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ON THE INDEX OF A NON–FREDHOLM MODEL OPERATOR

ALAN CAREY, FRITZ GESZTESY, GALINA LEVITINA

AND FEDOR SUKOCHEV

Abstract. Let {A(t)}t∈R be a path of self-adjoint Fredholm operators in a Hilbert space H ,
joining endpoints A± as t → ±∞ . Computing the index of the operator DDDDAAAA = ∂/∂ t + AAAA
acting on L2(R;H ) , where AAAA denotes the multiplication operator (AAAA f )(t) = A(t) f (t) for
f ∈ L2(R;H ) , and its relation to spectral flow along this path, has a long history, but it is
mostly focussed on the case where the operators A(t) all have purely discrete spectrum.

Introducing the operators HHHH1 = DDDD∗
AAAADDDDAAAA and HHHH2 = DDDDAAAADDDD∗

AAAA , we consider spectral shift
functions, denoted by ξ ( · ;A+ ,A−) and ξ ( · ;HHHH2,HHHH1) associated with the pairs (A+,A−) and
(HHHH2,HHHH1) . Under the restrictive hypotheses that A+ is a relatively trace class perturbation of
A− , a relationship between these spectral shift functions was proved in [14], for certain oper-
ators A± with essential spectrum, extending a result of Pushnitski [22]. Moreover, assuming
A± to be Fredholm, the value ξ (0;A−,A+) was shown to represent the spectral flow along the
path {A(t)}t∈R while that of ξ (0+;HHHH1,HHHH2) yields the Fredholm index of DDDDAAAA . The fact, proved
in [14], that these values of the two spectral functions are equal, resolves the index = spectral
flow question in this case. This relationship between spectral shift functions was generalized to
non-Fredholm operators in [9] again under the relatively trace class perturbation hypothesis. In
this situation it asserts that the Witten index of DDDDAAAA , denoted by Wr(DDDDAAAA) , a substitute for the
Fredholm index in the absence of the Fredholm property of DDDDAAAA , is given by

Wr(DDDDAAAA) = ξL(0+;HHHH2,HHHH1) = [ξL(0+;A+,A−)+ξL(0−;A+,A−)]/2.

Here one assumes that ξ ( · ;A− ,A+) possesses a right and left Lebesgue point at 0 denoted by
ξL(0±;A+,A−) (and similarly for ξL(0+;HHHH2,HHHH1) ).

When the path {A(t)}t∈R consists of differential operators, the relatively trace class per-
turbation assumption is violated. The simplest assumption that applies (to differential operators
in 1+1 dimensions) is to admit relatively Hilbert–Schmidt perturbations. This is not just an incre-
mental improvement. In fact, the method we employ here to make this extension is of interest in
any dimension. Moreover we consider A± which are not necessarily Fredholm and we establish
that the relationships between the two spectral shift functions found in all of the previous papers
[9] ,[14], and [22], can be proved, even in the non-Fredholm case. The significance of our new
methods is that, besides being simpler, they also allow a wide class of examples such as pseu-
dodifferential operators in higher dimensions. Most importantly, we prove the above formula for
the Witten index in the most general circumstances to date.
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