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INVERSE PROBLEMS FOR SELF–ADJOINT DIRAC SYSTEMS:

EXPLICIT SOLUTIONS AND STABILITY OF THE PROCEDURE

ALEXANDER SAKHNOVICH

Abstract. A procedure to recover explicitly self-adjoint matrix Dirac systems on the semi-axis
(with both discrete and continuous components of spectrum) from rational Weyl functions is
considered. Its stability is proved. GBDT version of Bäcklund-Darboux transformation and
various important results on Riccati equations are used for this purpose.
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