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ON THE INDEX OF A NON-FREDHOLM MODEL OPERATOR

ALAN CAREY, FRITZ GESZTESY, GALINA LEVITINA
AND FEDOR SUKOCHEV

Abstract. Let {A(t)};cr be a path of self-adjoint Fredholm operators in a Hilbert space .77,
joining endpoints AL as ¢ — feo. Computing the index of the operator Dy = d/dt + A
acting on L?>(R;.¢), where A denotes the multiplication operator (Af)(r) = A(t)f(r) for
f € L*>(R;2), and its relation to spectral flow along this path, has a long history, but it is
mostly focussed on the case where the operators A(r) all have purely discrete spectrum.

Introducing the operators Hy = DyD, and H, = D,D} , we consider spectral shift
functions, denoted by &(-;A,A_) and &(-;H»,H) associated with the pairs (A4,A_) and
(H2,H,). Under the restrictive hypotheses that A, is a relatively trace class perturbation of
A_, arelationship between these spectral shift functions was proved in [14], for certain oper-
ators Ay with essential spectrum, extending a result of Pushnitski [22]. Moreover, assuming
Ay to be Fredholm, the value &(0;A_,A.) was shown to represent the spectral flow along the
path {A(r) },er while that of (04 ;H,H>) yields the Fredholm index of D, . The fact, proved
in [14], that these values of the two spectral functions are equal, resolves the index = spectral
flow question in this case. This relationship between spectral shift functions was generalized to
non-Fredholm operators in [9] again under the relatively trace class perturbation hypothesis. In
this situation it asserts that the Witten index of D4, denoted by W,(DA) , a substitute for the
Fredholm index in the absence of the Fredholm property of D, , is given by

Wi(Dy) = EL(04;Ho Hy) = [EL(043A+,A-) +8(0-3A4,A)]/2.

Here one assumes that &(-;A_,A.) possesses a right and left Lebesgue point at 0 denoted by
EL(043A1,A_) (and similarly for &, (04;Ho,H})).

When the path {A(7)},cr consists of differential operators, the relatively trace class per-
turbation assumption is violated. The simplest assumption that applies (to differential operators
in 1+1 dimensions) is to admit relatively Hilbert—Schmidt perturbations. This is not just an incre-
mental improvement. In fact, the method we employ here to make this extension is of interest in
any dimension. Moreover we consider A4 which are not necessarily Fredholm and we establish
that the relationships between the two spectral shift functions found in all of the previous papers
[9] ,[14], and [22], can be proved, even in the non-Fredholm case. The significance of our new
methods is that, besides being simpler, they also allow a wide class of examples such as pseu-
dodifferential operators in higher dimensions. Most importantly, we prove the above formula for
the Witten index in the most general circumstances to date.
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