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LINES OF FULL RANK MATRICES IN LARGE SUBSPACES

CLÉMENT DE SEGUINS PAZZIS

(Communicated by P. Yiu-Tung)

Abstract. Let n and p be non-negative integers with n � p , and S be a linear subspace of the
space of all n by p matrices with entries in a field K . A classical theorem of Flanders states
that S contains a matrix with rank p whenever codimS < n .

In this article, we prove the following related result: if codimS < n− 1 , then, for any
non-zero n by p matrix N with rank less than p , there exists a line that is directed by N , has a
common point with S and contains only rank p matrices.

1. Introduction

Throughout the article, K denotes an arbitrary field. Let n and p be non-negative
integers. We denote by Mn,p(K) the space of all n by p matrices with entries in K .
In particular, we set Mn(K) := Mn,n(K) and we denote by GLn(K) its group of units.
We denote by Ei, j the matrix of Mn,p(K) with zero entries everywhere except at the
(i, j)-spot where the entry equals 1.

In a landmark article [2], Flanders proved the following classical result:

THEOREM 1. (Flanders’s theorem) Let n, p,r be non-negative integers such that
n � p � r . Let S be a linear subspace of Mn,p(K) in which every matrix has rank less
than or equal to r .

Then, dimS � nr .

The upper-bound nr is optimal, as shown by the example of the space of all ma-
trices with zero entries in the last p− r columns. Before Flanders, Dieudonné [1] had
already studied spaces of singular square matrices and obtained the special case n = p
and r = n−1 in the above theorem. Flanders actually had to assume that #K > r due
to his use of polynomials. This provision was lifted by Meshulam [3] (for more recent
proofs, see [5, 6]).

Here is a reformulation of Flanders’s theorem: if n � p , a linear subspace S of
Mn,p(K) such that dimS > nr must contain a matrix with rank greater than r . In this
work, we shall be concerned with not only finding one such matrix, but a whole line of
matrices with large rank. Better, we want to control the direction of such a line.

Before we formulate the problem, some basic considerations are necessary. Let
N ∈ Mn(K) � {0} . If N is invertible and K is algebraically closed, then every line
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directed by N must contain a singular matrix: indeed, for all A ∈ Mn(K) , we can
write ∀λ ∈ K, det(A− λN) = (−1)n(detN) p(λ ) where p denotes the characteristic
polynomial of N−1A , and p must have a root.

Conversely, every non-zero matrix with non-full rank directs a line of full rank
matrices, as stated in the following lemma.

LEMMA 2. Let n � p be non-negative integers and N ∈ Mn,p(K) be such that
rkN < p. Then, there exists A ∈Mn,p(K) such that every matrix of A+KN has rank
p.

Proof. Set r := rkN . Without loss of generality, we can assume that

N =
[

Ir [0]r×(p−r)
[0](n−r)×r [0](n−r)×(p−r)

]
.

If n > p , one checks that A :=
p
∑
j=1

Ej+1, j has the requested property.

If n = p one checks that the matrix A := E1,n +
n−1
∑
j=1

Ej+1, j has the requested prop-

erty. �

Now, here is our problem for square matrices: given a linear subspace S of Mn(K)
and a non-zero singular matrix N ∈ S , under what conditions on dimS can we guar-
antee that there exists A ∈ S for which every matrix of A + KN is invertible? More
generally, if n � p , and given a linear subspace S of Mn,p(K) and a non-zero matrix
N ∈ S with rank less than p , under what conditions on dimS can we guarantee that
there exists A ∈ S for which every matrix of A+KN has rank p?

These questions are motivated by potential applications to the structure of spaces
of bounded rank matrices over small finite fields. The following theorem, which is the
main point of the present article, gives a full answer to them.

THEOREM 3. Let n � p � 2 be integers. Let S be a linear subspace of Mn,p(K)
with codimS � n−2 , and let N ∈Mn,p(K) be such that rkN < p. Then, there exists
A ∈ S such that every matrix of A+KN has rank p.

Here is a reformulation in terms of operator spaces:

THEOREM 4. Let U and V be finite-dimensional vector spaces with dimU �
dimV . Let S be a linear subspace of L (U,V ) such that codimS � dimV − 2 , and
t ∈ L (U,V ) be a non-injective operator. Then, there exists a ∈ S such that every
operator in a+Kt is injective.

Note, in the above theorems, that we do not require that the direction of the line be
included in S !
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Let us immediately show that the upper-bound n−2 from Theorem 3 is optimal.

Consider the matrix N :=
[

Ip−1 [0](p−1)×1
[0](n−p+1)×(p−1) [0](n−p+1)×1

]
, and the space S of all ma-

trices of the form [
? [?]1×(p−1)

[0](n−1)×1 [?](n−1)×(p−1)

]
.

Then, for all A ∈ S , some matrix in A+KN has zero as its first column, and hence not
every matrix in A+KN has rank p . Yet, rkN < p and codimS = n−1.

Theorem 3 will be proved in three steps. In the first step, we shall consider the case
of square matrices with rkN = n− 1. The result actually deals with affine subspaces
instead of just linear subspaces.

THEOREM 5. Let n be a non-negative integer. Let N be a rank n− 1 matrix of
Mn(K) . Let S be an affine subspace of Mn(K) such that codimS � n−2 . Assume
that at least one matrix of S maps KerN into ImN . Then, there exists A ∈S such
that every matrix of A+KN is invertible.

REMARK 1. Assume that K is algebraically closed. Then, the condition that
some matrix of S maps KerN into ImN is unavoidable in Theorem 5. Consider

indeed the matrix N :=
[

In−1 [0](n−1)×1

[0]1×(n−1) 0

]
and the affine hyperplane S of all

matrices of Mn(K) with entry 1 at the (n,n)-spot. For all A ∈ S , the polynomial

det(A+ tN) reads tn−1 +
n−2
∑

k=0
bktk , and hence it is non-constant whenever n � 2, which

yields that A+KN contains a singular matrix.

REMARK 2. If #K > 2, the proof of Theorem 5 will actually demonstrate that
there exists a matrix A ∈S such that the (formal) polynomial det(A+ tN) is constant
and non-zero. As rkN = n−1, this can be restated in terms of matrix pencils as saying
that the matrix pencil A+ tN is equivalent to the pencil In + tJ , where J is the Jordan
matrix (δi, j−1)1�i, j�n .

If #K = 2, this result fails for n = 3: one considers the space S of all matrices
of the form ⎡

⎣? ? a
? ? ?
? a+1 ?

⎤
⎦ with a ∈K ,

and the matrix

N :=

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ .

One sees that S has codimension 1 in M3(K) . Let M =
[
A C
B d

]
∈ S , with A ∈
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M2(K) , B ∈M1,2(K) , C ∈K2 and d ∈K . We have

det(M + tN) = d det(A+ tI2)−B(A+ tI2)adC

= d det(A+ tI2)+B(Aad + tI2)C

= d det(A+ tI2)+ tBC+BAadC,

where Aad denotes the transpose of the matrix of cofactors of A . Assume that the
polynomial det(M + tN) is constant. As det(A + tI2) has degree 2, we successively
obtain d = 0 and BC = 0. From the definition of S , it follows that B = 0 or C = 0,
and hence det(M + tN) = 0.

Finally, by checking the proof of Theorem 5, one can prove that, if #K = 2, if
codimS � n− 3 and some matrix of S maps KerN into ImN , then det(A+ tN) is
constant and non-zero for some A in S . We suspect that this result still holds, provided
that n > 3, under the weaker assumption that codimS � n−2.

In Section 2, Theorem 5 will be proved by induction over n . In the next section,
we shall extend it as follows, by considering an arbitrary singular matrix N .

THEOREM 6. Let n be a non-negative integer. Let N be a singular matrix of
Mn(K) . Let S be an affine subspace of Mn(K) such that codimS � n−2 . Assume
that there exists M ∈S such that the operator X ∈ KerN �→MX ∈ Kn/ ImN is non-
injective. Then, there exists A ∈S such that every matrix of A+KN is invertible.

Again, this result will be proved by induction over n .
In the last step, by far the easiest one, we shall derive Theorem 3 from Theorem 6

(see Section 4).
The remaining open problem is the generalization of the above results to arbitrary

ranks: given non-negative integers n, p,r such that n � p � r , what is the smallest
integer d for which there exists a matrix N ∈ Mn,p(K) with rank less than r and a
linear subspace S of Mn,p(K) with codimension d that contains no element A for
which all the matrices of A+KN have rank greater than or equal to r? At the moment,
we do not have a reasonable conjecture to suggest.

2. Proof of Theorem 5

The proof of Theorem 5 will be performed by induction over n , using several
steps. If n � 1 then the result is vacuous. If n = 2, it is given by Lemma 2. Assume
now that n � 3. We use a reductio ad absurdum, by assuming that there is no matrix
A ∈S such that every matrix of A+KN is invertible.

Without loss of generality, we can assume that

N =
[

In−1 [0](n−1)×1
[0]1×(n−1) 0

]
.
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Then, we can split every matrix M of span(S ) up as

M =
[
A(M) C(M)
L(M) d(M)

]

with A(M) ∈Mn−1(K) , L(M) ∈M1,n−1(K) , C(M) ∈Kn−1 and d(M) ∈K . In S , we
have the affine subspace

V :=
{
M ∈S : d(M) = 0

}
with codimension at most 1 (it is non-empty because we have assumed that at least one
matrix of S maps KerN into ImN ). We denote by V the translation vector space of
V . In V , we have two specific linear subspaces

T := {M ∈V : L(M) = 0 and C(M) = 0}
and

U := {M ∈V : C(M) = 0}.
By the rank theorem, we have

dimA(T )+dimL(U)+dimC(V ) = dimV . (1)

In particular, since dimV > n(n−1) and dimA(T ) � (n−1)2 we find

dimC(V )+dimL(U) > n−1. (2)

Given X ∈ Kn−1 � {0} , we denote by A(T )X the linear subspace of A(T ) consisting
of the matrices with column space included in KX . The bilinear form

b : (Y,X) ∈M1,n−1(K)×Kn−1 �→ YX

is non-degenerate on both sides, and in the rest of the proof we shall consider orthogo-
nality with respect to it. Note in particular that (2) yields C(V )�L(U)⊥ �= /0 .

Note that, for all P∈GLn−1(K) , neither the previous assumptions nor the conclu-
sion are affected in replacing S with QS Q−1 where Q := P⊕ I1 . In this transforma-
tion the spaces L(U) and C(V ) are respectively replaced with L(U)P−1 and PC(V ) ,
whereas b(YP−1,PX) = b(Y,X) for all (Y,X) ∈M1,n−1(K)×Kn−1 .

CLAIM 1. For all X ∈C(V )�L(U)⊥ , there exists M ∈ V such that C(M) = X
and L(M)C(M) = 0 .

Proof. Let X ∈C(V )�L(U)⊥ . We can find (M1,M0)∈V ×U such that C(M1)=
X and L(M0)X �= 0. For all λ ∈K , we see that C(M1 + λM0) = X and

L(M1 + λM0)C(M1 + λM0) = L(M1)X + λL(M0)X ,

and hence for a well-chosen λ we find L(M1 + λM0)C(M1 + λM0) = 0. This proves
our claim. �
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CLAIM 2. For all X ∈C(V )�L(U)⊥ , one has

dimC(V )+dimA(T )X � 2n−3. (3)

Proof. We lose no generality in assuming that X =
[

1
[0](n−2)×1

]
. Denote by V ′

the affine subspace of V consisting of the matrices M ∈ V such that C(M) = X . Every
matrix M ∈ V ′ splits up as

M =
[
[?]1×(n−1) 1

K(M) [0](n−1)×1

]

with

K(M) =
[
[?](n−2)×1 [?](n−2)×(n−2)

? [?]1×(n−2)

]
∈Mn−1(K).

Likewise, we write

N =
[
[?]1×(n−1) 0

N′ [0](n−1)×1

]
with

N′ =
[
[0](n−2)×1 In−2

0 [0]1×(n−2)

]
.

By Claim 1, there exists M ∈V such that C(M) = X and L(M)X = 0, and hence K(M)
maps KerN′ into ImN′ . Moreover, N′ has rank n−2. Thus, if codimK(V ′) � n−3,
then by induction we find a matrix M ∈V ′ such that det(K(M)+tN′) �= 0 for all t ∈K ;
by developing the determinant along the last column, it would follow that

∀t ∈K, det(M + tN) = (−1)n+1 det(K(M)+ tN′) ∈K�{0}.
This would contradict our assumptions. Therefore, codimK(V ′) � n−2.

However, by the rank theorem, we see that

codimK(V ′) = codimV +
(
dimC(V )− (n−1))+

(
dimA(T )X − (n−1)

)
.

Thus, as our assumptions yield that codimV � n− 1, we obtain claimed inequality
(3). �

It follows in particular that

dimC(V ) � n−2. (4)

CLAIM 3. One has A(T ) � Mn−1(K) .

Proof. Assume on the contrary that A(T ) = Mn−1(K) .
First, assume further that there exists M ∈ V such that L(M) �= 0, C(M) �= 0 and

L(M)C(M) = 0. As A(T ) = Mn−1(K) , we can assume, without loss of generality, that

L(M) =
[
[0]1×(n−2) 1

]
, C(M) =

[
1

[0](n−2)×1

]
and A(M) =

[
[0]1×(n−2) 0

In−2 [0](n−2)×1

]
.
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Then, it is easily checked that det(M+ tN)= (−1)n+1 , contradicting our basic assump-
tions on S .

Therefore,

∀M ∈ V , L(M)C(M) = 0⇒ (L(M) = 0 or C(M) = 0). (5)

Choose X ∈ C(V ) � L(U)⊥ . We know from Claim 1 that there exists M1 ∈ V such
that C(M1) = X and L(M1)X = 0. Let M2 ∈U be such that L(M2)⊥X . Then, C(M1 +
M2) = X and L(M1 +M2) = L(M1)+L(M2) is orthogonal to X . It follows from (5)
that L(M1 +M2) = 0 and L(M1) = 0, whence L(M2) = 0. Therefore L(U)∩{X}⊥ =
{0} , whence dimL(U) � 1. By inequality (2), we deduce that C(V ) = Kn−1 and
dimL(U) = 1.

From there, we split the discussion into two (non-disjoint) cases.

• Case 1: #K > 2.
Let M ∈ V be such that C(M) �∈ L(U)⊥ . We can choose M0 ∈ U such that
L(M0)C(M) �= 0. Then, for all λ ∈K , we have C(M+λM0) =C(M) and L(M+
λM0)C(M + λM0) = L(M)C(M) + λL(M0)C(M) ; we can then choose λ ∈ K

such that L(M + λM0)C(M + λM0) = 0, leading, by (5), to L(M + λM0) = 0,
and hence L(M) = L(−λM0) ∈ L(U) . Hence, we have shown that L(M) ∈ L(U)
for all M ∈ V such that C(M) �∈ L(U)⊥ .

Yet, as L(U)⊥ is a proper affine subspace of Kn−1 , its complementary subset in
Kn−1 generates the affine space Kn−1 (remember that #K > 2). Hence, L(V )⊂
L(U) , leading to dimL(V ) � 1. Then, by applying the same line of reasoning
to S T , which satisfies the same assumptions, we would obtain dimC(V ) � 1,
contradicting C(V ) = Kn−1 (remember that n−1 � 2).

• Case 2: K is finite.
Then, we use a different strategy. Since dimL(U) = 1 and codimS � n− 2,
we find a matrix M1 ∈S such that d(M1) �= 0. Since C(V ) = Kn−1 , we also
have C(V ) = Kn−1 . Hence, we can choose M′1 ∈V such that C(M′1) =−C(M1) .
Hence, M2 := M1 +M′1 belongs to S and satisfies d(M2) �= 0 and C(M2) = 0.
As n− 1 � 2 and K is a finite field, there exists a matrix P ∈ Mn−1(K) with
no eigenvalue: it suffices to take P as the companion matrix of an irreducible
polynomial over K with degree n− 1. Since A(T ) = Mn−1(K) , we can add a
well-chosen matrix of T to M3 so as to find a matrix M3 ∈S such that d(M3) �=
0, C(M3) = 0 and A(M3) = P . Then, det(M3 + tN) = d(M3)det(P+ tIn−1) �= 0
for all t ∈K , which contradicts our assumptions.

In any case, we have found a contradiction, which yields A(T ) � Mn−1(K) . �
Combining the previous claim with identity (1) and dimV > n(n−1) yields

dimC(V )+dimL(U) > n.

In particular,
dimL(U) � 2.
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CLAIM 4. One has C(V ) = Kn−1 .

Proof. Assume on the contrary that C(V ) � Kn−1 . Then, dimC(V ) = n− 2 by
inequality (4). We deduce from inequality (3) that, for all X ∈C(V ) , the space A(T )X

has dimension n− 1, and hence it contains every matrix of Mn−1(K) with column
space KX . As A(T ) � Mn−1(K) , we deduce that span(C(V )) � Kn−1 , whence C(V )
is a linear hyperplane of Kn−1 .

Next, let Y0 ∈C(V )⊥ . We claim that Y0 A(T )⊂KY0 , that is Y0 A(T )⊥C(V ) . Let
X ∈ C(V )� L(U)⊥ . Let us prove that Y0A(T )⊥X . No generality is lost in assuming
that

X =
[

1
[0](n−2)×1

]
and Y0 =

[
[0]1×(n−2) 1

]
,

so that C(V ) = Kn−2×{0} . As dimC(V ) = n−2 and codimA(T ) > 0, equality (1)
yields dimL(U) � 3. Then, we can find M ∈ V such that C(M) = X , L(M)X = 0
and L(M) /∈ KY0 : indeed, we know that we can find M1 ∈ V such that C(M1) = X
and L(M1)X = 0 (see Claim 1). Then, L(U)∩{X}⊥ has dimension at least 2; we can
choose Z in (L(U)∩{X}⊥)�KY0 ; then, we can choose M2 ∈U such that L(M2) = Z ,
and we check that one of the matrices M1 or M1 +M2 must fulfill our needs.

Without further loss of generality, we can assume that L(M) =
[
0 1 [0]1×(n−3)

]
.

Assume that there exists a matrix J of A(T ) such that Y0J is not orthogonal to X .
Then, for some a ∈K�{0} , we have

J =
[
[?](n−2)×1 [?](n−2)×(n−2)

a [?]1×(n−2)

]
.

Since A(T ) contains every matrix with column space KX ′ , for all X ′ ∈ Kn−2×{0} ,
we deduce that there is a matrix M′ of V such that C(M′) = X , L(M′) = L(M) and

A(M′) =

⎡
⎣ 0 0 [0]1×(n−3)

[0](n−3)×1 [0](n−3)×1 In−3

a ? [?]1×(n−3)

⎤
⎦

Then, one checks that det(M′+ tN) = (−1)n−1a , which contradicts our assumptions.
Hence, Y0 A(T )⊥X for all X ∈C(V )�L(U)⊥ . Since dimL(U)� 2 and dimC(V )

= n−2, we find that L(U)⊥∩C(V ) is a proper linear subspace of C(V ) , and we con-
clude that Y0 A(T )⊥C(V ) , as claimed.

Hence, Y0 A(T ) ⊂ KY0 . In turn, this shows that codimA(T ) � n− 2, and as
codimC(V ) = 1 we deduce that codimV � n , contradicting our assumptions. �

CLAIM 5. One has codimA(T ) = 1 .

Proof. Assume that such is not the case. Let us consider the orthogonal W of
A(T ) for the non-degenerate symmetric bilinear form (Z1,Z2) �→ tr(Z1Z2) on Mn−1(K) .
Then, dimW � 2.
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The set Ŵ := {Z ∈W �→ ZX |X ∈Kn−1} is a linear subspace of L (W,Kn−1) , and
we claim that every operator in it has rank at most 1. Assume that such is not the case.
Then, we can find respective bases of W and Kn−1 in which one of the operators of Ŵ

is represented by

[
Is [0]
[0] [0]

]
for some integer s � 2. By assigning to every X ∈Kn−1 the

determinant of the upper-left 2 by 2 submatrix of the matrix representing Z �→ ZX in
the said bases, we define a non-zero quadratic form q on Kn−1 that vanishes at every
vector X ∈ Kn−1 such that Z ∈W �→ ZX has rank 1. For all X ∈ Kn−1 � L(U)⊥ ,
we know that dimA(T )X � n− 2 (see Claim 2) and hence rk(Z ∈W �→ ZX) � 1.
Therefore, q vanishes at every vector of Kn−1 �L(U)⊥ . Yet, L(U)⊥ has codimension
at least 2 in Kn−1 . Then, we deduce that q = 0: if #K > 2, this is easily obtained
by choosing a non-zero linear form ϕ on Kn−1 that vanishes everywhere on L(U)⊥ ,
and by noting that the homogenous polynomial x �→ q(x)ϕ(x) with degree 3 vanishes
everywhere on Kn−1 ; if #K = 2 the statement follows directly from Lemma 5.2 of [4].
This contradicts our assumptions.

Thus, Ŵ is a linear subspace of L (W,Kn−1) in which every operator has rank at
most 1. As dimW > 1 and no vector of W � {0} is annihilated by all the operators
in Ŵ , the classification of vector spaces of rank 1 operators shows that there exists a
1-dimensional linear subspace D of Kn−1 that includes the range of every operator in
Ŵ , which shows that ImZ ⊂D for all Z ∈W .

Finally, as neither our assumptions nor our conclusion are modified in transposing
both N and S , we obtain that the above property holds for WT as well, yielding a
linear hyperplane H of Kn−1 such that H ⊂ KerZ for all Z ∈W . However, the space
of all matrices M ∈Mn−1(K) such that ImM ⊂ D and H ⊂ KerM has dimension 1,
contradicting the assumption that dimW � 2. �

Now, we are about to conclude. We know that C(V ) = Kn−1 and that L(U)⊥ is a
proper linear subspace of Kn−1 (since dimL(U) > 0). If, for all X ∈C(V )�L(U)⊥ ,
we had dimA(T )X = n−1, it would follow that A(T ) = Mn−1(K) , contradicting Claim
5. Thus, we can find X ∈ C(V ) � L(U)⊥ such that dimA(T )X < n− 1. As in the
proof of Claim 4 (see its second paragraph), since dimL(U) � 2 we can find a matrix
M1 ∈ V such that C(M1) = X , L(M1)C(M1) = 0 and L(M1) �= 0. Without loss of

generality we can assume that X =
[

1
[0](n−2)×1

]
and L(M1) =

[
[0]1×(n−2) 1

]
. Now,

as codimA(T ) = 1 and dimA(T )X < n− 1, the rank theorem yields that for every

H ∈Mn−2,n−1(K) , there exists a matrix of A(T ) of the form

[
[?]1×(n−1)

H

]
. Thus, by

adding a well-chosen matrix of T to M1 , we reduce the situation to the one where

M1 =

⎡
⎣[?]1×(n−2) ? 1

In−2 [0](n−2)×1 [0](n−2)×1
[0]1×(n−2) 1 0

⎤
⎦ .

Then, one checks that det(M1 + tN) = (−1)n+1 , which contradicts our initial assump-
tions.

This final contradiction shows that S contains a matrix M such that ∀t ∈K, det(M+
tN) �= 0. This completes the inductive proof.
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3. Proof of Theorem 6

We shall prove Theorem 6 by induction on n and r . Without loss of generality, we

can assume that N =
[

Ir [0]r×(n−r)
[0](n−r)×r [0](n−r)×(n−r)

]
where r := rkN . If S = Mn(K) the

result is known from Lemma 2. In the rest of the proof, we assume that S is a proper
subspace of Mn(K) , and we denote by S its translation vector space.

In particular, the case n � 2 is settled, and we assume that n � 3. We perform a
reductio ad absurdum, by assuming that S does not contain a matrix A of the required
form. Theorem 5 gives the case when r = n− 1. In the rest of the proof, we assume
that r < n−1. We write every matrix M of Mn(K) as

M =
[
A(M) C(M)
B(M) D(M)

]

with A(M) ∈Mr(K) , B(M) ∈Mn−r,r(K) , C(M) ∈Mr,n−r(K) and D(M) ∈Mn−r(K) .
The assumptions tell us that there exists M1 ∈S such that D(M1) has rank less

than n− r . We distinguish between two cases.

Case 1 : There exists a matrix M1 ∈S such that 0 < rkD(M1) < n− r .
Set s := rkD(M1) . By conjugating S with a matrix of the form Ir⊕P for some well-
chosen P ∈ GLn−r(K) , we see that no generality is lost in assuming that D(M1) =[
[0] [0]
[0] Is

]
. Then, by applying row operations of the form Li← Li + λLn with i ∈ [[1,r]]

and λ ∈ K and column operations of the form Cj ← Cj + μCn with j ∈ [[1,r]] and
μ ∈K , no further generality is lost in assuming that the last row of B(M1) is zero and
the last column of C(M1) is zero.

Denote by S ′ the affine subspace of S consisting of the matrices with the same
last row as M1 . Let us then write every matrix M of S ′ as

M =
[

K(M) [?](n−1)×1
[0]1×(n−1) 1

]
with K(M) ∈Mn−1(K) .

Then, with N′ :=
[

Ir [0]r×(n−r−1)
[0](n−1−r)×r [0](n−1−r)×(n−1−r)

]
∈Mn−1(K) , we see that K(M1) is

a matrix of K(S ′) such that X ∈ KerN′ �→ K(M1)X ∈ Kn−1/ ImN′ has rank at most
n− 2− r (as the first column of D(M1) is zero). If codimK(S ′) � n− 3, then by
induction we find that K(S ′) contains a matrix A′ such that every matrix of A′+KN′
is invertible: writing A′= K(A) for some A∈S ′ , we readily obtain that det(A+tN) =
det(A′+ tN′) for all t in K , which yields that A+ tN is invertible for all t ∈K . Hence,
codimK(S ′) � n−2, and as codimS � n−2 we deduce from the rank theorem that
S contains E1,n,E2,n, . . . ,En−1,n .

Similarly, by considering the subspace of all matrices of S with the same last
column as M1 , we find that S contains En,1, . . . ,En,n−1 .

Now, let i ∈ [[1,n− 1]]. Denote by S1 the affine space deduced from S by the
row operation Li ← Li− Ln (which leaves N invariant). As S contains M1 + Ei,n ,
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we see that S1 also contains M1 . Now, obviously S1 satisfies all our assumptions
with respect to N , and it follows from our first step that the translation vector space of
S1 contains En,1, . . . ,En,n−1 . Hence, S contains En,1 +Ei,1, . . . ,En,n−1 +Ei,n−1 . As S
also contains En,1, . . . ,En,n−1 , we deduce that it contains Ei,1, . . . ,Ei,n−1 . Similarly, we
obtain that, for all j ∈ [[1,n]] , the space S contains E1, j, . . . ,En−1, j . Hence, S contains

Ei, j for all (i, j) ∈ [[1,n]]2 � {(n,n)} . Then, the matrix A := En,n +E1,n−1 +
n−2
∑
i=1

Ei+1,i

belongs to S , and one checks that the polynomial det(A + tN) is constant and non-
zero, whence every matrix of A+KN is invertible. This contradicts our assumptions.

Case 2 : For every matrix R of D(S ) , either R = 0 or R is invertible.
Our assumptions then show that D(S ) contains 0, and hence it is a linear subspace
of Mn−r(K) . Every matrix of D(S ) with first row zero equals zero, and hence
dimD(S ) � n− r .

Now, denote by T the affine subspace of S consisting of its matrices M such
that D(M) = 0. For M ∈ T , let us write

C(M) =
[
C1(M) · · · Cn−r(M)

]
.

If C1(T ) = {0} then the rank theorem would yield codimS � r +(n− r) = n , con-
tradicting our assumptions. Thus, there exists M1 ∈T such that C1(M1) �= 0. Without

loss of generality, we can assume that C1(M1) =
[

1
[0](r−1)×1

]
. Denote by T ′ the space

of all matrices of T with the same (r +1)-th column as M1 . For all M ∈Mn(K) , we
denote by K(M) the submatrix of M obtained by deleting the first row and the (r+1)-
th column. Assume that codimK(T ′) � n−3. Then, the induction hypothesis applies
to K(T ′) and to K(N′) : indeed, every matrix of K(T ′) maps KerK(N) into ImK(N) ,
and hence no such matrix induces an isomorphism from KerK(N) to Kn−1/ ImK(N)
(because n− 1 > r ). Thus, we recover a matrix M ∈ T ′ such that K(M)+ tK(N) is
invertible for all t in K , and as det(M+ tN) = (−1)r det(K(M)+ tK(N)) for all t ∈K ,
we see that M + tN in invertible for all t ∈K .

Hence, codimK(T ′) � n− 2. Yet, codimS � n− 2. By the rank theorem, it
follows that C1(T ) = Kr and that S contains E1,1, . . . ,E1,r,E1,r+2, . . . ,E1,n .

As C1(T ) = Kr , we can apply the previous step to every non-zero vector of Kr

rather than only to the first one of the standard basis. It follows that S contains Ei, j for
all j ∈ [[1,n]]�{r+1} and all i ∈ [[1,r]] . With the same method applied to Ck , for all
k ∈ [[r+1,n]] , we obtain that S contains Ei, j for all (i, j) ∈ [[1,r]]× [[1,n]] .

Now, by applying the previous step to S T we obtain that S contains Ei, j for all
(i, j) ∈ [[1,n]]× [[1,r]] . Therefore, T is the set of all M ∈Mn(K) such that D(M) = 0.

We are about to conclude. As dimD(S )� n−r and codimS � n−2, we see that
(n− r)(n− r−1) � n−2. Setting s := n− r , we deduce that if s > n

2 then n+1
2

n−1
2 �

n− 2 (since n > 1) which would lead to n2− 4n+ 7 � 0, that is (n− 2)2 + 3 � 0.

Therefore s � n
2 , that is r � n−r . It follows that the matrix A :=

r
∑
i=1

Ei,n−r+i +
n−r
∑
j=1

Er+ j, j

belongs to T , and one checks that the polynomial det(A + tN) is constant and non-
zero, whence every matrix of A+KN is invertible.
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This completes our inductive proof of Theorem 6.

4. Proof of Theorem 3

We actually prove the “operator space” version of Theorem 3, that is Theorem
4. Once more, we use an induction over dimV , with U fixed. Set n := dimV and
p := dimU . The case dimU = dimV is known by the operator space reformulation of
Theorem 6: in that case indeed the zero operator belongs to S and does not induce an
injective operator from Ker t to V/ Imt . In the remainder of the proof, we assume that
dimV > dimU .

Given a non-zero vector y ∈ V , we denote by πy : V → V/Ky the canonical pro-
jection and we set

Smody := {πy ◦ s | s ∈ S},
which is a linear subspace of L (U,V/Ky) .

We perform a reductio ad absurdum, by assuming that there is no operator a ∈ S
such that every operator of a+Kt is injective.

Let y ∈V �{0} . Note that πy ◦ t is non-injective. We claim that Smody contains
no operator a such that every operator in a + K(πy ◦ t) is injective: indeed, if such
an operator a existed, then a = πy ◦ a′ for some a′ ∈ S , and hence, for all λ ∈ K ,
the operator πy ◦ (a′+ λ t) would be injective, which would show that a′+ λ t is in-
jective. By induction, we deduce that codim(Smody) > (dimV − 1)− 2 and hence
codim(Smody) � codimS . It follows from the rank theorem that S contains every
operator of L (U,V ) with range Ky .

Varying y shows that S = L (U,V ) , and then Lemma 2 yields a contradiction.
This completes the proof of Theorem 3.
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Laboratoire de Mathématiques de Versailles
45 avenue des Etats-Unis, 78035 Versailles cedex, France

e-mail: dsp.prof@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


