i j +h3H
(2)
i−2 j.
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If i+ j � n+ 2 this gives H(3)
i j = H(2)

i j , (since i+ j− 2 � n , so that H(2)
i−2 j = 0). For

i+ j = n+3 we obtain

H(3)
in+3−i = H(2)

in+3−i +h3H
(2)
i−2n+3−i.

Take i = n
2 +1, then

H(3)
n
2 +1 n

2+2 = H(2)
n
2 +1 n

2 +2 +h3H
(2)
n
2−1 n

2 +2.

Since H(2)
n
2−1 n

2 +2 = −1 we can take h3 = H(2)
n
2 +1 n

2+2 to obtain H(3)
n
2 +1 n

2+2 = 0. Note that

this also determines all entries H(3)
i j with i+ j = n+3 by (36).

Now we can continue as before by induction to finish the proof.

(ii) Case 2 can be proved in the same way. �

4. Real non-unimodular eigenvalues

We consider now the case where A is H -unitary and σ(A) = {λ , 1
λ } , where λ is

real and λ �= 0, ±1. Since A is invertible, λ �= 0. The indecomposable blocks are the
ones where A is similar to a direct sum of two Jordan blocks of the same size, one with
eigenvalue λ , the other with eigenvalue 1

λ . So we may assume that A is of the form

A = Jn(λ )⊕ Jn

(
1
λ

)
.

As is known from [9, 2, 5] the spectral subspaces corresponding to the eigenvalues
λ and 1

λ are H -neutral, but their sum is H -nondegenerate. Thus H has the following
form

H =
[

0 H12

HT
12 0

]
for some n×n matrix H12 . Writing out AT HA = H in the blocks, we obtain that H12

satisfies the following

Jn(λ )T H12Jn

(
1
λ

)
= H12. (38)

EXAMPLE. Consider the case n = 3. Then, denoting H12 =
[
hi j
]3
i, j=1 , (38) be-

comes ⎡
⎣λ 0 0

1 λ 0
0 1 λ

⎤
⎦
⎡
⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦
⎡
⎣ 1

λ 1 0
0 1

λ 1
0 0 1

λ

⎤
⎦=

⎡
⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ .

This gives nine relations for the entries, which we consider row-by-row. The three
identities for the entries in the first row are

h11 = h11,

λh11 +h12 = h12,

λh12 +h13 = h13.
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While the first of these identities is uninteresting, the second and third give us

h11 = 0, h12 = 0. (39)

Next, we consider the entries in the second row, again giving three identities:

1
λ

h11 +h21 = h21,

h11 + λh21 +
1
λ

h12 +h22 = h22,

h12 + λh22 +
1
λ

h13 +h23 = h23.

Using (39) the second of these equations implies

h21 = 0, (40)

while the third gives
h13 = −λ 2h22. (41)

Finally, the entries in the third row again give rise to three identities:

1
λ

h21 +h31 = h31,

h21 + λh31 +
1
λ

h22 +h32 = h32,

h22 + λh32 +
1
λ

h23 +h33 = h33.

Using (40) the second of these identities gives

h31 = − 1
λ 2 h22. (42)

The third identity finally can be rewritten as

h22 + λh32 +
1
λ

h23 = 0. (43)

So, for any Jordan basis of A we have that H =
[

0 H12

HT
12 0

]
, where

H12 =

⎡
⎣ 0 0 −λ 2h22

0 h22 h23

− 1
λ 2 h22 − 1

λ h22− 1
λ 2 h23 h33

⎤
⎦

for some real numbers h22 , h23 , h33 . Conversely, for any choice of these numbers the
matrix A is H -unitary. �
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Returning to the general case, we may now consider what canonical form we can
obtain for H by choosing a particular Jordan basis. Suppose S is an invertible 2n×2n
matrix such that S−1AS = A . and write

S =
[
S11 S12

S21 S22

]
.

Then from SA = AS we obtain four relations: S11Jn(λ )=Jn(λ )S11 , S22Jn( 1
λ )=Jn( 1

λ )S22 ,
S21Jn(λ ) = Jn( 1

λ )S21 , and S12Jn( 1
λ ) = Jn(λ )S12 . The last two equations imply that

S12 = 0 and S21 = 0, while the first two equations imply that S11 and S22 are upper
triangular Toeplitz matrices.

Now consider H1 = ST HS . Then it is easily seen that A is H1 -unitary. Also,

H1 = STHS =
[

0 ST
11H12S22

ST
22H12S11 0

]
.

Thus we see that
H(1)

12 = ST
11H12S22 (44)

and we can use the freedom in selecting S11 and S22 to obtain a desired form for H12 .
Note that this gives us 2n variables, as each of S11 and S22 is determined by n real
numbers.

Example continued. We continue the analysis of the case n = 3. Take S11 = I ,

and let S22 = Toep(s1,s2,s3) . Then H(1)
12 = H12S22 . Let us denote

H(1)
12 =

⎡
⎢⎣ 0 0 −λ 2h(1)

22

0 h(1)
22 h(1)

23

− 1
λ 2 h(1)

22 h(1)
32 h(1)

33

⎤
⎥⎦

where according to (43)

h(1)
22 + λh(1)

32 +
1
λ

h(1)
23 = 0.

We shall show that it is possible to take s1,s2,s3 such that the following three
conditions are satisfied:

h(1)
33 = 0,h(1)

22 = 1,h(1)
23 = −1

2
λ ,h(1)

32 = − 1
2λ

.

First observe that the latter three of these conditions are cosistent with (43).
Indeed, in order to show this, we consider the third column of H(1)

12 = H12S22 ,
which gives ⎡

⎢⎣−λ 2h(1)
22

h(1)
23

h(1)
33

⎤
⎥⎦=

⎡
⎣−λ 2

− 1
2λ
0

⎤
⎦= H12

⎡
⎣s3

s2

s1

⎤
⎦ . (45)

Since H12 is invertible, it is obvious that this equation is solvable for s1,s2,s3 .
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Thus we arrive at the following canoncial form for the pair (A,H) :

A = J3(λ )⊕ J3

(
1
λ

)
, H =

[
0 H12

HT
12 0

]
,

where

H12 =

⎡
⎣ 0 0 −λ 2

0 1 − 1
2λ

− 1
λ 2 − 1

2λ 0

⎤
⎦ .

Compare this with the case A = J3(1) , where we can achieve a canonical form for
the corresponding H as

H =

⎡
⎣ 0 0 −1

0 1 − 1
2

−1 − 1
2 0

⎤
⎦ ,

and observe the resemblance.
Also compare with the case of two unimodular non-real eigenvalues, and observe

the resemblance. �

Returning to the general case, consider the equation (38), and denote H12=
[
hi j
]n
i, j=1 .

The equality (38) becomes for the entries in the first row:

[
λ 0 · · · 0

]
H12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
1
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where there are j−2 zeros on the top. This is equal to

λ
[
h11 · · · h1n

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
1
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

{
h11 if j = 1

λh1 j−1 +h1 j if j > 1
= h1 j. (46)

This implies
h1 j = 0 for j = 1,2, . . . ,n−1. (47)
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Next, consider row i with i > 1, then
(
Jn(λ )T H12Jn( 1

λ )
)
i j

= hi j becomes

[
0 · · · 0 1 λ 0 · · · 0

]
H12

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
1
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=
[
hi−11 · · · hi−1n

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
1
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ λ
[
hi1 · · · hin

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
1
λ
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

{
1
λ hi−11 +hi1 = hi1 if j = 1

hi−1 j−1 + 1
λ hi−1 j + λhi j−1 +hi j = hi j if j > 1.

(48)

This implies
hi1 = 0, for i = 1, . . . ,n−1, (49)

hi−1 j−1 +
1
λ

hi−1 j + λhi j−1 = 0. (50)

Observe that (47) and (50) together determine H12 once the last column of H12 is
given. Observe also that these two relations hold for any Jordan basis of A . We can
now change the Jordan basis in such a way that a canonical form for H is obtained,

using (44). We can do so by using S22 only, taking S11 = In . Then H(1)
12 = H12S22 .

Since S22 = Toep(s1, · · · ,sn) is completely determined by its last column, and H(1)
12 =[

h(1)
i j

]n

i, j=1
is also determined by its last column, in principle we can select a canonical

form by specifying the last column, and solving the equation

H12

⎡
⎢⎣

sn
...
s1

⎤
⎥⎦=

⎡
⎢⎢⎣

h(1)
1n
...

h(1)
nn

⎤
⎥⎥⎦ .

Note that by invertibility of H12 there is a unique solution.
However, in order to stay close to the canonical forms developed for the cases

where the eigenvalues are on the unit circle, we shall make a different choice. We shall
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take n conditions on the entries in H(1)
12 : for n odd these conditions are

hin = 0 for i =
n+3

2
, . . . ,n,

h n+3
2 j = 0 for j =

n+3
2

, . . . ,n,

h n+1
2

n+1
2

= 1,

h n+1
2

n+3
2

= − 1
2λ

while for n even the conditions are

hin = 0 for i =
n
2

+1, . . . ,n,

h n
2 +1 j = 0 for j =

n
2

+1, . . . ,n,

h n
2

n
2 +1 = 1.

Note that in both cases there are indeed precisely n conditions which are linear in the

entries of H(1)
12 , leading to n linear relations on s1, . . . ,sn . (Which we do not state

explicitly here!)

EXAMPLE. For n = 4 this would mean that

H(1)
12 =

⎡
⎢⎢⎣

0 0 0 −λ 2

0 0 1 −λ
0 − 1

λ 2 0 0
1

λ 4 − 1
λ 3 0 0

⎤
⎥⎥⎦ .

Again, compare with the case where the eigenvalues are on the unit circle to see the
resemblance. �

It remains to show that it is possible to choose s1, . . . ,sn so that the conditions
formulated just before the previous example are satisfied. However, this is in principle
easy: we just retrace what these conditions imply for the entries in the last column of

H(1)
12 . We have already seen that the last column of H(1)

12 can be stipulated at will, and
that given any choice for that there is a unique choice for s1, . . . ,sn that will give the

desired H(1)
12 .

To make this argument precise, we first recall from the introduction the matrices
Pn(λ ) and Qn(λ ) given by (2) and (5).

Recall also the definition of the matrix Zn as the n+1
2 × n+1

2 matrix with zero
entries everywhere except for a one in the right lower corner.

THEOREM 4.1. Let A be H -unitary and σ(A) = {λ , 1
λ } , with λ ∈R\{0,1,−1} .

Then the pair (A,H) can be decomposed as

S−1AS = ⊕p
l=1Al, STHS = ⊕p

l=1Hl,
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where the pair (Al ,Hl) is of the form

(
Jn(λ )⊕ Jn( 1

λ ),
[

0 H12

HT
12 0

])
, with n depending

on l , and where H12 is of one of the following two forms, depending on whether n is
odd or even:

Case 1 n is odd: H12 =
[

Zn Pn(λ )
Pn( 1

λ )T 0

]
.

Case 2 n is even: H12 =
[

0 Qn(λ )
− 1

λ 2 Qn( 1
λ )T 0

]
.

Proof. First observe that the entries in the matrices given in Case 1 and Case 2,
respectively do satisfy (50). This is easily checked by induction.

Case 1. We continue the argument given before the definition of Pn(λ ) . Let hn

be the last column of Pn(λ ) , and let y be the vector in R
n given by y =

[
hn

0

]
. Solve

H12s = y and set S22 = Toep(s1, · · · ,sn) , where s j is the j -th coordinate of the vector
s . Then by our arguments from before the proof we get that

H(1)
12 = H12S22 =

[
Zn Pn(λ )

Pn( 1
λ )T 0

]
,

as desired.
Case 2 is proved in the same way. �

5. Non-real non-unimodular eigenvalues

We consider now the case where A is H -unitary and σ(A) = {λ , 1
λ ,λ , 1

λ
} , where

λ is non-real and non-unimodular. In this case, the indecomposable blocks are the
ones where A is similar to a direct sum of two real Jordan blocks of the same size,
one corresponding to the two eigenvalue λ ,λ , and the other corresponding to the two

eigenvalues λ−1 , λ
−1

. Let λ = α + iβ , and set as usual γ =
[

α β
−β α

]
. Note that

1
λ = 1

α2+β 2 (α − iβ ) and that γ−1 = 1
α2+β 2

[
α −β
β α

]
is exactly the two by two matrix

with eigenvalues λ−1 , λ
−1

.
So we may assume that A is a 4n×4n matrix of the form

A = Jn(γ)⊕ Jn(γ−1).

As is known from [9, 2, 5] the spectral subspace corresponding to the pair of
eigenvalues λ , λ , as well as the one corresponding to the pair of eigenvalues 1

λ and 1
λ

is H -neutral, while the sum of these two spectral subspaces is H -nondegenerate. Thus
H has the following form

H =
[

0 H12

HT
12 0

]
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for some 2n× 2n matrix H12 . Writing out ATHA = H in the blocks, we obtain that
H12 satisfies the following

Jn(γ)T H12Jn(γ−1) = H12. (51)

Denoting H12 =
[
hi, j

]n
i, j=1 , where each hi, j is a two by two matrix, (38) gives n2

relations for the entries. The identities for the entries in the first row are

γT h1,1γ−1 = h1,1,

γT
[
h1, j−1 h1, j

][ I
γ−1

]
= h1, j for j > 1.

The last of these conditions can be rewritten as follows by working out the matrix
product and then multiplying on the right by γ :

γT h1, j−1γ + γTh1, j −h1, jγ = 0. (52)

Next, we consider the identities for the first column, except the first entry:

[
I γT

][hi−1,1

hi,1

]
γ−1 = hi,1,

which, after working out the matrix product and multiplying by γ on the right leads to

hi−1,1γ + γThi,1−hi,1γ = 0. (53)

Finally, the identity for an entry not in the first row or column becomes

[
I γT

][hi−1, j−1 hi−1, j

hi, j−1 hi, j

][
I

γ−1

]
= hi, j

for i > 1 and j > 1. Again, working out the matrix product and multiplying by γ on
the right gives

hi−1, j−1γ + γThi, j−1γ +hi−1, j + γThi, j −hi, jγ = 0. (54)

5.1. Intermezzo

Before proceeding, we need several lemmas, most of which are easily proved by

brute force computation on two by two matrices. Recall that K0 =
[
1 0
0 −1

]
and K1 =[

0 1
1 0

]
, while H0 =

[
0 1
−1 0

]
. The set of matrices of the form x1K0 + x2K1 where x1

and x2 are real, will be denoted by K , the set of matrices of the form a1I + a2H0 is
denoted by E as before.

LEMMA 5.1. Let γ = aI+bH0 be in E , and let X = x0K0 +x1K1 be in K . Then
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a. Xγ is in K ,

b. γT X = Xγ .

c. For any 2×2 matrix X (not necessarily in K ), if γT X = Xγ , then X ∈ K .

d. For any 2×2 matrix X (not necessarily in K ), γT X −Xγ is in E .

LEMMA 5.2. Suppose X is in K and suppose Y is a 2× 2 matrix satisfying
γT Xγ + γTY −Yγ = 0 , with γ �= 0 in E . Then X = 0 and Y is in K .

Proof. By part d in the previous lemma, γTY −Yγ ∈ E , while γT Xγ is in K by
part a of the previous lemma. Since the intersection of E and K consists of only the
zero matrix, and since γ is not zero and in E implies that γ is invertible, we obtain that
X is zero, and that γTY −Y γ = 0. Then part c of the previous lemma implies that Y is
in K . �

LEMMA 5.3. Let X ,Y,Z be in K , let γ be invertible and in E , and let W be
any 2×2 matrix such that

[
I γT

][X Y
Z W

][
I

γ−1

]
= W.

Then W is in K and
Xγ +Zγ2 +Y = 0. (55)

Proof. The condition is equivalent to

Xγ + γT Zγ +Y = −(γTW −Wγ).

By the assumptions on X ,Y,Z and by Lemma 5.1 the left hand side is in K and the
right hand side is in E . Hence both parts are zero. Again by Lemma 5.1 we then have
W ∈ K . Also γT Zγ = Zγ2 , giving (55). �

5.2. Results for general Jordan basis

We resume the argument we started before the intermezzo. Consider the entries of
H12 in the first row, and remember that for those entries we have (52):

γT h1, j−1γ + γTh1, j −h1, jγ = 0.

Applying Lemma 5.2 inductively we see that

h1, j = 0 for j = 1, . . . ,n−1,

and that h1,n is in K .
Likewise, considering the entries in the first column we have (53):

hi−1,1γ + γThi,1−hi,1γ = 0.
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Again, by induction and using Lemma 5.1, part b, and Lemma 5.2, we have that hi,1 is
in K . As in the proof of Lemma 5.1 we see that

hi,1 = 0 for i = 1, . . . ,n−1,

and hn,1 is in K .
Now consider entries that are not in the first row or column. For those we have

(54)
hi−1, j−1γ + γThi, j−1γ +hi−1, j + γThi, j −hi, jγ = 0.

Using the fact that entries in the first row and column are in K (and most of them are
zero anyway), we can use induction on the row index and column index to obtain from
Lemma 5.3 that hi, j is in K for all i and j , and that

hi−1, j−1γ +hi, j−1γ2 +hi−1, j = 0, (56)

or equivalently
hi−1, j−1 +hi, j−1γ +hi−1, jγ−1 = 0. (57)

Using this, and the fact that all but the last entries in the first row and column are zero
we have

hi, j = 0 for i+ j < n+1.

Also, on the main skew-diagonal, we have hi−1,n−i+2 = −hi,n−i+1γ2 , so that hi,n−i+1 =
(−1)n−ihn,1γ2(n−i) .

5.3. Results for specific Jordan basis

Returning to the general case, we may now consider what canonical form we can
obtain for H by choosing a particular Jordan basis. Suppose S is an invertible 2n×2n
matrix such that S−1AS = A . and write

S =
[
S11 S12

S21 S22

]
.

Then from SA = AS we obtain the following four relations: S11Jn(γ) = Jn(γ)S11 ,
S22Jn(γ−1) = Jn(γ−1)S22 , S21Jn(γ = Jn(γ−1)S21 , and S12Jn(γ−1) = Jn(γ)S12 . The last
two equations imply that S12 = 0 and S21 = 0, while the first two equations imply that
S11 and S22 are upper triangular block Toeplitz matrices, with entries that are 2×2 ma-
trices in E . The latter statement holds because for a complex Jordan block the matrices
that commute with it are upper triangular Toeplitz matrices with complex entries.

Now consider H1 = ST HS . Then it is easily seen that A is H1 -unitary. Also,

H1 = STHS =
[

0 ST
11H12S22

ST
22H12S11 0

]
.

Thus we see that
H(1)

12 = ST
11H12S22 (58)
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and we can use the freedom in selecting S11 and S22 to obtain a desired form for H12 .
Note that this gives us 4n variables, as each of S11 and S22 is determined by n real two
by two matrices in E .

Observe that H12 is determined by (57) as soon as the last block column of H12

is specified, i.e., as soon as hi,n are given, we can retrieve the entries hi, j from the last
column and the first row. Note also that these two relations hold for any Jordan basis
of A . We can now change the Jordan basis in such a way that a canonical form for
H is obtained, using (58). We can do so by using S22 only, taking S11 = I2n . Then

H(1)
12 = H12S22 . Take S22 = Toep(s1, · · · ,sn) , where each of the s j ’s is a matrix in

E . Then S22 is completely determined by its last column, and H(1)
12 =

[
h(1)

i, j

]n

i, j=1
is

also determined by its last column. So in principle we can select a canonical form by
specifying the last column of S22 , and solving the equation

H12

⎡
⎢⎣

sn
...
s1

⎤
⎥⎦=

⎡
⎢⎢⎣

h(1)
1,n
...

h(1)
n,n

⎤
⎥⎥⎦ .

Note that by invertibility of H12 there is a unique solution.
This is a similar argument as in the case of two real non-unimodular eigenvalues.
Again, we wish to stay close to the canonical forms developed for the cases where

the eigenvalues are on the unit circle. We shall take n conditions on the block entries

in H(1)
12 : for n odd these conditions are

hi,n = 0 for i =
n+3

2
, . . . ,n,

h n+3
2 , j = 0 for j =

n+3
2

, . . . ,n,

h n+1
2 , n+1

2
= K1 =

[
0 1
1 0

]
,

h n+1
2 , n+3

2
= − 1

2K1γ.

Recall that we have already shown that each hi, j is in K , motivating our choice for
h n+1

2 , n+1
2

As an aside, let us compute what the latter two conditions imply for h n+3
2 , n+1

2
. By

(57) we have
h n+3

2 , n+1
2

γ +h n+1
2 , n+3

2
γ−1 +h n+1

2 , n+1
2

= 0,

which implies that h n+3
2 , n+1

2
γ = − 1

2K1 . Hence h n+3
2 , n+1

2
= − 1

2K1γ−1 .
For n even the conditions are

hi,n = 0 for i =
n
2

+1, . . . ,n,

h n
2 +1, j = 0 for j =

n
2

+1, . . . ,n,

h n
2 , n

2 +1 = K1.
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Again as an aside, let us calculate what the last two of these conditions imply for
h n

2 +1, n
2
. By (57) we have

h n
2 +1, n

2
γ +h n

2 , n
2 +1γ−1 +h n

2 , n
2

= 0

which gives h n
2 +1, n

2
γ +K1γ−1 = 0, so that h n

2 +1, n
2

= −K1γ−2 .
Note that in both cases n is odd and n is even there are indeed precisely n condi-

tions which are linear in the entries of H(1)
12 , leading to n linear relations on s1, . . . ,sn ,

which, again, we do not state explicitly.
It remains to show that it is possible to choose s1, . . . ,sn so that these conditions

are satisfied. However, this is in principle easy: we just retrace what these conditions

imply for the entries in the last column of H(1)
12 .

To make this argument precise, we first recall the following notations.
Let n > 1 be an odd integer, then the n+1

2 × n−1
2 blok matrix Pn(λ ) with two by

two matrix blocks is defined as follows:

Pn(γ) =
[
pi jK1γ n+1

2 + j−i
] n+1

2 , n−1
2

i=1, j=1
(59)

where pi j are the entries of the matrix Pn introduced earlier.
Let n > 1 be an even integer, then the n

2 × n
2 matrix Qn(γ) is defined as follows:

Qn(γ) =
[
qi jK1γ

n
2 + j−i−1

] n
2 , n

2
i=1, j=1

(60)

where qi j are the entries of the matrix Qn introduced earlier.
Recall also the definition of the matrix Zn as the n+1

2 × n+1
2 matrix with zero

entries everywhere except for a one in the right lower corner.

THEOREM 5.1. Let A be H -unitary and σ(A) = {λ ,λ ,λ−1,λ
−1} , with λ non-

real and non-unimodular. Then the pair (A,H) can be decomposed as

S−1AS = ⊕p
l=1Al, STHS = ⊕p

l=1Hl,

where the pair (Al,Hl) is of the form

(
Jn(γ)⊕ Jn(γ−1),

[
0 H12

HT
12 0

])
, with n depend-

ing on l , and where H12 is of one of the following two forms, depending on whether n
is odd or even:

Case 1 n is odd: H12 =
[

Zn⊗K1 Pn(γ)
Pn(γ−1)T 0

]
.

Case 2 n is even: H12 =
[

0 Qn(γ)
−γ−2Qn(γ−1)T 0

]
.

Proof. First observe that the entries in the matrices given in Case 1 and Case 2,
respectively do satisfy (57). This is easily checked by induction for the upper right and
lower left corners. The fact that these two match has been proved already by showing
that h n+3

2 , n+1
2

= − 1
2K1γ−1 for odd n , and that h n

2+1, n
2

= −K1γ−2 for even n .
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Case 1. We continue the argument given before the definition of Pn(γ) . Let hn

be the last column of Pn(λ ) , and let y be the vector in R
n given by y =

[
hn

0

]
. Solve

H12s = y and set S22 = Toep(s1, · · · ,sn) , where s j is the j -th block two by two matrix-
coordinate of the block-vector s . Then by our arguments from before the proof we get
that

H(1)
12 = H12S22 =

[
Zn ⊗K1 Pn(γ)
Pn(γ−1)T 0

]
,

as desired.
Case 2 is proved in the same way. �

6. The complex case

The case where H = H∗ is an invertible complex Hermitian matrix, and A is
a complex H -unitary matrix (A∗HA = H ) has been studied using Cayley transform
techniques in [5, 6, 13, 16]. In all these papers the goal is to bring H in as simple a
form as possible, at the expense of losing the Jordan canonical form for A . As in the
real case we shall treat here an approach that keeps A in Jordan canonical form, leading
to a transparent canonical form for the pair (A,H) .

The first observation we make is that now there are only two types of indecompos-
able blocks, instead of the multitude of cases we had to study in the real case: one with

a pair of eigenvalues λ ,λ
−1

with |λ | �= 1, where A is similar to Jn(λ )⊕ Jn(λ
−1

) ,

while H is simultaneously congruent to

[
0 H12

H∗
12 0

]
, and the other one with a single

eigenvalue λ on the unit circle, where A is similar to a single Jordan block Jn(λ ) .
As in the real case, we shall treat these two cases separately. The final result is the

following theorem.

THEOREM 6.1. Let H be a complex Hermitian invertible matrix, and let A be
H -unitary. Then the pair (A,H) can be decomposed as

S−1AS = ⊕p
l=1Al, S∗HS = ⊕p

l=1Hl,

where the pairs (Al ,Hl) have one of the following forms with n depending on l

(i) σ(Al) = {λ ,λ
−1} with |λ | �= 1 , and

Al = Jn(λ )⊕ Jn(λ
−1

) Hl =
[

0 H12

H∗
12 0

]
,

where H12 has one of the following two forms depending on whether n is odd or
even:

Case 1 H12 =

[
Zn Pn(λ )

Pn(λ
−1

)T 0

]
when n is odd,
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Case 2 H12 =

⎡
⎣ 0 Qn(λ )

− 1

λ
2 Qn(λ

−1
)T 0

⎤
⎦ when n is even.

(ii) σ(Al) = {λ} with |λ | = 1 , and the pair (Al,Hl) has one of the following two
forms

Case 1 (Jn(λ ),ε
[

Zn Pn(λ )
Pn(λ )T 0

]
) with ε = ±1 and n is odd,

Case 2 (Jn(λ ),ε
[

0 iλQn(λ )
−iλQn(λ )T 0

]
) with ε = ±1 and n is even.

The columns of the matrix S in the theorem form a special Jordan basis for A .
To give an idea of how the matrix H looks when n is even in the canonical form

in part (ii), consider the case n = 8, then

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 −iλ
7

0 0 0 0 0 0 iλ
5 −3iλ

6

0 0 0 0 0 −iλ
3

2iλ
4 −3iλ

5

0 0 0 0 iλ −iλ
2

iλ
3 −iλ

4

0 0 0 −iλ 0 0 0 0
0 0 iλ 3 iλ 2 0 0 0 0
0 −iλ 5 −2iλ 4 −iλ 3 0 0 0 0

iλ 7 3iλ 6 3iλ 5 iλ 4 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. (i) From A∗HA = H , with A = Jn(λ )⊕ Jn(λ
−1

) and H =
[

0 H12

H∗
12 0

]
we

compute that

Jn(λ )T H12Jn(λ
−1

) = H12. (61)

Write H12 =
[
hi j
]n
i, j=1 . Then (61) means that for i > 1, j > 1

hi−1 j−1 +hi−1 jλ
−1

+ λhi j−1 = 0, (62)

while h1 j = 0 for j = 1, · · · ,n−1 and hi1 = 0 for i = 1, · · · ,n−1.
Now compare (61) with (38), and (62) with (50), also compare (47) and (49) for

the entries in the first row and column of H12 . Observe that the equations are exactly
the same, replacing λ by λ . The proof for the first part now runs exactly as in Section
4.

(ii) For the case where σ(A) = {λ} with |λ | = 1, we first make an observation
that holds independently of whether n is odd or n is even. Let A = Jn(λ ) , then one
easily computes that

(A∗HA)i j = Hi−1 j−1 + λHi−1 j + λHi j−1 + |λ |2Hi j.
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Using A∗HA = H , and |λ |2 = 1, we obtain

Hi−1 j−1 + λHi−1 j + λHi j−1 = 0. (63)

Also recall that we already know that Hi j = 0 whenever i+ j < n+1.
For n odd the entry Hn+1

2
n+1
2

is a real number, because H is a Hermitian matrix.
By scaling (which is in fact a similarity transformation with S = s1I ) we can take that
number to be either plus one or minus one. We denote that entry by ε , and put that in
front of the matrix H , so that we may assume without loss of generality from now on
Hn+1

2
n+1
2

= 1. Remaining with n odd, we then see from (63) that

1+ λHn+1
2

n+1
2 +1 + λHn+1

2 +1 n+1
2

= 0.

In other words, Re(λHn+1
2

n+1
2 +1) = − 1

2 , so that Hn+1
2

n+1
2 +1 = (− 1

2 + ir)λ for some
real number r .

For n even, (63) with i−1 = j−1 = n
2 , using Hn

2
n
2 +1 = H n

2 +1 n
2

(because of the
fact that H is Hermitian), and Hn

2
n
2
= 0, we obtain Re (λHn

2
n
2 +1) = 0. This means that

Hn
2

n
2 +1 = εiλ (1+ r) , where r is some real number, and ε = ±1. Again, we put ε in

front of the matrix, so that we can take from now on Hn
2

n
2 +1 = iλ (1+ r) .

Next, the proof proceeds by constructing inductively a special Jordan basis for
which the pair (A,H) has the form specified in part (ii) of the theorem with respect
to this basis. Recall that changing one Jordan basis to another is equivalent to the
transformation (A,H) → (S−1AS,S∗HS) with an upper triangular Toeplitz S . In such
an upper triangular Toeplitz matrix S = toep(s1,s2, · · · ,sn) we have n numbers at our
disposal for the construction.

We shall use these in the case n is odd to make Hn+1
2

n+1
2

= ε , Hn+1
2

n+1
2 +1 =− 1

2λ ,

and then for j = n+1
2 + 1, · · · ,n to make Hj j = 0 and for j = n+1

2 + 1, · · · ,n− 1 to
make Hj j+1 = 0. Observe that these are precisely n entries in the matrix H , and that
together with (63) these choices determine H completely. Note that in fact the first step
has already been taken when we scaled Hn+1

2
n+1
2

to ε , using s1 .

For n even, we use these n degrees of freedom in the choice of S to make
Hn

2
n
2 +1 = iλ , for j = n

2 + 1, · · ·n to make Hj j = 0, and for j = n
2 + 1, · · ·n− 1 to

make Hj j+1 = 0. Again, observe that these are precisely n entries in the matrix H ,
and that together with (63) they determine H completely.

From now on we shall stay with n is even until further notice. Let S1 = s1I , and
consider H(1) = S∗1HS1 . Then for all i, j we have

H(1)
i j = |s1|2Hi j.

In particular, H(1)
n
2

n
2 +1 = |s1|2iλ(1 + r) . Taking s1 = 1√

1+r
we obtain H(1)

n
2

n
2 +1 = iλ as

desired. This fixes all entries H(1)
i j with i+ j � n+1 via (63).
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Next, take S2 = toep(1,s2,0, · · · ,0) and consider H(2) = S∗2H
(1)S2 . Then one

computes that

H(2)
i j = |s2|2H(1)

i−1 j−1 + s2H
(1)
i−1 j + s2H

(1)
i j−1 +H(1)

i j .

Observe that for i + j � n+ 1 we have H(2)
i j = H(1)

i j , in particular this holds for i =
n
2 , j = n

2 +1. We shall choose s2 so that H(2)
n
2 +1 n

2 +1 = 0. Indeed, using the fact that H(1)

is Hermitian

H(2)
n
2 +1 n

2+1 = 2Re(s2H
(1)
n
2+1 n

2
)+H(1)

n
2 +1 n

2 +1 = 2Re(−s2iλ )+H(1)
n
2 +1 n

2 +1.

Obviously, this can be made zero by an appropriate choice of s2 (to be precise, we may

take s2 = − 1
2 iλH(1)

n
2 +1 n

2 +1 ).

Having H(2)
n
2 +1 n

2 +1 = 0 also fixes H(2)
n
2

n
2 +2 by (63) and H(2)

n
2

n
2 +1 = iλ , in fact we will

have
H(2)

n
2

n
2+2 = −iλ

2
.

This now fixes all entries H(2)
i j with i+ j � n+2 via (63).

In the next step we take S3 = toep(1,0,s3,0, · · · ,0) and consider H(3) = S∗3H
(2)S3 .

We have
H(3)

i j = |s3|2H(2)
i−2 j−2 + s3H

(2)
i−2 j + s3H

(2)
i j−2 +H(2)

i j .

Observe that for i+ j � n+2 we have H(3)
i j = H(2)

i j , so that entries fixed in the previous

steps retain their values. We shall use s3 to consider H(3)
n
2 +1 n

2 +2 , and show that it is

possible to choose s3 so that this is zero.

H(3)
n
2 +1 n

2 +2 = |s3|2H(2)
n
2−1 n

2
+ s 3H

(2)
n
2−1 n

2 +2 + s3H
(2)
n
2 +1 n

2
+H(2)

n
2 +1 n

2 +2.

The first of the four terms on the right hand side is zero, H(2)
n
2−1 n

2 +2 = −iλ
3

(using (63)

this is easily computed), and H(2)
n
2 +1 n

2
= −iλ . So the equation above becomes

H(3)
n
2 +1 n

2 +2 = −i s3λ
3 − s3iλ +H(2)

n
2 +1 n

2 +2.

It is readily seen that s3 may be chosen so that this becomes zero (e.g., setting this to

zero and mutiplying the resulting equation with λ gives −2iRe(λ 2s3)+λH(2)
n
2 +1 n

2 +2 =

0, which is solvable). Having H(3)
n
2 +1 n

2 +2 = 0, and all the entries with i+ j � n+2 fixed

as well in (63) determines all entries H(3)
i j with i+ j � n+3. In particular, H(3)

n
2

n
2+3 can

now be computed to be equal to iλ
3
.

Next, consider S4 = toep(1,0,0,s4,0, · · · ,0) , and put H(4) = S∗4H
(3)S4 . As in the

previous steps one checks that

H(4)
i j = |s4|2H(3)

i−3 j−3 + s4H
(3)
i−3 j + s4H

(3)
i j−3 +H(3)

i j ,
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and in particular it follows from this that H(4)
i j = H(3)

i j for i+ j � n+3. We use s4 to

make H(4)
n
2 +2 n

2 +2 = 0. Indeed,

H(4)
n
2 +2 n

2 +2 = |s4|2H(3)
n
2−1 n

2−1 + s 4H
(3)
n
2−1 n

2 +2 + s4H
(3)
n
2 +2 n

2−1 +H(3)
n
2 +2 n

2 +2.

The first term being zero again, this becomes, using H(3)
n
2−1 n

2 +2 = −iλ
3
,

H(4)
n
2+2 n

2 +2 = s4iλ 3− s4iλ
3
+H(3)

n
2 +2 n

2 +2 = 2Re(s4iλ 3)+H(3)
n
2 +2 n

2+2,

and it is easily seen that s4 may be chosen so that this is zero. Using (63) this determines

all entries H(4)
i j with i+ j � n+4. In particular H(4)

n
2 +1 n

2 +3 = 0, and H(4)
n
2

n
2 +4 = −iλ

4
.

Continuing in this way results in the form described in the theorem, part (ii), Case
2.

Finally, we consider the case where n is odd. In this case, we consider S2 =
toep(1,s2,0, · · · ,0) as above, and put H(2) = S∗2H

(1)S2 , assuming that H(1) = |s1|2H
already has been modified to have 1 in the central entry (after pulling out ε = ±1 in

front of the matrix). We shall select s2 so that H(2)
n+1
2

n+1
2 +1

= − 1
2λ , in agreement with

the statement of the theorem. Indeed, as in the case where n is even we have

H(2)
i j = |s2|2H(1)

i−1 j−1 + s2H
(1)
i−1 j + s2H

(1)
i j−1 +H(1)

i j .

For i = n+1
2 , j = n+1

2 +1 this amounts to

H(2)
n+1
2

n+1
2 +1

= |s2|2H(1)
n+1
2 −1 n+1

2
+ s2H

(1)
n+1
2 −1 n+1

2 +1
+ s2H

(1)
n+1
2

n+1
2

+H(1)
n+1
2

n+1
2 +1

.

The first of these four terms is zero, for the second we obtain from (63) that H(1)
n+1
2 −1 n+1

2 +1

= −λ
2
H(1)

n+1
2

n+1
2

= −λ
2
. So the equation becomes

H(2)
n+1
2

n+1
2 +1

= −s2λ
2
+ s2 +H(1)

n+1
2

n+1
2 +1

.

Recall that for some real number r we have that H(1)
n+1
2

n+1
2 +1

= (− 1
2 + ir)λ , so that we

arrive at

H(2)
n+1
2

n+1
2 +1

= −s2λ
2
+ s2 +

(
−1

2
+ ir

)
λ .

This is equal to − 1
2λ if and only if

−s2λ
2
+ s2 + irλ = 0.

Multiplying this equation by λ we see that this in turn becomes equivalent to 2Im(s2λ )+
r = 0, which is solved by taking for instance s2 = − 1

2 iλ r .
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Next, take again S3 = toep(1,0,s3,0, · · · ,0) and consider H(3) = S∗3H
(2)S3 . Choose

s3 so that H(3)
n+1
2 +1 n+1

2 +1
= 0. Without going into details: this can be done. Continue

by taking S4 = toep(1,0,0,s4,0, · · · ,0) , and considering H(4) = S∗4H
(3)S4 . Choose s4

so that H(4)
n+1
2 +1 n+1

2 +2
= 0. Now take S5 in the obvious way, define H(5) as usual, and

prove s5 can be chosen such that H(5)
n+1
2 +2 n+1

2 +2
= 0. Continue in this way proving that

the entries along the main diagonal and the one above it are zero. In that case by (63)
the entries of the final H will be given as in the theorem part (ii), Case 1. �
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