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DILATIONS AND CONSTRAINED ALGEBRAS

MICHAEL A. DRITSCHEL, MICHAEL T. JURY AND SCOTT MCCULLOUGH

Abstract. It is well known that contractive representations of the disk algebra are completely
contractive. The Neil algebra A is the subalgebra of the disk algebra consisting of those func-
tions f for which f ′(0) = 0 . There is a complete isometry from the algebra R(W) of rational
functions with poles off of the distinguished variety W = {(z,w) : z2 = w3, |z| < 1} to A . We
prove that there are contractive representations of A which are not completely contractive, and
furthermore provide a Kaiser and Varopoulos inspired example of a representation π of R(W)
whereby π(z) and π(w) are contractions, yet π is not contractive. We also present a character-
ization of those contractive representations of R(W) that are completely contractive. Finally, we
show that by contrast, for the variety V = {(z,w) : z2 = w2, |z| < 1} , all contractive represen-
tations of the algebra R(V ) of rational functions with poles off V are completely contractive,
and we as well provide a simplified proof of Agler’s analogous result over an annulus.
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