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CRAWFORD NUMBERS OF COMPANION MATRICES

HWA-LONG GAU, KUO-ZHONG WANG AND PEI YUAN WU

Abstract. The (generalized) Crawford number C(A) of an n -by-n complex matrix A is, by
definition, the distance from the origin to the boundary of the numerical range W (A) of A . If A
is a companion matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

· ·
· ·
· ·

0 1
−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

then it is easily seen that C(A) � cos(π/n) . The main purpose of this paper is to determine
when the equality C(A) = cos(π/n) holds. A sufficient condition for this is that the boundary of
W(A) contains a point λ for which the subspace of Cn spanned by the vectors x with 〈Ax,x〉 =
λ‖x‖2 has dimension 2, while a necessary condition is ∑n−2

j=0 an− je(n− j)iθ sin
(
( j + 1)π/n

)
=

sin(π/n) for some real θ . Examples are given showing that in general these conditions are not
simultaneously necessary and sufficient. We then prove that they are if A is (unitarily) reducible.
We also establish a lower bound for the numerical radius w(A) of A : w(A) � cos(π/(n+ 1)) ,
and show that the equality holds if and only if A is equal to the n -by-n Jordan block.
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