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Abstract. The (generalized) Crawford number C(A) of an n -by-n complex matrix A is, by
definition, the distance from the origin to the boundary of the numerical range W (A) of A . If A
is a companion matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

· ·
· ·
· ·

0 1
−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

then it is easily seen that C(A) � cos(π/n) . The main purpose of this paper is to determine
when the equality C(A) = cos(π/n) holds. A sufficient condition for this is that the boundary of
W(A) contains a point λ for which the subspace of Cn spanned by the vectors x with 〈Ax,x〉 =
λ‖x‖2 has dimension 2, while a necessary condition is ∑n−2

j=0 an− je(n− j)iθ sin
(
( j + 1)π/n

)
=

sin(π/n) for some real θ . Examples are given showing that in general these conditions are not
simultaneously necessary and sufficient. We then prove that they are if A is (unitarily) reducible.
We also establish a lower bound for the numerical radius w(A) of A : w(A) � cos(π/(n+ 1)) ,
and show that the equality holds if and only if A is equal to the n -by-n Jordan block.

1. Introduction

Let A be an n -by-n complex matrix. The Crawford number c(A) (resp., gener-
alized Crawford number C(A)) of A is, by definition, the distance from the origin to
the numerical range (resp., the boundary of the numerical range) of A . Recall that the
numerical range of A is the subset W (A) ≡ {〈Ax,x〉 : x ∈ Cn,‖x‖ = 1} of the complex
plane, where 〈·, ·〉 and ‖ · ‖ denote the standard inner product and its associated norm
in Cn , respectively. It is known that W (A) is a nonempty compact convex subset of
the plane and contains all the eigenvalues of A . For its other properties, the reader may
consult [11, Chapter 1]. The Crawford number c(A) of A was first considered in [3]
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and named specifically in [14, p. 74]. The generalized C(A) appeared first in [2, p. 66],
where it was called the inner numerical radius of A . Basic properties of both Crawford
numbers can be found in [15, Proposition 1.1].

In this paper, we are concerned with the Crawford numbers of companion matri-
ces. A companion matrix A is one of the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

· ·
· ·
· ·

0 1
−an −an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

It is known that the characteristic and minimal polynomials of such an A are both equal
to zn + a1zn−1 + · · ·+ an−1z + an . Moreover, since 0 is in W (A) , we obviously have
c(A) = 0. The main purpose of this paper is to estimate the value of C(A) .

In Section 2 below, we first consider upper bounds of C(A) for a general matrix
A . This is done via two other parameters of A . For an n -by-n matrix A , its nu-
merical radius and numerical inradius are given by w(A) ≡ max{|z| : z ∈W (A)} and
R(A)≡max{r � 0 : {z ∈ C : |z−a|� r} ⊆W (A) for some a∈W (A)} , respectively. In
Proposition 2.1, we show that C(A) � min{w(A),‖A‖cos(π/(n+ 1))} and determine
when the equality holds. This is achieved by way of R(A) via [6, Theorem 4.5].

Section 3 deals with lower bounds of C(A) and w(A) for A a companion matrix of
the form (1). A lower bound of C(A) is easy to obtain: C(A) � cos(π/n) (cf. Proposi-
tion 3.1). The main concern is to determine when the equality holds. One sufficient con-
dition for C(A) = cos(π/n) is that, for some λ in ∂W (A) , the subspace of Cn spanned
by the vectors x satisfying 〈Ax,x〉 = λ‖x‖2 is of dimension 2 (cf. Proposition 3.2). In
particular, this is the case if ∂W (A) contains a line segment (cf. Corollary 3.4). An
example is given showing that the converse does not hold even for 3-by-3 companion
matrices (cf. Example 3.5). On the other hand, we also obtain a necessary condition for
C(A) = cos(π/n) : the existence of some real θ such that ∑n−2

j=0 an− je(n− j)iθ sin
(
( j +

1)π/n
)

= sin(π/n) and Re
(

∑n−1
j=1 an− je(n− j)iθ sin( jπ/n)

)
� 0 (cf. Proposition 3.6).

Again, this is not sufficient for n = 3 by Example 3.10. However, we can strengthen
it to a complete characterization of C(A) = cos(π/n) in the cases n = 3 and 4 (cf.
Proposition 3.8). We conclude this section with a lower bound of w(A) : w(A) �
cos(π/(n + 1)) , and show that the equality holds if and only if A is equal to Jn , the
n -by-n Jordan block ⎡

⎢⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎥⎦

(cf. Theorem 3.11).
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Finally, in Section 4, we completely characterize those n -by-n (unitarily) re-
ducible companion matrices A which satisfy C(A) = cos(π/n) . Among other things,
we show that this is the case if and only if the sufficient (resp., necessary) condition in
Proposition 3.2 (resp., Proposition 3.6) is satisfied (cf. Theorem 4.1).

An n -by-n matrix A is (unitarily) reducible if it is unitarily similar to the direct
sum of two other matrices; it is (unitarily) irreducible if otherwise. We use ReA to
denote the real part (A + A∗)/2 of A and σ(A) the set of eigenvalues of A . The
n -by-n identity matrix is In . Our general reference for properties of matrices is [10].

2. Upper bound for C(A)

We start with a minimax expression for C(A) . It is from [2, Theorem 2.1].

PROPOSITION 2.1. For any n-by-n matrix A, we have

C(A) = |min
θ∈R

maxσ
(
Re(eiθ A)

)|.
Moreover, if 0 is in W (A) , then

C(A) = min
θ∈R

maxσ
(
Re (eiθ A)

)
.

The next proposition gives upper bounds of C(A) and conditions for their attain-
ment.

PROPOSITION 2.2. Let A be an n-by-n matrix with 0 ∈W (A) . Then

(a) C(A) � R(A) � min{w(A),‖A‖cos(π/(n+1))} ,

(b) C(A) = w(A) if and only if W (A) is a circular disc centered at the origin, and

(c) C(A) = ‖A‖cos(π/(n+1)) if and only if A is unitarily similar to ‖A‖Jn .

Proof. The inequality R(A) � ‖A‖cos(π/(n+ 1)) in (a) and the assertion on the
equality in (c) were proven in [6, Theorem 4.5]. Other assertions are obvious. �

In view of (a) above, we may wonder when C(A) and R(A) are equal to each
other. If A is a 2-by-2 companion matrix, then this is the case if and only if either A
is normal or the trace of A is zero. This can be seen via the easily verified fact that
the largest circular disc contained in an elliptic disc is the one centered at the center of
the latter with radius half of the length of its minor axis. Unfortunately, for companion
matrices of size 3, this is no longer the case. For example, if

A =

⎡
⎣ 0 1 0

0 0 1
−√

3i 4 (
√

3/4)i

⎤
⎦ ,

then A is a 3-by-3 nonnormal irreducible companion matrix with a nonzero trace,
whose numerical range is an elliptic disc with foci ±2 and semi-minor axis of length
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√
13/2 (cf. [7, Example 2.1]). Hence C(A) = R(A) =

√
13/2. The next example

shows that, conversely, a 3-by-3 irreducible companion matrix A with trace zero may
still have C(A) < R(A) .

EXAMPLE 2.3. Let

A =

⎡
⎣ 0 1 0

0 0 1
−1 −2 0

⎤
⎦ .

Then A is a 3-by-3 nonnormal companion matrix with trace zero. Note that A is ir-
reducible by [7, Theorem 1.1]. Since the eigenvalues of ReA can be computed to be

−1/2, −1/2, 1, and W (A) contains the numerical range W (
[

0 1
0 0

]
) (= {z ∈ C : |z| �

1/2} ) of the leading principal submatrix
[

0 1
0 0

]
of A , we obtain from Proposition 2.1

that C(A) = 1/2. On the other hand, for the unitary matrix

U =
1√
6

⎡
⎣−√

2
√

3 1
−√

2 −√
3 1√

2 0 2

⎤
⎦ ,

we have

U∗AU =

⎡
⎣ 1

√
2/3 −√

2
−√

2/3 −1/2 −1/
√

12√
2 1/

√
12 −1/2

⎤
⎦ .

Its leading submatrix A′ ≡
[

1
√

2/3
−√

2/3 −1/2

]
has numerical range W (A′) equal to the el-

liptic disc with foci (1±√
5/3i)/4 and semi-minor axis of length 3/4. We infer from

W (A) ⊇W (A′) that R(A) � R(A′) = 3/4 > 1/2 = C(A) .

3. Lower bound for C(A)

We start with a simple observation, which leads to a lower bound for C(A) of a
companion matrix A .

PROPOSITION 3.1. If A is an n-by-n companion matrix, then C(A) � cos(π/n) .

Proof. Let A be of the form (1). Since Jn−1 is a submatrix of A , its numerical
range W (Jn−1) (= {z ∈ C : |z| � cos(π/n)} by [12]) is contained in W (A) . It follows
that C(A) � cos(π/n) as asserted. �

The remaining problem is to determine when C(A) equals cos(π/n) (for an n -
by-n companion matrix A). In the following, we will give some sufficient/necessary
conditions for the equality to hold. We start with a sufficient one.

PROPOSITION 3.2. Let A be an n-by-n companion matrix. If there is a point λ
in the boundary of W (A) such that

∨{x ∈ Cn : 〈Ax,x〉 = λ‖x‖2} is of dimension 2 ,
then C(A) = cos(π/n) .
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For an n -by-n matrix A and a point λ in W (A) , we use Mλ to denote the
subspace

∨{x ∈ Cn : 〈Ax,x〉 = λ‖x‖2} of Cn spanned by the vectors x satisfying
〈Ax,x〉 = λ‖x‖2 . Basic properties of Mλ were given in [4, Theorem 1]. In particu-
lar, if λ is in ∂W (A) , let L be a supporting line of W (A) which passes through λ and,
if λ is an extreme point of W (A) , satisfies L∩∂W (A) = {λ} . Then [4, Theorem 1 (i)
and (ii)] says that

Mλ =

{{x ∈ Cn : 〈Ax,x〉 = λ‖x‖2} if λ is an extreme point of W (A),⋃
λ ′∈L∩∂W (A)

{x ∈ Cn : 〈Ax,x〉 = λ ′‖x‖2} if otherwise. (2)

Moreover, let R be a ray from the origin which is perpendicular to L , and let θ ∈
[0,2π) be the angle from the positive x -axis to R . Then Re (e−iθ λ ) is the maximum
eigenvalue of Re(e−iθ A) and Mλ = ker Re (e−iθ (A−λ In)) .

The next lemma says that, for a companion matrix A and a point λ in ∂W (A) ,
the associated subspace Mλ can only have dimension 1 or 2.

LEMMA 3.3. If A is an n-by-n companion matrix, then dimker Re(A−λ In) � 2
for any λ in C . In particular, if λ is in ∂W (A) , then dimMλ � 2 .

Proof. Assume that dimker Re (A−λ In) � 3 for some λ in C . Since ReJn−1 is
a principal submatrix of ReA , their eigenvalues interlace (cf. [10, Theorem 4.3.17]).
Our assumption implies that Reλ is an eigenvalue of ReJn−1 with multiplicity at least
2. This contradicts the known fact that ReJn−1 has only simple eigenvalues (cf. [9, p.
373]). Thus dimker Re(A−λ In) � 2 for all λ as asserted.

The second assertion follows from Mλ = ker Re
(
e−iθ (A−λ In)

)
for some θ in

[0,2π) , the fact that e−iθ A is unitarily similar to a companion matrix (cf. [7, Lemma
2.8]), and our first assertion. �

Proof of Proposition 3.2 . Let K = Cn−1⊕{0} . Since

dim(Mλ ∩K) = dimMλ +dimK−dim(Mλ +K) � 2+(n−1)−n= 1,

there is a unit vector x in Mλ ∩K . From x ∈ Mλ , we have 〈Ax,x〉 = λ ′ for some λ ′
in ∂W (A) , where λ ′ = λ if λ is an extreme point of W (A) , and λ ′ is some point on
the line segment of ∂W (A) which passes through λ if otherwise (cf. (2)). But from
x ∈ K , we also have λ ′ ∈W (Jn−1) (= {z ∈ C : |z| � cos(π/n)} ). This shows that λ ′
is in ∂W (A)∩∂W (Jn−1) , and therefore C(A) = cos(π/n) as asserted. �

COROLLARY 3.4. If A is an n-by-n companion matrix such that ∂W (A) has a
line segment, then C(A) = cos(π/n) .

Proof. If λ is any point on the line segment of ∂W (A) , then Mλ is of dimension
at least 2 by (2). The assertion then follows from Proposition 3.2. �

Note that the converses of the assertions in Proposition 3.2 and Corollary 3.4 are
both false as shown by the next example.
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EXAMPLE 3.5. Let A be the 3-by-3 companion matrix

A =

⎡
⎣ 0 1 0

0 0 1
−1 0 −1

⎤
⎦ .

By Proposition 3.1, we have C(A) � 1/2. For any θ in [0,2π) , the matrix

Re (eiθ A) =

⎡
⎣ 0 eiθ /2 −e−iθ /2

e−iθ /2 0 eiθ /2
−eiθ /2 e−iθ /2 −Reeiθ

⎤
⎦

has characteristic polynomial

pθ (z) = det
(
zI3−Re(eiθ A)

)
= z3 + cosθ · z2 − 3

4
z+ cosθ (cos2 θ −1).

Hence

pθ

(1
2

)
=

1
8

+
1
4

cosθ − 3
8

+ cos3 θ − cosθ = (cosθ −1)
(

cosθ +
1
2

)2
.

Thus pθ (1/2) = 0 if and only if cosθ = 1 or −1/2, which is the case if and only if
θ = 0, 2π/3 or 4π/3. Since

p0(z) = z3 + z2− 3
4
z = z

(
z− 1

2

)(
z+

3
2

)
,

which shows that 1/2 is the largest eigenvalue of ReA with multiplicity 1, we obtain
C(A) = 1/2. On the other hand, since

p2π/3(z) = z3 − 1
2
z2− 3

4
z+

3
8

=
(
z− 1

2

)(
z2 − 3

4

)
,

the three eigenvalues of Re (e2π i/3A) are −√
3/2 < 1/2 <

√
3/2. In particular, this

implies that (1/2)e−2π i/3 is not in ∂W (A) . Indeed, since
√

3/2 is an eigenvalue
of Re (e2π i/3A) , there exists z0 ∈ W (e2π i/3A) such that Re(z0) =

√
3/2 > 1/2. As

W (e2π i/3A) contains the closed disc W (J2) = {z ∈ C : |z| � 1/2} , W (e2π i/3A) con-
tains the convex hull of {z0} ∪W (J2) which has 1/2 as an interior point. Thus,
W (A) = e−2π i/3W (e2π i/3A) contains (1/2)e−2π i/3 as an interior point. Moreover, since
A is a real matrix, W (A) is symmetric about the real axis, we infer that (1/2)e−4π i/3

is not in ∂W (A) . Thus ∂W (A)∩ ∂W (J2) consists of the single point 1/2. Thus if λ
is any point in ∂W (A) with dimMλ = 2, then we infer from the proof of Proposition
3.2 and (2) that Mλ = Mλ ′ for some λ ′ in ∂W (A)∩ ∂W (J2) (= {1/2} ). Therefore,
λ ′ = 1/2 and dimker ReA = dimMλ = dimMλ ′ = 2, which contradicts what has been
proven above. Hence dimMλ = 1 for all λ in ∂W (A) .

Next we consider a necessary condition for C(A) = cos(π/n) , which is in terms
of the entries of the n -by-n companion matrix A . This has partially appeared before in
[8, Lemma 3].
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PROPOSITION 3.6. Let A be an n-by-n companion matrix of the form (1). If
C(A) = cos(π/n) , then there is a real θ such that

n−2

∑
j=0

an− j e
(n− j)iθ sin

( j +1)π
n

= sin
π
n

(3)

and

Re
(n−1

∑
j=1

an− j e
(n− j)iθ sin

jπ
n

)
� 0. (4)

Proof. By Proposition 2.1, there is a real θ such that cos(π/n)= maxσ
(
Re (eiθ A)

)
.

Let

x =

√
2
n

[
e−iθ sin

π
n

e−2iθ sin
2π
n

. . . e−(n−1)iθ sin
(n−1)π

n

]T

in Cn−1 and y =
[

x
0

]
in Cn . Then cos(π/n) = maxW

(
Re (eiθ A)

)
and x is a unit

vector satisfying
(
Re(eiθ Jn−1)

)
x =

(
cos(π/n)

)
x (cf. [9, p. 373]). Hence〈(

Re (eiθ A)
)
y,y

〉
=

〈(
Re (eiθ Jn−1)

)
x,x

〉
=

〈(
cos

π
n

)
x,x

〉
= cos

π
n

.

We infer from
〈(

(cos(π/n))In−Re(eiθ A)
)
y,y

〉
= 0 and

(
cos(π/n)

)
In−Re(eiθ A) � 0

that Re (eiθ A)y = cos(π/n)y . It follows that the n th component of the vector Re (eiθ A)y
equals 0, which yields the equality in (3).

To prove (4), let

A1 =

⎡
⎢⎢⎢⎣

0 1
. . .

. . .
0 1

−an−1 · · · −a2 −a1

⎤
⎥⎥⎥⎦ and A2 =

⎡
⎢⎢⎢⎣

0 · · · 0
...

...
0 · · · 0

−an−1 · · · −a1

⎤
⎥⎥⎥⎦ .

Since Re (eiθ A1) = Re (eiθ Jn−1)+Re(eiθ A2) , we have

cos
π
n

= maxW
(
Re(eiθ A)

)
�

〈(
Re(eiθ A1)

)
x,x

〉
=

〈(
Re (eiθ Jn−1)

)
x,x

〉
+

〈(
Re(eiθ A2)

)
x,x

〉
= cos

π
n

+
〈(

Re(eiθ A2)
)
x,x

〉
,

which yields that Re〈eiθ A2x,x〉 � 0. Plugging in the matrix A2 and the vector x , we
obtain the inequality in (4). �

Note that condition (3) involves only an, . . . ,a2 and condition (4) an−1, . . . ,a1 . In
a sense, they complement each other. Unfortunately, even put together they are still not
sufficient. An example of a 3-by-3 companion matrix to this effect is given in Example
3.10.

For a 2-by-2 companion matrix A , condition (3) is necessary and sufficient for
C(A) = cos(π/2) .
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PROPOSITION 3.7. Let A =
[

0 1
−a2 −a1

]
. Then C(A) = 0 if and only if |a2| = 1 .

Proof. Let a and b be eigenvalues of A . Then a2 = ab and a1 =−(a+b) . Hence

A =
[

0 1
−ab a+b

]
is unitarily similar to

[
a |1+ab|
0 b

]
, whose numerical range W (A) is the

elliptic disc with foci a and b and length of minor axis |1+ab| . Note that C(A) = 0 if
and only if 0 is on the ellipse ∂W (A) , which is in turn equivalent to |a|+ |b|= 2

(
(|a−

b|/2)2 +(|1+ab|/2)2
)1/2

or to 2
(|ab|+Re(ab)

)
= |1+ab|2 . A simple computation

shows that this is the same as (1−|ab|)2 = 0 or |a2| = |ab| = 1 as required. �
The next proposition shows that condition (3) can be strengthened to characteriza-

tions of 3-by-3 and 4-by-4 companion matrices A with C(A) equal to 1/2 and
√

2/2,
respectively.

PROPOSITION 3.8. (a) Let A be a 3 -by-3 companion matrix of the form (1).
Then C(A) = 1/2 if and only if there is a real θ such that a3e3iθ + a2e2iθ = 1 and
|a3|2 � 1+2Re(a1eiθ ) .

(b) Let A be a 4 -by-4 companion matrix of the form (1). Then C(A) =
√

2/2 if
and only if there is a real θ such that a4e4iθ +

√
2a3e3iθ +a2e2iθ = 1 ,

− 3
√

2
4

− b
2

� ReΔ, and ReΔ±
√

3ImΔ � 3
√

2
2

+b, (5)

where

Δ =
(1

2
(Δ2 +

√
Δ2

2−4Δ3
1)

)1/3
, Δ1 = b2−3c, Δ2 = 2b3−9bc+27d, (6)

b =
√

2
2

+Re(a1e
iθ ), c =

√
2

2
Re (a1e

iθ )− 1
4
(|a2e

2iθ −1|2 + |a3|2 + |a4|2),
and

d = −1
4
Re

(
a3(a2e

iθ +a4e
−iθ −1)

)−
√

2
8

(|a2e
2iθ −1|2 + |a3|2 + |a4|2).

(Here (·)1/3 denotes the cubic root with the smallest argument.)

Proof. (a) If C(A) = 1/2, then, by Proposition 2.1, there is a real θ for which
maxσ

(
Re(eiθ A)

)
= 1/2. Since eiθ A is unitarily similar to the companion matrix

A′ =

⎡
⎣ 0 1 0

0 0 1
−a′3 −a′2 −a′1

⎤
⎦ ,

where a′j = a je jiθ for 1 � j � 3, and C(A′) =C(eiθ A) =C(A) = 1/2, we may assume
from the outset that θ = 0. Thus 1/2 is in σ(ReA) . Note that

ReA =

⎡
⎣ 0 1/2 −a3/2

1/2 0 (−a2 +1)/2
−a3/2 (−a2 +1)/2 −Rea1

⎤
⎦
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with characteristic polynomial

p(z) ≡ det(zI3 −ReA)

= z3 +(Rea1)z2 − 1
4
(|a2−1|2 + |a3|2 +1)z− 1

4
Re

(
a3(a2−1)+a1

)
.

Hence

0 = p
(1

2

)
=

1
8

+
1
4
Rea1− 1

8
(|a2−1|2 + |a3|2 +1)− 1

4
Re

(
a3(a2 −1)+a1

)
= −1

8
(|a2−1|2 + |a3|2)− 1

4
Re

(
a3(a2 −1)

)
,

which yields that |(a2−1)+a3|2 = 0 or a2 +a3 = 1. Thus

p(z) =
(
z− 1

2

)(
z2 +

(1
2

+Rea1

)
z− 1

2
(|a3|2−Rea1)

)
,

and the eigenvalues of ReA are 1/2 and

t± ≡ 1
2

(
− 1

2
−Rea1±

(
(
1
2
−Rea1)2 +2|a3|2

)1/2)
.

We derive from t+ � 1/2 that
((

(1/2)−Rea1
)2 +2|a3|2

)1/2 � (3/2)+Rea1 , which,
after a simple computation, yields |a3|2 � 1+2Rea1 .

Conversely, if a2 + a3 = 1 and |a3|2 � 1 + 2Rea1 , then we reverse the above

arguments to obtain p(1/2)= 0 and
(
(1/2)−Rea1

)2+2|a3|2 �
(
(3/2)+Rea1

)2
. The

latter yields that t− � t+ � 1/2. Thus maxσ(ReA) = 1/2. It follows from Propositions
2.1 and 3.1 that C(A) = 1/2.

(b) If C(A) =
√

2/2, then, as in (a), we may assume that θ = 0 and maxσ(ReA)=√
2/2. The characteristic polynomial of ReA can be computed to be

p(z) = z4 +(Rea1)z3 − 1
4
(|a2−1|2 + |a3|2 + |a4|2 +2)z2

− 1
4
Re(2a1−a3 +a3a2 +a3a4)z+

1
16

|a2−a4−1|2.

Since p(
√

2/2) = 0, we obtain, after some computations, that a4 +
√

2a3 +a2 = 1 and
p(z) = (z−√

2/2)q(z) , where q(z) = z3 +bz2 + cz+d ,

b =
√

2
2

+Rea1, c =
√

2
2

Rea1− 1
4
(|a2−1|2 + |a3|2 + |a4|2),

and

d = −1
4
Re

(
a3(a2 +a4 −1)

)−
√

2
8

(|a2−1|2 + |a3|2 + |a4|2).
The zeros of q(z) are given by Cardano’s formula: z1 = −(b+ Δ + Δ′)/3, z2 = −(b+
ωΔ + ω2Δ′)/3 and z3 = −(b+ ω2Δ + ωΔ′)/3, where ω = e2π i/3 , Δ is as in (6) and
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Δ′ =
(
(Δ2 −

√
Δ2

2−4Δ3
1)/2

)1/3 . If Δ2
2 > 4Δ3

1 , then both Δ and Δ′ are real. On the
other hand, the z j ’s, being the eigenvalues of ReA , are also real. In particular, we have

ωΔ + ω2Δ′ = ωΔ + ω2Δ′ = ω2Δ + ωΔ′,

and, therefore, (1−ω)(Δ−Δ′) = 0. Hence Δ = Δ′ or Δ2
2 = 4Δ3

1 , contradicting our
assumption. Thus we must have Δ2

2 � 4Δ3
1 . In this case, Δ and Δ′ are conjugates to

each other. Hence z1,z2,z3 �
√

2/2 if and only if

min{ReΔ,Re(ωΔ),Re (ω2Δ)} � −3
√

2
4

− b
2
,

which is in turn equivalent to the inequalities in (5).
Conversely, if a4 +

√
2a3 +a2 = 1 and (5) holds, then we can reverse the above ar-

guments to obtain p(
√

2/2) = 0. Moreover, the inequalities in (5) guarantee that
√

2/2
is the largest zero of p(z) . Thus maxσ(ReA) =

√
2/2 and C(A) =

√
2/2 follows from

Propositions 2.1 and 3.1. �

Note that, in Proposition 3.6, condition (3) is equivalent to the fact that cos(π/n)
is a zero of the characteristic polynomial of Re (eiθ A) . Some extra inequalities such
as the ones in Proposition 3.8 (a) and (b) are needed to guarantee that cos(π/n) is its
largest zero. Admittedly, the ones in Proposition 3.8 (b) are unwieldy, but nevertheless
they do give a characterization for C(A) =

√
2/2. For general values of n , we don’t

expect tractable inequalities can be derived.
For n = 3, the inequality in Proposition 3.8 (a) can be replaced by the noninvert-

ibility of the companion matrix A .

PROPOSITION 3.9. Let A be a 3 -by-3 noninvertible companion matrix of the
form (1). Then C(A) = 1/2 if and only if a3e3iθ +a2e2iθ = 1 for some real θ .

Proof. In view of Proposition 3.6, we need only prove that a3e3iθ + a2e2iθ = 1
for some real θ implies C(A) = 1/2. Since A is noninvertible, we have a3 = 0 and
hence a2e2iθ = 1. If 1 + 2Re(a1eiθ ) � 0, then C(A) = 1/2 by Proposition 3.8 (a).
Otherwise, for the case of 1 + 2Re(a1eiθ ) < 0, consider the matrix −eiθA , which is
unitarily similar to ⎡

⎣ 0 1 0
0 0 1
0 −a′2 −a′1

⎤
⎦ ,

where a′2 = a2e2iθ and a′1 = −a1eiθ . Hence a′2 = 1 and 1 + 2Rea′1 > 2 > 0. We
conclude from Proposition 3.8 (a) that in this case we also have C(A) = 1/2. �

The next example shows that the noninvertibility of A in the preceding proposition
is essential.



CRAWFORD NUMBERS OF COMPANION MATRICES 873

EXAMPLE 3.10. If A =
[

0 1 0
0 0 1
2 −3 −1

]
, then A is invertible with a3 = −2, a2 = 3

and a1 = 1. We have a3 +a2 = 1, but

|a3|2 = 4 > 1+2cosθ = 1+2Re(a1e
iθ )

for all real θ . Hence C(A) > 1/2 by Propositions 3.1 and 3.8 (a). Note also that, in
this example, we have Re (a2 +a1) = 4 > 0. Thus conditions (3) and (4) of Proposition
3.6 together do not guarantee that C(A) = 1/2.

We conclude this section with a lower bound for the numerical radius of a com-
panion matrix.

THEOREM 3.11. If A is an n-by-n companionmatrix of the form (1), then w(A)�
cos(π/(n+1)) . Moreover, the equality holds if and only if A = Jn .

Proof. Assume that w(A) � cos
(
π/(n+1)

)≡ r . Then the matrix rIn−Re(eiθ A)
is positive semidefinite for all real θ . Note that eiθ A is unitarily similar to the compan-
ion matrix

Aθ ≡

⎡
⎢⎢⎢⎣

0 1
. . .

. . .
0 1

−aneniθ · · · −a2e2iθ −a1eiθ

⎤
⎥⎥⎥⎦ ,

and if x = [x1 . . . xn]T in Cn , where x j = sin
(
jπ/(n + 1)

)
for 1 � j � n , then

(ReJn)x = rx (cf. [9, p. 373]). Hence we have

0 � 〈(rIn −ReAθ )x,x〉 =
〈
(rIn−ReJn)x,x

〉
+

〈(
Re (Jn−Aθ )

)
x,x

〉

= 0+
1
2

〈⎡
⎢⎢⎢⎣

0 · · · 0 ane−niθ

...
...

...
0 · · · 0 a2e−2iθ

aneniθ · · · a2e2iθ a1eiθ +a1e−iθ

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1
...

xn−1

xn

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

x1
...

xn−1

xn

⎤
⎥⎥⎥⎦

〉

=
1
2

n

∑
j=1

(a je
− jiθ xnx j +a je

jiθ xn− j+1xn) ≡ 1
2

p(eiθ )

for all real θ . This shows that the trigonometric polynomial p(eiθ ) assumes only
nonnegative values. Thus the Riesz–Fejér theorem yields that p(eiθ ) = |q(eiθ )|2 for
some polynomial q(z)= b0zn+b1zn−1+ · · ·+bn−1z+bn of degree at most n (cf. [13, p.
77, Problem 40]). The equality of their constant terms results in |b0|2 + · · ·+ |bn|2 = 0.
Hence b0 = · · · = bn = 0 and thus p(eiθ ) = |q(eiθ )|2 = 0 for all real θ . Therefore, all
the coefficients of p are zero and so a j = 0 for all j . This shows that w(A) � w(Jn) =
cos

(
π/(n+ 1)

)
and the equality here implies that A = Jn . Since the converse of the

latter is trivial, this completes the proof. �
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4. Reducible companion matrix

In this section, we derive necessary and sufficient conditions for an n -by-n re-
ducible companion matrix to have Crawford number equal to cos(π/n) . Recall that
an n -by-n companion matrix is reducible if and only if its eigenvalues are of the form
aω1, . . . ,aωp,(1/a)ωp+1, · · · ,(1/a)ωn , where a �= 0, 1 � p � n−1, and the ω j ’s are
distinct with {ω1, . . . ,ωn} = {e2π i j/n : 0 � j � n− 1} . In this case, let λ j = aω j if
1 � j � p , and (1/a)ω j if p+1 � j � n , let u j = [1 λ j . . . λ n−1

j ]T be an eigenvector
of A associated with λ j for all j , and let M =

∨{u j : 1 � j � p} and N =
∨{u j :

p + 1 � j � n} . Then M and N are subspaces of Cn orthogonal to each other sat-
isfying AM ⊆ M and AN ⊆ N . If A1 and A2 are the restrictions of A to M and N ,
respectively, then A is unitarily similar to A1 ⊕A2 with σ(A1) = {aω1, . . . ,aωp} and
σ(A2) = {(1/a)ωp+1, · · · ,(1/a)ωn} (cf. proof of [7, Theorem 1.1]).

The following theorem is the main result of this section. In particular, it shows
that the converses of the assertions in Propositions 3.2 and 3.6 are true for reducible
companion matrices.

THEOREM 4.1. Let A be an n-by-n reducible companion matrix of the form
(1), which is unitarily similar to A1 ⊕A2 with σ(A1) = {aω1, . . . ,aωp} and σ(A2) =
{(1/a)ωp+1, · · · ,(1/a)ωn} as above, where |a|� 1 . Then the following are equivalent:

(a) C(A) = cos(π/n) ,

(b) w(A1) � cos(π/n) ,

(c) there is a point λ in ∂W (A) such that dimMλ = 2 , and

(d) there is a real θ such that ∑n−2
j=1 an− j e(n− j)iθ sin

(
( j +1)π/n

)
= sin(π/n) .

We start the proof with the following two lemmas, which relate the vector x =
[x1 . . . xn]T , where x j = sin( jπ/n) for 1 � j � n , to the direct summands A1 and A2

of A .

LEMMA 4.2. Let

A =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

a 0

⎤
⎥⎥⎥⎥⎦

be an n-by-n matrix, where a �= 0,−1 , and x = [x1 . . . xn]T , where x j = sin( jπ/n) ,
1 � j � n. Then x is a cyclic vector for A, that is, the vectors x, Ax, . . . , An−1x span
Cn .

Proof. It suffices to show that x, Ax, . . . , An−1x are linearly independent. Assum-
ing that ∑n

�=1 b�A�−1x = 0, we need to check b� = 0 for all � . This will be done by
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induction from n to 1. Indeed, from the zeroness of the j th component of ∑� b�A�−1x ,
we obtain, as xn = 0,

( n− j

∑
k=1

bk sin
(k+ j−1)π

n

)
+a

( j−1

∑
k=1

bk+n− j+1 sin
kπ
n

)
= 0, 1 � j � n. (7)

Letting j = 1, we have

0 =
n−1

∑
k=1

bk sin
kπ
n

=
n−1

∑
k=1

bk sin
kπ
n

cos
π
n

=
1
2

n−1

∑
k=1

bk

(
sin

(k+1)π
n

+ sin
(k−1)π

n

)

=
1
2

( n−2

∑
k=1

bk sin
(k+1)π

n
+

n−1

∑
k=2

bk sin
(k−1)π

n

)

=
1
2

(
−abn sin

π
n
−bn sin

(n−1)π
n

)
,

where the last equality is a consequence of j = 2 and j = n of (7) (for the latter, we
also need a �= 0). It follows that bn +abn = 0. Since a �= −1, we obtain bn = 0.

Next assume that bn = bn−1 = · · · = bn− j0+2 = 0 for some j0 , 2 � j0 � n . We
proceed to show that bn− j0+1 = 0. Indeed, from j = j0 of (7) we have

0 =
n− j0

∑
k=1

bk sin
(k+ j0−1)π

n
=

n− j0

∑
k=1

bk sin
(k+ j0−1)π

n
cos

π
n

=
1
2

n− j0

∑
k=1

bk

(
sin

(k+ j0)π
n

+ sin
(k+ j0−2)π

n

)

=
1
2

( n− j0−1

∑
k=1

bk sin
(k+ j0)π

n
+

n− j0

∑
k=1

bk sin
(k+ j0−2)π

n

)
. (8)

Plugging ( n− j0+1

∑
k=1

bk sin
(k+ j0)π

n

)
+abn− j0+1 sin

π
n

= 0

and
n− j0+1

∑
k=1

bk sin
(k+ j0−2)π

n
= 0,

the equalities of (7) for j = j0 + 1 and j0 − 1, respectively, into (8), we obtain
abn− j0+1 sin(π/n)+bn− j0+1 sin

(
(n−1)π/n

)
= 0. Thus (a+1)bn− j0+1 = 0 or bn− j0+1

= 0 (as a �= −1). Hence, by induction, we have b� = 0 for all � . �

LEMMA 4.3. Let A be an n-by-n reducible companion matrix with eigenvalues
aω1, . . . ,aωp,(1/a)ωp+1, · · · ,(1/a)ωn , where 0 < |a|< 1 , 1 � p � n−1 , and the ω j ’s
are distinct with {ω1, . . . ,ωn} = {e2π i j/n : 0 � j � n−1} . Let x = [x1 . . . xn]T , where
x j = sin( jπ/n) , 1 � j � n, and M and N be as before. Then x is not in M nor in N .



876 H.-L. GAU, K.-Z. WANG AND P. Y. WU

Proof. Let A′
1 be the n -by-n matrix

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

an 0

⎤
⎥⎥⎥⎥⎦ .

It is easily seen that A′
1M ⊆ M . If x is in M , then x, A′

1x, . . . , A′
1
n−1x are all in M ,

which implies, by Lemma 4.2, that M = Cn . This contradicts the fact that dimM =
p � n−1. Thus x is not in M . Similarly, if

A′
2 =

⎡
⎢⎢⎢⎢⎣

0 1

0
. . .
. . . 1

(1/a)n 0

⎤
⎥⎥⎥⎥⎦ ,

then A′
2N ⊆ N and we can argue as above that x is not in N . �

The next lemma is an easy consequence of results from [5].

LEMMA 4.4. Let A be an n-by-n companion matrix unitarily similar to A1⊕A2

with σ(A1) = {aω1, . . . ,aωp} and σ(A2) = {(1/a)ωp+1, · · · ,(1/a)ωn} , where |a|� 1 ,
1 � p � n− 1 , and the ω j ’s are distinct such that {ω1, . . . ,ωn} = {e2π i j/n : 0 � j �
n−1} . Then the following are equivalent:

(a) ∂W (A) has a line segment,

(b) neither W (A1) nor W (A2) is contained in the other, and

(c) either |a| = 1 or |a| < 1 and w(A1) > cos(π/n) .

Proof. (a) ⇒ (b). If W (A1) ⊆W (A2) , then W (A) = W (A2) . Since A2 is of class
S−1

n−p , that is, A2 is an (n− p)-by-(n− p) matrix satisfying σ(A2) ⊆ {z ∈ C : |z| > 1}
and rank(In−p−A∗

2A2) = 1, the boundary of W (A2) contains no line segment (cf. [5,
Theorem 2.5 (4)]). Thus ∂W (A) has no line segment, which contradicts (a). Hence we
must have W (A1) � W (A2) . Similarly, since A1 is of class Sp (‖A1‖ � 1, σ(A1) ⊆
{z ∈ C : |z| < 1} and rank(Ip−A∗

1A1) = 1), ∂W (A1) contains no line segment (cf. [6,
Lemma 2.2]). Thus we infer as above that W (A2) � W (A1) .

(b) ⇒ (c). If |a| < 1, then w(A1) > cos(π/n) follows from [5, Theorem 2.11].
(c) ⇒ (a). If n = 2, then our assumption implies that W (A) is itself a line segment.

Hence we may assume that n � 3. In this case, if |a| = 1, then the eigenvalues of A
are aω j , 0 � j � n− 1, where ω = e2π i/n . Hence [7, Corollary 1.2] implies that A
is unitary and thus (a) holds. On the other hand, if |a| < 1 and w(A1) > cos(π/n) ,
then W (A1) � W (A2) by [5, Theorem 2.11]. Also, if W (A2) ⊆W (A1) , then σ(A2) ⊆
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W (A1)⊆ {z∈ C : |z|< 1} , which leads to a contradiction. Hence W (A2) �W (A1) and
(a) follows. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. If |a| = 1, then conditions (a), (b), (c) and (d) are all sat-
isfied (cf. Proposition 3.7 for n = 2 and [7, Corollary 1.2] for n � 3). Hence in the
following we may assume that 0 < |a| < 1. Let x in Cn and the subspaces M and N
of Cn , be defined as before.

(a) ⇒ (b). Assume that C(A) = cos(π/n) and w(A1) < cos(π/n) . By Proposition
2.1, there is a real θ such that cos(π/n) = maxσ

(
Re(eiθ A)

)
. As before, we may

assume that θ = 0 and thus W (A) is contained in the closed half-plane L ≡ {z ∈ C :
Rez � cos(π/n)} . Since x is not in M and N by Lemma 4.3, there are nonzero vectors
u and v in M and N , respectively, with ‖u‖2+‖v‖2 = 1 such that x/‖x‖= u+v . Note
that u and v (resp., (ReA)u and v , and u and (ReA)v) are orthogonal to each other.
Hence, by the proof of Proposition 3.6, we have

cos
π
n

=
〈
(ReA)

x
‖x‖ ,

x
‖x‖

〉
= 〈(ReA)(u+ v),u+ v〉

= 〈(ReA)u,u〉+ 〈(ReA)v,v〉
= ‖u‖2Re

〈
A1

u
‖u‖ ,

u
‖u‖

〉
+‖v‖2Re

〈
A

v
‖v‖ ,

v
‖v‖

〉
.

Since w(A1) < cos(π/n) , we have Re 〈A1(u/‖u‖),u/‖u‖〉< cos(π/n) . On the other
hand, W (A) ⊆ L implies that Re 〈A(v/‖v‖),v/‖v‖〉 � cos(π/n) . These two together
yield a contradiction to the above convex combination for cos(π/n) . Thus we must
have w(A1) � cos(π/n) .

(b) ⇒ (a). If w(A1) > cos(π/n) , then ∂W (A) has a line segment by Lemma 4.4.
Hence (a) holds by Corollary 3.4.

Next assume that w(A1) = cos(π/n) . After a rotation, we may further assume that
cos(π/n) is in W (A1) . Since W (A) =W (A2)⊇W (Jn−1) = {z∈C : |z|� cos(π/n)} by
[5, Theorem 2.11], to prove (a), we need only show that ReA �

(
cos(π/n)

)
In . Assum-

ing the contrary that ReA �
(
cos(π/n)

)
In , we would also have ReA2 �

(
cos(π/n)

)
In−p

since W (ReA2) = ReW (A2) = ReW (A) =W (ReA) . Let v = [v1 . . . vn]T be a unit vec-
tor in N such that Re〈Av,v〉 > cos(π/n) . This shows that 〈Av,v〉 is not in W (Jn−1) ,
and thus vn �= 0. On the other hand, since cos(π/n) is in W (A1) , there is a unit vector
u = [u1 . . . un]T in M such that 〈Au,u〉 = cos(π/n) . We now check that un �= 0. In-
deed, if un = 0, then cos(π/n) = 〈Au,u〉= 〈Jn−1u′,u′〉 , where u′ = [u1 . . . un−1]T is a
unit vector in Cn−1 . Thus u′ is a multiple of x′ ≡ [x1 . . . xn−1]T , where x j = sin( jπ/n) ,
1 � j � n− 1 (cf. [9, Proposition 1 (3)]), and hence u is a multiple of x . The latter
would imply that x is in M , which contradicts Lemma 4.3. Hence un �= 0. Let s =
un/(|un|2 + |vn|2)1/2 , t = −vn/(|un|2 + |vn|2)1/2 and w = sv+ tu . Since |s|2 + |t|2 = 1
and u and v are unit vectors in M and N , respectively, which are orthogonal to each
other, it follows that w is also a unit vector. Its n th component svn + tun is easily seen
to be 0, which shows that w is in Cn−1 ⊕{0} . Therefore, 〈Aw,w〉 is in W (Jn−1) and
hence cos(π/n) � Re〈Aw,w〉 = Re〈A(sv + tu),sv + tu〉 . Since Au and Av are in M
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and N , respectively, Au and v are orthogonal to each other and so are Av and u . Thus

Re〈A(sv+ tu),sv+ tu〉= Re(|s|2〈Av,v〉+ |t|2〈Au,u〉)
= |s|2Re 〈Av,v〉+ |t|2Re 〈Au,u〉
> |s|2 cos

π
n

+ |t|2 cos
π
n

= cos
π
n

,

where the strict inequality is a consequence of the nonzeroness of s . This leads to a
contradiction. We conclude that ReA �

(
cos(π/n)

)
In , which proves (a).

(b) ⇒ (c). If w(A1) > cos(π/n) , then ∂W (A) has a line segment by Lemma
4.4. Hence (c) holds by [4, Theorem 1 (ii)] and Lemma 3.3. On the other hand, if
w(A1) = cos(π/n) , then [5, Theorem 2.11] implies that W (A) =W (A2) . Since C(A) =
cos(π/n) by (a) (which has been shown to be equivalent to (b)), there is a point λ =(
cos(π/n)

)
eiθ (θ real) in ∂W (A)∩∂W (Jn−1) . After the rotation around the origin by

the angle −θ , we may assume that θ = 0. Letting x′ = [x1 . . . xn−1]T in Cn−1 , we
have 〈Ax,x〉 = 〈Jn−1x′,x′〉 = λ by [9, Proposition 1 (3)]. On the other hand, as λ is
also in ∂W (A2) , there is a unit vector v in N such that 〈A2v,v〉 = λ . Therefore, both
x and v are in Mλ . Since x is not in N by Lemma 4.3, they are linearly independent.
This shows that dimMλ � 2. Thus (c) follows from Lemma 3.3.

Since (c) ⇒ (a) and (a) ⇒ (d) have been proven in Propositions 3.2 and 3.6,
respectively, to complete the proof we need only show that (d) ⇒ (b).

(d) ⇒ (b). Condition (d) (with θ = 0) implies that the vector x is such that
(ReA)x =

(
cos(π/n)

)
x . Hence cos(π/n) is in σ(ReA) = σ(ReA1)∪σ(ReA2) . We

now show that cos(π/n) is always in σ(ReA1) . Indeed, assume that it is in σ(ReA2) ,
but not in σ(ReA1) . Let v be a unit vector in N such that (ReA2)v =

(
cos(π/n)

)
v .

We also have (ReA)v =
(
cos(π/n)

)
v . As x is not in N by Lemma 4.3, the vectors x

and v are linearly independent. Thus dimker
(
ReA− (cos(π/n))In

)
� 2. But

dimker
(
ReA−

(
cos

π
n

)
In

)
= dimker

(
ReA1−

(
cos

π
n

)
Ip

)
+dimker

(
ReA2−

(
cos

π
n

)
In−p

)
= 0+1 = 1

by [1, Theorem 2.8], which leads to a contradiction. Thus cos(π/n) is in σ(ReA1) or
in W (ReA1) (= ReW (A1)), and hence w(A1) � cos(π/n) . �

The following are some consequences of Theorem 4.1.

COROLLARY 4.5. Under the same assumptions of Theorem 4.1, if |a|� cos(π/n) ,
then C(A) = cos(π/n) .

Proof. Since σ(A1)⊆W(A1) , the assumption |a|� cos(π/n) implies that w(A1)�
cos(π/n) . Theorem 4.1 then yields C(A) = cos(π/n) . �
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COROLLARY 4.6. Under the same assumptions of Theorem 4.1, if σ(A1) is a
singleton, then C(A) = cos(π/n) if and only if |a| � cos(π/n) .

Proof. In this case, we have w(A1) = |a| . The assertion follows from Theorem
4.1 immediately. �
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