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Abstract. Two new inequalities are proved for sector matrices. The first one complements a
recent result in [Oper. Matrices, 8 (2014) 1143–1148]; the second one is an analogue of the AM-
GM inequality, where the geometric mean for two sector matrices was introduced in [Linear
Multilinear Algebra 63 (2015) 296-301]. As an application of the second inequality, we present
similar inequalities for singular values or norms.

1. Introduction

By a sector, we mean a region on the complex plane

Sα = {z ∈ C : ℜz > 0, |ℑz| � (ℜz) tanα}, α ∈ [0,π/2).

The set of all n× n complex matrices is denoted by Mn . Recall that the numerical
range of an n×n matrix M ∈ Mn is defined by

W (M) = {x∗Mx : x ∈ C
n, x∗x = 1}.

Sector matrices is a class of matrices whose numerical ranges are contained in Sα (for
some fixed α ), though the numerical range of a sector matrix may not be a sector. This
class of matrices has been the subject of a number of recent papers [3, 4, 5, 6, 8, 9]. We
follow up the study by contributing some new inequalities.

Consider A ∈ Mn partitioned as

A =
[
A11 A12

A21 A22

]
, where A22 ∈ Mq, q � �n/2�. (1)

Assume that A11 is invertible, the Schur complement of A11 in A is defined as A/A11 :=
A22−A21A

−1
11 A12 . It is clear that A is invertible whenever W (A) ⊂ Sα . If W (A) ⊂ Sα ,

then W (A11) ⊂ Sα , thus A/A11 is well defined.
Our starting point is the following singular value inequality
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THEOREM 1. [4, Theorem 1.1] Let A ∈ Mn be partitioned as in (1) and W (A) ⊂
Sα . Then

σ j(A/A11) � sec2(α)σ j(A22), j = 1, . . . ,q, (2)

where σ j(·) are the singular values, arranged in descending order.

For two Hermitian matrices A,B ∈ Mn , we write A � B (or B � A) to mean that
A−B is positive semidefinite. The absolute value of X is defined as |X | = (X∗X)1/2 .
With this notation, (2) can be equivalently written as

|A/A11| � sec2(α)U∗|A22|U (3)

for some unitary matrix U ∈ Mq .

2. An inequality involving Schur complements

The real part (or the Hermitian part) of A ∈ Mn is denoted by ℜA := A+A∗
2 . We

present the following result, which says that concerning the real parts of A/A11,A22 , an
analogue of (3) is valid without bringing in a unitary matrix.

THEOREM 2. Let A ∈ Mn be partitioned as in (1) and W (A) ⊂ Sα . Then

ℜ(A/A11) � sec2(α)ℜA22. (4)

If X =
[
X11 X12

X21 X22

]
is invertible, then we also partition X−1 comformally as X so

that (X−1)22 means the (2,2) block of X−1 . We need two simple lemmas. These
lemmas should be well known to experts on matrix analysis, but I include proofs for
the convenience of readers.

LEMMA 1. If X =
[
X11 X12

X21 X22

]
is positive definite, then

(X22)−1 � (X−1)22.

Proof. Note that (X−1)22 = (X/X11)−1 = (X22 − X21X
−1
11 X12)−1 � (X22)−1 . A

generalization of this lemma can be found in [7]. �

LEMMA 2. If X ∈ Mn has a positive definite real part, then

ℜ(X−1) � (ℜX)−1.

Proof. Consider the Cartesian decomposition X = Y + iZ . Then

ℜ(X−1) = (Y +ZY−1Z)−1 � Y−1 = (ℜX)−1. �
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Proof of Theorem 2. Consider the Cartesian decomposition A = B+ iC . The con-
dition W (A) ⊂ Sα implies that ±C � tan(α)B and so

±B−1/2CB−1/2 � tan(α).

This yields (B−1/2CB−1/2)2 � tan2(α) , i.e.,

CB−1C � tan2(α)B.

In particular,

(CB−1C)22 � tan2(α)B22. (5)

Note that sec2(α) = 1+ tan2(α) , so (5) is equivalent to

cos2(α)(B+CB−1C)22 � B22. (6)

With (6), we can find upper bounds for (B22)−1 ,

(ℜA22)−1 = (B22)−1 � sec2(α)
(
(B+CB−1C)22

)−1

� sec2(α)
(
(B+CB−1C)−1

)
22

= sec2(α)
(

ℜ(A−1)
)

22

= sec2(α)ℜ(A−1)22

= sec2(α)ℜ((A/A11)−1)

� sec2(α)
(

ℜ(A/A11)
)−1

,

in which the second inequality is by Lemma 1 and the third inequality is by Lemma 2.
Therefore, ℜ(A/A11) � sec2(α)ℜA22 , as desired. �

REMARK 1. Note that (4) can be written as

ℜ(tan2(α)A22 +A21A
−1
11 A12) � 0.

On the other hand, if W (A) ⊂ Sα , then W (AA−1A∗) = W (A∗) ⊂ Sα , which yields
W (A−1)⊂ Sα . As (A/A11)−1 is a principal submatrix of A−1 , we have W ((A/A11)−1)⊂
Sα and so W (A/A11) ⊂ Sα . In particular,

ℜ(A22−A21A
−1
11 A12) � 0.

However, under the assumption W (A) ⊂ Sα , it is in general not true that

ℜ(A22 +A21A
−1
11 A12) � 0.
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3. AM-GM inequalities

The geometric mean of two positive definite matrices A,B ∈ Mn is defined by

A�B := B1/2(B−1/2AB−1/2)1/2B1/2.

It is easy to check that the geometric mean A�B is the unique positive definite solution
to the Ricatti equation XB−1X = A . For more information about matrix geometric
mean, we refer to [1, Chapter 4].

Generalizing this, Drury [3] defined the geometric mean for two sector matrices
A,B ∈ Mn via the formula

A�B :=
(

2
π

∫ ∞

0
(tA+ t−1B)−1 dt

t

)−1

, (7)

in which we continue to use the standard notation A�B for the geometric mean.
Clearly, from (7), one observes that A�B = B�A and that if W (A) ⊂ Sα and

W (B) ⊂ Sα , then W (A�B) ⊂ Sα . Though not obvious, one could verify that the ge-
ometric mean in (7) satisfies (see [3, Theorem 3.4])

(i) A�B = B1/2(B−1/2AB−1/2)1/2B1/2 .

(ii) A�B is a solution to the Ricatti equation XB−1X = A . Moreover, if a solution X
to the Ricatti equation XB−1X = A has positive definite real part, then X = A�B
(see [3, Proposition 3.5]).

The following noncommutative AM-GM inequality is known for positive definite
matrices A,B ∈ Mn (e.g. [1])

A�B � A+B
2

. (8)

Is there an analogue for sector matrices? The first thought is whether it holds

ℜ(A�B) � ℜ
A+B

2
(9)

for sector matrices A,B ∈ Mn . The answer is no as the following example shows

EXAMPLE 1. Let

A =
[

10 3+ i
3+ i 2+4i

]
,B =

[
2−4i −1−4i
−1−4i 2− i

]
.

It is easy to verify that A,B have positive definite real part. Using the Matlab, one com-

putes that ℜ(A�B)=
[
6.2830 2.0747
2.0747 3.2251

]
. However, in this case, det

(
ℜA+B

2 −ℜ(A�B)
)
=

−0.8083 < 0, violating (9).
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The main result of this section is a correct extension of (8). We need a lemma,
which can be regarded as a complement of Lemma 2.

LEMMA 3. If X ∈ Mn with W (A) ⊂ Sα , then

sec2(α)ℜ(X−1) � (ℜX)−1.

Proof. The inequality is implicit in the proof of [4, Theorem 3.1], we omit the
details. �

THEOREM 3. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

ℜ(A�B) � sec2(α)
2

ℜ(A+B). (10)

Proof. Compute

ℜ(A�B) = ℜ(A−1�B−1)−1

= ℜ
2
π

∫ ∞

0
(tA−1 + t−1B−1)−1 dt

t

=
2
π

∫ ∞

0
ℜ(tA−1 + t−1B−1)−1 dt

t

� 2
π

∫ ∞

0

(
tℜA−1 + t−1ℜB−1)−1 dt

t

� sec2(α)
2
π

∫ ∞

0

(
t(ℜA)−1 + t−1(ℜB)−1)−1 dt

t

= sec2(α)
(
(ℜA)−1�(ℜB)−1)−1

= sec2(α)(ℜA)�(ℜB)
� sec2(α)(ℜA+ ℜB)
= sec2(α)ℜ(A+B),

in which the first inequality is by Lemma 2 and the second inequality is by Lemma 3,
respectively. �

4. Applications

This section presents some implications of Theorem 3. For a Hermitian matrix
X ∈ Mn , λ j(X) means the j -th largest eigenvalue of X . We need an auxiliary result.

LEMMA 4. Let A ∈ Mn be such that W (A) ⊂ Sα . Then

λ j(ℜA) � σ j(A) (11)

� sec2(α)λ j(ℜA), j = 1, . . . ,n. (12)
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Proof. The first inequality is due to Fan and Hoffman (see, [2, p. 73]), while the
second one was recently proved in [4, Theorem 3.1]. �

THEOREM 4. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

σ j(A�B) � sec4(α)
2

σ j(A+B) (13)

for j = 1, . . . ,n.

Proof. Compute

σ j(A�B) � sec2(α)σ j(ℜ(A�B)) by (12)

� sec4(α)
2

σ j(ℜ(A+B)) by Theorem 3

� sec4(α)
2

σ j(A+B), by (11)

as claimed. �
A norm on the algebra of Mn is unitarily invariant if ‖X‖ = ‖UXV‖ for all uni-

taries U and V and all X ∈ Mn .

THEOREM 5. Let A,B ∈ Mn be such that W (A),W (B) ⊂ Sα . Then

‖A�B‖ � sec3(α)
2

‖A+B‖ (14)

for any unitarily invariant norm.

Proof. The claimed result follows from the following chain of inequalities

‖A�B‖ � sec(α)‖ℜ(A�B)‖

� sec3(α)
2

‖ℜ(A+B)‖

� sec3(α)
2

‖A+B‖.

The argument in each step is the same as in the proof of Theorem 4 except for the first
inequality, where we used a result of Zhang [8, Eq.(6)]. �

We finish the paper by proposing the following open problem.

AN OPEN PROBLEM. What is the optimal p in secp(α) that appears in (4), (10),
(13) and (14), respectively?
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