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Abstract. We extend the pre-image representation of exposed points of the numerical range of
a matrix to all extreme points. With that we characterize extreme points which are multiply
generated, having at least two linearly independent pre-images, as the extreme points which are
Hausdorff limits of flat boundary portions on numerical ranges of a sequence converging to the
given matrix. These studies address the inverse numerical range map and the maximum-entropy
inference map which are continuous functions on the numerical range except possibly at certain
multiply generated extreme points. This work also allows us to describe closures of subsets of
3-by-3 matrices having the same shape of the numerical range.

1. Introduction

We denote the set of complex d×d matrices by Md , d ∈ N , with identity matrix
� . The numerical range of A ∈ Md is the subset

W (A) := { fA(x) | x ∈ SC
d}

of the complex plane C where fA : SCd → C,x �→ x∗Ax is the numerical range map
defined on the unit sphere SCd = {x ∈ Cd | x∗x = 1} of Cd . On C ∼= R2 we use the
standard Euclidean scalar product 〈α,β 〉= ℜ(αβ ) for α,β ∈ C . The numerical range
is a compact and convex subset, the convexity statement being known as the Toeplitz-
Hausdorff theorem [31, 15], more recent work includes [1, 17, 25].

We are interested in points α ∈W (A) which are

• extreme points, that is α cannot be written as a proper convex combination of
points in W (A) ,

• multiply generated [23, 24, 29], that is f−1
A (α) contains at least two linearly

independent vectors.
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Part of our interest in these points comes from a continuity problem in operator
theory. The (multi-valued) inverse f−1

A : W (A) → SCd of fA is strongly continuous at
α ∈W (A) if for all x ∈ f−1

A (α) the function fA is open at x . Strong continuity holds
on W (A) except at certain multiply generated extreme points. A round boundary point
(see [7, 23, 24] and Lemma 6.1 of [29]) is an extreme point of W (A) which lies on a
unique supporting line {α ∈ C | 〈α,eiθ 〉 = h(eiθ )} where eiθ , θ ∈ R , is an outward
pointing normal vector and h(eiθ ) = maxα∈W (A)〈α,eiθ 〉 . The map f−1

A is strongly
continuous on W (A) except possibly at multiply generated round boundary points [7]
but may be strongly continuous also there. A characterization of strong continuity of
f−1
A , in terms of analytic eigenvalue curves [24] shows that f−1

A has at most finitely
many discontinuity points. The corresponding eigenvector curves will be discussed in
Coro. 2.5 where we consider their intersection with pre-images of extreme points under
fA .

Further interest in multiply generated extreme points comes from an optimiza-
tion problem in quantum mechanics. The maximum-entropy inference, going back to
ideas by Boltzmann, is a method to select a quantum state from the expected values of a
collection of physical quantities represented by hermitian matrices when all other infor-
mation about the state is ignored [18]. The numerical range W (A) is the set of expected
values of two hermitian matrices given implicitly by the real part ℜ(A) = 1

2(A+A∗)
and imaginary part ℑ(A) = 1

2 i(A−A∗) of A [2, 29]. The inference map is

ρ∗ : W (A) → Md , α �→ argmax{S(ρ) | ρ ∈ Md , tr(Aρ) = α}

with state space Md consisting of all positive semi-definite matrices of trace one and
von Neumann entropy S(ρ) = − trρ log(ρ) . A discontinuity of ρ∗ may occur [37].
Note, however, that for normal A its numerical range W (A) is a polytope, ℜ(A) and
ℑ(A) commute, and ρ∗ is continuous [35]. So, a discontinuity belongs to the proper
quantum domain where it is discussed in the context of quantum phases [5, 20].

As it happens, the described continuity problems are equivalent. The map ρ∗ is
continuous at α ∈W (A) if and only if f−1

A is strongly continuous at α [36], and ρ∗ is
indeed discontinuous at all isolated multiply generated round boundary points of W (A) ,
see Sec. 6 of [29]. Further, it is known that multiply generated round boundary points
are isolated for d = 3. Calling A ∈ Md unitarily reducible if A is unitarily similar
to a block diagonal matrix with two proper blocks and unitarily irreducible otherwise,
multiply generated round boundary points are isolated for all irreducible matrices of
size d � 5 [23]. But, the whole boundary of W (A) may consist of multiply generated
round boundary points for reducible 4-by-4 matrices and irreducible 6-by-6 matrices
[23].

Here we study these continuity problems from a topological perspective of a vari-
able matrix A ∈ Md . To this end we define a flat boundary portion of W (A) as a
maximal proper segment in the boundary of W (A) [21, 4, 28, 9]. If α ∈W (A) , then we
say that a flat boundary portion is born at α if there exists a sequence (Ai)i∈N ⊂ Md

converging to A such that a sequence (si)i∈N of flat boundary portions converges to
{α} in the Hausdorff distance, the segment si being a flat boundary portion of W (Ai) ,
i ∈ N .
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The birth of a flat boundary portion was conjectured in Sec. I.B of [37] to be a
condition for a discontinuity of ρ∗ . The above discussion and the following theorem
prove that the birth of a flat boundary portion at a round boundary point is a necessary
condition. It is not a sufficient condition for d � 4 (d � 6 if A is unitarily irreducible).

THEOREM 1.1. Let α be an extreme point of W (A) . For a flat boundary portion
to be born at α it is necessary and sufficient that α is multiply generated.

The necessity in Thm. 1.1 follows from properties of the Hausdorff distance (Sec. 3).
We prove the sufficiency in Sec. 2 using a newly developed representation of extreme
points in terms of pre-images. Pre-images were well-understood [31] for exposed
points. These extreme points can be represented as the intersection of W (A) with a
supporting line. If the outward pointing normal vector is eiθ then h(eiθ ) is the maxi-
mal eigenvalue of the hermitian matrix cos(θ )ℜ(A)+ sin(θ )ℑ(A) , the corresponding
eigenspace is the demanded pre-image.

Some extreme points may fail to be exposed. Consider, e.g., the convex hull of
a circle and a point outside the circle, which is realized as the numerical range of

A =
[

0 2 0
0 0 0
0 0 2

]
. Then the intersections of the two tangents from the point to the circle

with the circle are extreme but non-exposed points. We will obtain the pre-images of
non-exposed points by viewing them as exposed points of some flat boundary portion
whose supporting lines are given by directional derivatives of h [3]. Notice that view-
ing non-exposed points as exposed points of a convex subset is a familiar idea in convex
geometry [13, 33] (cf. poonem), geometry of quantum states [32], and in the theory of
exponential families [8, 34] (cf. access sequence).

Finally, in Sec. 4 we combine observations from [14, 22, 21, 28, 23, 26] with
Thm. 1.1 to compute closures of subsets of 3-by-3 matrices having the same shape of
the numerical range. In particular, we prove in Sec. 5 that a 3-by-3 matrix A with
W (A) having a non-empty interior lies in the closure of irreducible matrices with ellip-
tical numerical range and in the closure of irreducible matrices with flat portion on the
boundary of their numerical range if and only if W (A) is an ellipse with an eigenvalue
of A on the boundary. Remarkably, these are precisely the 3-by-3 matrices A where
f−1
A and ρ∗ have a discontinuity [7, 23, 29].

2. Representation of extreme points

We provide a pre-image representation of extreme points of the numerical range.
We rewrite it in terms of eigenvalue curves and we use it to prove one part of Thm. 1.1.

Recall that the relative interior of a subset C of a Euclidean space (E,〈·, ·〉) is the
interior of C in the affine hull of C . A face of a convex set C is a convex subset F ⊂C
which contains every closed segment in C the relative interior of which intersects F .
The element of a singleton face is called extreme point. The support function of a
convex body C , that is a non-empty compact convex subset of E , is

hC(u) := max
x∈C

〈x,u〉, u ∈ E.
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The supporting hyperplane of C with outward pointing normal vector u ∈ E \ {0} is
the set of x ∈ E on the hyperplane 〈x,u〉 = hC(u) . The intersection of this hyperplane
with C is the exposed face

argmax
x∈C

〈x,u〉

with outward pointing normal vector u . If {α} is an exposed face, then α is called an
exposed point. All exposed points are extreme points. The remaining extreme points
are called non-exposed points.

Notice that a supporting hyperplane of W (A) is a supporting line. Since W (A)
has (real) dimension at most two, a subset is a one-dimensional face if and only if it is
a flat boundary portion, and every flat boundary portion is an exposed face. Moreover,
the boundary of W (A) is the disjoint union of extreme points and relative interiors of
flat boundary portions. So, every extreme point α is an exposed point, an endpoint of
a flat boundary portion, or both. It is crucial in the sequel that every non-exposed point
of W (A) is an exposed point of some flat boundary portion of W (A) .

Let

A(θ ) := ℜ(e− iθ A) = cos(θ )ℜ(A)+ sin(θ )ℑ(A), θ ∈ R.

We denote by Xm(θ ) the eigenspace of A(θ ) corresponding to the maximal eigenvalue
λm(θ ) of A(θ ) . An easy computation gives

〈 fA(x),eiθ 〉 = ℜ(x∗Axe− iθ ) = fA(θ)(x), x ∈ SC
d . (2.1)

The maximal eigenvalue λm(θ ) of A(θ ) has the geometric meaning of support function
of the numerical range, see Sec. 4 of [31],

hW(A)(e
iθ ) = λm(θ ). (2.2)

Let FA(θ ) denote the exposed face of W (A) with outward pointing normal vector eiθ ,
θ ∈ R .

LEMMA 2.1. The point fA(x) , x ∈ SCd , lies in the exposed face FA(θ ) , θ ∈ R ,
if and only if x ∈ Xm(θ ) .

Proof. We consider the orthogonal direct sum C
d = Xm(θ )⊕Xm(θ )⊥ . A unit

vector x ∈ SCd has a unique decomposition x = y+ z for y ∈ Xm(θ ) and z ∈ Xm(θ )⊥ .
So

〈 fA(x),eiθ 〉 = λm(θ )+ z∗(A(θ )−λm(θ )�)z

has the maximal value λm(θ ) only for z = 0. This proves the claim. �

Non-exposed points of the numerical range are not addressed in Lemma 2.1. To
describe them in terms of pre-images, we view them as exposed points of a flat bound-
ary portion. The two endpoints p±(θ ) (not necessarily distinct) of the exposed face
FA(θ ) are characterized by their membership in FA(θ ) and by the equality

〈p±(θ ),± ieiθ 〉 = hFA(θ)(± ieiθ ).
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To evaluate the support function of FA(θ ) we consider the directional derivative of a
function f : Rm → Rn at a point u ∈ Rm in direction v ∈ Rm , which is defined by

f ′(u;v) := lim
t→0+

1
t ( f (u+ tv)− f (u)),

if the limit exists. Given a convex body C in a Euclidean space E and u ∈ E\{0} , the
support function hG of the exposed face G of C with outward pointing normal vector
u is hG(v) = h′C(u;v) , v ∈ E , see Section 16 of [3].

Since the chain rule does not hold for directional derivatives, we need to go into
some detail in the following proof.

LEMMA 2.2. The support function of the exposed face FA(θ ) , θ ∈ R , has the
values hFA(θ)(± ieiθ ) = λ ′

m(θ ;±1) . The endpoints of FA(θ ) are p±(θ ) = eiθ (λm(θ )±
iλ ′

m(θ ;±1)) .

Proof. The equation for support functions of exposed faces, recalled in the previ-
ous paragraph, proves

hFA(θ)(± ieiθ ) = h′W(A)(e
iθ ;± ieiθ ).

For all s, t > 0 with s = arctan(t) , and writing h = hW (A) , we have

1
t (h(eiθ ± t ieiθ )−h(eiθ )) = 1

s (h(ei(θ±s))−h(eiθ ))+g(s)

where g(s) → 0 for s → 0, because h is positive homogeneous of the first degree [3].
Taking the limit t → 0+ gives

h′W(A)(e
iθ ;± ieiθ ) = (hW(A) ◦ eiθ )′(θ ;±1).

The values of hFA(θ) follow from (2.2) which provides hW(A) ◦ eiθ = λm(θ ) . The for-
mula for the endpoints is obvious. �

We are ready to describe p±(θ ) in terms of its pre-image under fA . Noticing
A′(θ ) = ℑ(e− iθ A) , where “ ′ ” denotes derivative with respect to θ , an easy calculation
shows that for all y ∈ SCd

〈 fA(y), ieiθ 〉 = fA′(θ)(y) (2.3)

holds. Equations (2.1) and (2.3) show that for all y ∈ SCd we have

fA(y) = eiθ ( fA(θ)(y)+ i fA′(θ)(y)). (2.4)

We denote by B|X the compression of B ∈ Md onto a subspace X ⊂ Cd , that is B|X is
the restriction of PBP to X where P is the orthogonal projection onto X . For θ ∈ R

define gθ : C → R,α �→ 〈α, ieiθ 〉 and hθ : R → C,η �→ eiθ (λm(θ )+ iη) .

THEOREM 2.3. For all θ ∈ R the maximal (respectively, minimal) eigenvalue of
A′(θ )|Xm(θ) is λ ′

m(θ ;1) (respectively, −λ ′
m(θ ;−1)). For all unit vectors x ∈ Xm(θ )

we have fA′(θ)|Xm(θ )
(x) = gθ ◦ fA(x) . The map gθ |FA(θ) : FA(θ ) → s is a bijection to the

segment s ⊂ R with endpoints ±λ ′
m(θ ;±1) , the inverse is hθ |s .
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Proof. The pre-image of the exposed face FA(θ ) is by Lemma 2.1 equal to SCd ∩
Xm(θ ) . By definition of the support function of FA(θ ) we get for all x ∈ SCd ∩Xm(θ )
the inequalities

−hFA(θ)(− ieiθ ) � 〈 fA(x), ieiθ 〉 � hFA(θ)(ie
iθ ).

Both equalities are attained because FA(θ ) is compact. Using Lemma 2.2 and (2.3),
the above inequality is equivalent to

−λ ′
m(θ ;−1) � x∗A′(θ )x � λ ′

m(θ ;+1)

which shows that the hermitian operator A′(θ )|Xm has minimal eigenvalue −λ ′
m(θ ;−1)

and maximal eigenvalue λ ′
m(θ ;+1) .

The numerical range of the hermitian operator A′(θ )|Xm(θ) is the segment s be-
tween its extreme eigenvalues ±λ ′

m(θ ;±1) . By (2.2) and (2.4) we have for all x ∈
SCd ∩Xm(θ )

fA(x) = eiθ (λm(θ )+ i fA′(θ)(x)).

Since fA′(θ)(x) = 〈 fA(x), ieiθ 〉 holds, again by (2.3), the functions gθ and hθ have the
claimed properties. �

We can now compute the pre-images of all extreme points. Thm. 2.3 proves that
±λ ′

m(θ ;±1) is an eigenvalue of A′(θ )|Xm . We denote the corresponding eigenspace by
X±(θ ) .

COROLLARY 2.4. The point fA(x) , x ∈ SCd , is the endpoint p±(θ ) , θ ∈ R , of
the exposed face FA(θ ) if and only if x ∈ X±(θ ) .

Proof. This follows from Thm. 2.3, and from Lemma 2.1 applied to the exposed
points ±λ ′

m(θ ;±1) of the numerical range of the compression A′(θ )|Xm(θ) . �

We describe the eigenspace X±(θ ) of A′(θ )|Xm in terms of eigenvalue curves
{λk(θ )}d

k=1 of A(θ ) and mutually orthogonal eigenvectors {xk(θ )}d
k=1 which depend

real analytically on the parameter θ [27]. Thus A(θ ) = ∑d
k=1 λk(θ )xk(θ )xk(θ )∗ and

we have for k = 1, . . . ,d

λk(θ ) = fA(θ)(xk(θ )), θ ∈ R.

We recall that the derivative of λk with respect to θ (see Lemma 3.2 of [19] and Sec. 5
of [11]) is

λ ′
k(θ ) = fA′(θ)(xk(θ )), θ ∈ R. (2.5)

We define
Im(θ ) := {i ∈ {1, . . . ,d} | λi(θ ) = λm(θ )}

and
I±(θ ) := {i ∈ Im(θ ) | λ ′

i (θ ) = ±λ ′
m(θ ;±1)}.

COROLLARY 2.5. The span of {xk(θ ) | k ∈ I±(θ )} is X±(θ ) , θ ∈ R .
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Proof. By Thm. 2.3 the eigenvalue ±λ ′
m(θ ;±1) of the hermitian operator

A′(θ )|Xm(θ) is extreme. Hence, (2.5) shows that X±(θ ) contains all eigenvectors xk(θ )
of A(θ ) with k ∈ I±(θ ) . For all k ∈ Im(θ )\ I±(θ ) we have by (2.5)

xk(θ )∗A′(θ )xk(θ ) = λ ′
k(θ ) ≶ ±λ ′

m(θ ;±1).

Therefore X±(θ ) is the span of {xk(θ ) | k ∈ I±(θ )} . �

We finish the section with an application. See the next section for the definition of
the Hausdorff distance.

PROPOSITION 2.6. Let α be a multiply generated extreme point of the numerical
range W (A) . Then a flat boundary portion is born at α .

Proof. Without loss of generality let α = pσ (θ ) for some θ ∈ R and some σ ∈
{+,−} . Since Xσ (θ ) belongs to the eigenspace Xm(θ ) of A(θ ) corresponding to
the maximal eigenvalue λm(θ ) of A(θ ) , the equation (2.4) implies that for all x ∈
SC

d ∩Xσ (θ )
fA(x) = eiθ (λm(θ )+ i fA′(θ)(x)).

Let P denote the orthogonal projection onto Xσ (θ ) . Coro. 2.4 shows that Xσ (θ ) is the
pre-image of α under fA . Hence, there exists λ ∈R such that A′(θ )|Xσ (θ) = λP|Xσ (θ) ,
for otherwise fA(Xσ (θ )) could not be a singleton. As the numerical range of λP|Xσ (θ)

is {λ} , Thm. 2.3 proves α = eiθ (λm(θ )+ iλ ) .
By assumption, α is multiply generated, so dimC(Xσ (θ )) � 2 holds. Choose any

hermitian matrix H with H|Xσ (θ) not being a scalar multiple of the identity and denote
its maximal eigenvalue by μ+ and minimal eigenvalue by μ− . Let ε > 0, and define

Aε := eiθ (A(θ )+ εP+ i(A′(θ )+ εH)).

The numerical range of (A′(θ ) + εH)|Xσ (θ) is the segment between the two distinct
reals λ + εμ± . Since Xσ (θ ) is the eigenspace of ℜ(e− iθ Aε) corresponding to the
maximal eigenvalue λm(θ )+ ε of ℜ(e− iθ Aε) , the exposed face FW(Aε )(θ ) of W (Aε)
has by Thm. 2.3 the endpoints

eiθ (λm(θ )+ ε + i(λ + εμ±)).

Clearly, FW(Aε )(θ ) is a flat boundary portion of W (Aε) which converges for ε → 0 in
the Hausdorff distance to {α} while Aε converges to A . This completes the proof. �

3. Hausdorff distance

We address the Hausdorff convergence of numerical ranges and show that a flat
boundary portion can only be born at a point of the numerical range which is multiply
generated.
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We denote by | · | the Euclidean norm in a Euclidean space (E,〈·, ·〉) . The set
of non-empty compact subsets of E is a complete metric space with respect to the
Hausdorff distance

dH(K,L) := max(max
x∈K

min
y∈L

|y− x|,max
y∈L

min
x∈K

|y− x|),

where /0 �= K,L ⊂ E are compact. The set of all convex bodies in E is closed in this
metric space by Thm. 1.8.6 of [30].

We first recall a condition for the Hausdorff convergence.

REMARK 3.1. (Thm. 1.8.8 in [30]) A sequence (Ki)i∈N of convex bodies in E

converges to a convex body K in E if and only if the following two conditions hold.

1. Each point in K is the limit of a sequence (xi)i∈N with xi ∈ Ki for i ∈ N .

2. The limit of any convergent subsequence (xi j ) j∈N with xi j ∈ Kij for j ∈ N be-
longs to K .

The simplest example of a non-converging sequence illustrates that subsequences
are needed in (2). Consider for example K = {0} and the sequence defined by K2i = K
and K2i+1 = [0,1] , i ∈ N .

REMARK 3.2. (Hausdorff convergence of the numerical range)

1. Remark 3.1 and the continuity for every x ∈ Cd of the linear function Md → C ,
A �→ x∗Ax in A prove that

Ai
i→∞−→ A =⇒ W (Ai)

i→∞−→W (A), (Ai)i∈N ⊂ Md .

Here, the first limit is in any norm, the second limit is in the Hausdorff distance.

2. The support function (2.2) of W (A) in the direction eiθ is jointly continuous in
A ∈ Md and θ ∈ R because the maximal eigenvalue of a hermitian matrix is a
continuous function of the matrix. Therefore, if θ = limi→∞ θi , (θi)i∈N ⊂ R ,
A = limi→∞ Ai , (Ai)i∈N ⊂ Md , and if the exposed faces FAi(θi) converge in the
Hausdorff distance, then their limit is a subset of FA(θ ) .

We now complete the proof of Thm. 1.1. Recall from Section 2, third paragraph,
that a flat boundary portion of W (A) is an exposed face of dimension one.

LEMMA 3.3. If a flat boundary portion is born at α ∈W (A) , then α is multiply
generated.

Proof. Let (si)i∈N be a sequence of segments, each si being a flat boundary por-

tion of W (Ai) , i ∈ N , and assume that A = limi→∞ Ai and that si
i→∞→ {α} converges

in the Hausdorff distance. The segments si are exposed faces of W (Ai) . So, for every
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i ∈ N there exists θi ∈ R such that eiθi is an outward pointing normal vector of si .
Lemma 2.1 implies

f−1
Ai

(si) = SC
d ∩Hi

for some subspace Hi ⊂ Cd . The segments si are no singletons so dimC(Hi) � 2. This
proves that f−1

Ai
(si) contains two orthogonal vectors pi , qi . The compactness of SCd

proves pi j
j→∞→ p and qi j

j→∞→ q for suitable p,q ∈ SCd and a suitable subsequence.
Note that p and q are orthogonal. Since fA(p) is jointly continuous in A and p , and
since fAi(pi) ∈ si for all i ∈ N , this shows

| fA(p)−α| = lim
j→∞

| fAi j
(pi j )−α|� limsup

j→∞
max
β∈si j

|β −α|

� limsup
j→∞

dH(si j ,{α}) = 0.

Similarly, fA(q) = α holds and hence α is multiply generated. �

Before turning to other subjects we add a statement about the Hausdorff conver-
gence of ellipses in the plane. Thereby an ellipse is the zero set of a real quadratic form
q : R2 → R , x �→ x∗Sx+b∗x+c where S ∈M2 is a real symmetric and positive definite
2-by-2 matrix, b ∈ R2 , and c ∈ R . We call the level set {x ∈ R2 | f (x) � 0} , which is
the convex hull of the ellipse, also an ellipse.

REMARK 3.4. If a sequence of ellipses in R2 converges in the Hausdorff distance
then the limit is an ellipse, a segment, or a point. This can be proved by representing
each ellipse as a linear image of the unit disk and by using Rem. 3.1 and compactness
arguments.

4. 3-by-3 matrices

Kippenhahn’s [22] representation of the numerical range of a d × d matrix A in
terms of the convex hull of a planar real affine algebraic curve provides a classification
of the possible shapes of the numerical range of a 3-by-3 matrix whose equivalence
classes are well-understood [21, 28] in terms of matrix entries and of spectral data of
A . We compute the closures of these equivalence classes.

Using the hermitian real and imaginary parts of A = ℜ(A)+ iℑ(A) , the homoge-
neous polynomial

F(y0,y1,y2) := det(y0�+ y1ℜ(A)+ y2ℑ(A))

defines a curve SA := {(y0 : y1 : y2)∈ PC3 | F(y0,y1,y2) = 0} in the complex projective
plane PC3 . The dual curve S∧A is an algebraic curve in PC3 which consists roughly
speaking of the tangent lines to SA [12, 10]. Thereby, a line {(y0 : y1 : y2) ∈ PC3 |
x0y0 + x1y1 + x2y2 = 0} is identified with the point (x0 : x1 : x2) ∈ PC3 . The boundary
generating curve S∧A(R) of A is the real part of the affine component x0 = 1 of S∧A .
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One can show that the convex hull of S∧A(R) is the numerical range [6, 22]. See also
[16] for further algebraic context of the numerical range.

We will discuss boundary generating curves separately for unitarily reducible and
irreducible 3-by-3 matrices. We will say that α ∈ C is a normal eigenvalue of A if
there exists a non-zero vector x such that Ax = αx , A∗x = αx . The 3-by-3 matrix A
has a normal eigenvalue if and only if A is unitarily reducible. Every normal eigenvalue
contributes as a point to the boundary generating curve, see §7 of [22].

REMARK 4.1. A complete list of boundary generating curves for a unitarily re-
ducible matrix A ∈ M3 is

1. three normal eigenvalues (not necessarily distinct),

2. one normal eigenvalue and one ellipse.

The corresponding shapes of W (A) are (1) a point, a segment, or a triangle and (2) an
ellipse or the convex hull of an ellipse and a point outside the ellipse.

REMARK 4.2. A complete list of boundary generating curves for a unitarily irre-
ducible matrix A ∈ M3 is

1. an ellipse and a point inside the ellipse,

2. a degree four curve with a double tangent,

3. a degree six curve consisting of two nested parts one inside another, the outer
part having an ‘ovular’ shape.

Following [28] we denote the sets of irreducible matrices (1) by E3 , their numeri-
cal ranges being ellipses, and the set of irreducible matrices (2) by F3 , their numerical
ranges having a flat boundary portion. Further, we denote the set of irreducible matrices
(3) by O3 and the set of reducible 3-by-3 matrices by R3 . This gives a disjoint union

M3 = R3∪E3∪F3 ∪O3. (4.1)

We begin with some observations following from already published results though
not necessarily explicitly stated there.

REMARK 4.3.

1. The set of reducible matrices R3 is closed and nowhere dense in M3 . In fact, the
analogous statement holds for all matrix sizes d ∈ N , see Problem 8 in [14].

2. The set E3 is closed relative to the set of unitarily irreducible matrices, and
nowhere dense. The closedness follows from Thms. 2.3, 2.4 of [21] which pro-
vide a constructive criterion for a 3-by-3 matrix to have an elliptical numerical
range. Indeed, these conditions are in form of equalities which persist under
taking limits, while staying within the set of non-normal matrices. This implies
further that the set of 3-by-3 matrices who have an elliptical numerical range is
closed relative to the set of non-normal matrices. The fact that E3 is nowhere
dense was derived from the same criterion in [26], see Prop. 3.1 there.
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3. The set F3 is closed relative to the set of unitarily irreducible matrices and
nowhere dense. The closedness follows from Prop. 3.2 of [21], according to
which a unitarily irreducible matrix A belongs to F3 if and only if uℜ(A) +
vℑ(A)+ w� has rank one for some real u,v,w . It remains to invoke the lower
semi-continuity of the rank function. The fact that F3 is nowhere dense can be
seen from an alternative description of this class, provided by [28, Theorem 1.2].

4. From (4.1) and already established (1)–(3) it directly follows that the set O3 is
open and dense in M3 .

The statements (2) and (3) can be refined using Kippenhahn’s classification in Re-
marks 4.1 and 4.2 and the property that the numerical ranges of a converging sequence
of matrices converge to the numerical range of the limit matrix (Rem. 3.2).

LEMMA 4.4.

1. If A ∈ M3 \E3 is the limit of a sequence in E3 , then A is reducible and W (A) is
an ellipse, a segment, or a point.

2. If A ∈ M3 \F3 is the limit of a sequence in F3 , then A is reducible. If W (A) is
an ellipse then the normal eigenvalue of A lies on the boundary of W(A) .

Proof. (1). Rem. 4.3(2) shows that A is reducible and that W (A) is an ellipse if
A is not normal. The numerical range W (A) cannot be a triangle because the limit of a
sequence of ellipses is an ellipse, a segment, or a point (Rem. 3.4).

(2). Rem. 4.3(3) shows that A is reducible. The Blaschke selection theorem,
Thm. 1.8.7 of [30], shows that there is a sequence (Ai)i∈N ⊂ F3 converging to A with
flat boundary portions si of W (Ai) , i ∈N , such that (si)i∈N converges in the Hausdorff
distance. If W (A) is an ellipse, then Rem. 3.2(2) shows that the limit is an extreme
point α of W (A) and Lemma 3.3 proves that α is multiply generated. Now Thm. 3.2
of [23] proves that α is an eigenvalue of A which is in fact a normal eigenvalue, see
Theorem 1.6.6 of [17]. �

5. Reducible 3-by-3 matrices

In this section we describe the intersection of the (norm) closures E3 of E3 and
F3 of F3 with the set of reducible matrices.

To simplify possible limit points of sequences we consider the equivalence of ma-
trices A ∈ Md modulo

• unitary similarity,

• substitution of A by a matrix in Md while preserving the linear
span of �,ℜ(A),ℑ(A) .

(5.1)
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The numerical range W (A) and the boundary generating curve S∧A(R) are invariant un-
der the action of the unitary group. The substitutions are realized by the group of invert-
ible affine transformations of the real plane, whose action commutes with the operators
A �→W (A) and A �→ S∧A(R) , see §2.4 and §4.18 of [22]. Hence, every equivalence class
(5.1) is a subset of an equivalence class in Kippenhahn’s classification provided in Re-
marks 4.1 and 4.2. In particular, the blocks R3 , E3 , F3 , and O3 in the partition (4.1)
of Md are invariants of (5.1). Since the action of a fixed unitary (respectively, affine
transformation) is a homeomorphism of Md , the closures E3 and F3 are invariants,
too.

LEMMA 5.1. Any matrix A ∈ M3 such that ℜ(A) and ℑ(A) commute is equiva-
lent modulo (5.1) to the diagonal matrix

0, diag[0,λ ,1] for 0 � λ � 1
2 , or diag[0,1, i]. (5.2)

Any reducible matrix A ∈ M3 such that ℜ(A) and ℑ(A) do not commute is equivalent
modulo (5.1) to [

0 2 0
0 0 0
0 0 a

]
, a � 0. (5.3)

No two of the matrices in (5.2) or (5.3) are equivalent modulo (5.1).

Proof. We shall simplify A using transformations (5.1). Since A is unitarily re-
ducible we can assume that its real part is X ⊕ a and its imaginary part Y ⊕ b where
X ,Y are self-adjoint 2-by-2 matrices and a,b reals. Using an affine transformation
we can assume that tr(X) = 0, tr(Y ) = 0, a � 0, and b = 0. Thereby, the real and
imaginary parts of the original matrix A commute if and only if X and Y commute.

If X and Y commute then, using unitary similarity, we assume that X and Y are
scalar multiples of diag[1,−1] . The three cases A = 0, (A �= 0, Y = 0), and (A �= 0,
Y �= 0) lead via affine transformations to the cases of (5.2) in the same order.

If X and Y do not commute then by adding scalar multiples of Y ⊕0 to X ⊕a we
assume that X and Y are orthogonal with respect to the Hilbert-Schmidt inner product
M2×M2 →C , (x,y) �→ tr(x∗y) . Normalizing and applying an SU(2) = SO(3) rotation
we obtain a matrix of the form (5.3).

To see that no two of the matrices described in (5.2) and (5.3) are equivalent
modulo (5.1) recall that the boundary generating curves of two equivalent matrices
are affinely isomorphic. The boundary generating curves of the described matrices are
one, two, or three points on a line, the vertices of a triangle, or the union of a circle and
a point. This makes sure that no two of them are affinely isomorphic. �

We shall compute the intersections of E3 with the set of reducible matrices. It is
shown in [28], Sec. 2, that the boundary generating curve of the matrix

A′ :=
[a x y

0 b z
0 0 c

]
, a,b,c,x,y,z ∈ C

consists of an ellipse and a point if and only if d := |x|2 + |y|2 + |z|2 > 0 and the number

λ := (c|x|2 +b|y|2 +a|z|2− xyz)/d (5.4)
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coincides with one of the eigenvalues a,b,c of A′ . In this case the two other eigen-
values of A′ are the foci of an ellipse with minor axis of length

√
d , and the boundary

generating curve of A′ is the union of this ellipse and of λ . Moreover, the eigenvalue
λ is a normal eigenvalue if and only if A is reducible.

Observe that the boundary generating curve of the following matrix is the union
of the unit circle and a point lying on or inside the unit circle. So the numerical range
is the unit disk.

LEMMA 5.2. If a ∈ [0,1] then the matrix
[

0 2 0
0 0 0
0 0 a

]
lies in E3 .

Proof. If a > 0 then the matrix in the above statement equals a ·A( 2
a) where

A(γ) :=
[ 0 γ 0

0 0 0
0 0 1

]
, γ � 2.

Hence, it suffices to prove A(γ) ∈ E3 for real γ � 2. The case a = 0 would follow by
taking the limit a → 0. We define

M(α,β ) :=
[

α (1−α)(1+β 2)/β α
0 α −αβ
0 0 1

]
, α ∈ R, β > 0.

Choose β > 0 such that γ = (1+ β 2)/β . Then the matrix A(γ) is the limit α → 0 of
M(α,β ) . It suffices to prove M(α,β ) ∈ E3 for β > 0 and for α in a neighborhood
of zero. The discussion in the paragraph of (5.4) shows that for α > 0 the numerical
range of M(α,β ) is a disk centered at α .

Let us prove that M(α,β ) is unitarily irreducible for all β > 0 and α �∈ {0,1} .
For α different from one, the latter is a simple eigenvalue (for M , as well as for M∗ ),
and e3 = [0,0,1] , is the respective eigenvector for M∗ . By contradiction, if M were
unitarily reducible, then e3 would lie in its reducing subspace, say L . Applying M to
e3 and assuming α �= 0 the vector [1,−β ,0] also lies in L , and by applying M again
the vector e1 = [1,0,0] is in L . So, unless β is zero, L is 3-dimensional, proving that
M is unitarily irreducible. �

LEMMA 5.3. If 0 � λ � 1
2 then the matrix diag[0,λ ,1] lies in E3 .

Proof. It suffices to show that for all λ ∈ [0, 1
2 ] the diagonal matrix diag[0,λ ,1] is

a limit of matrices obtainable from A(a) :=
[

0 2 0
0 0 0
0 0 a

]
, a∈ [0,1] , considered in Lemma 5.2,

via transformations (5.1). To this end, introduce the matrix resulting from the affine
transformation (x,y) �→ ((1−x)/2,εy) , ε > 0, applied to U∗A(1−2λ )U , where U :=
1√
2

[
1 0 1
1 0 −1
0
√

2 0

]
is unitary. A straightforward computation shows that it equals

[ 0 0 −ε
0 λ 0
ε 0 1

]
which converges for ε → 0 to diag[0,λ ,1] . �

Lemmas 4.4(1), 5.1, 5.2, and 5.3 show the following.
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LEMMA 5.4. A reducible 3-by-3 matrix lies in E3 if and only if its numerical
range is an ellipse, a segment, or a point.

We shall compute the intersection of F3 with the set of reducible matrices.

LEMMA 5.5. A reducible 3-by-3 matrix A lies in F3 if and only if W (A) is not
an ellipse having the normal eigenvalue of A in the interior.

Proof. Lemma 4.4(2) excludes reducible matrices A from F3 when W (A) is an
ellipse with the normal eigenvalue of A in the interior. Let us show that all other
reducible matrices lie in F3 .

We can assume that A is a matrix listed in Lemma 5.1. Let A be of the form
(5.2). Clearly 0 ∈ F3 . Otherwise, if A �= 0, then A = diag[0,λ ,1] for λ ∈ [0, 1

2 ] or
A = diag[0,1, i] . In both cases we define for ε > 0 a matrix M(ε) j,k := Aj,k + iε ,
j,k = 1,2,3. In the first case ℑ(M(ε)) and in the second case ℜ(M(ε)) has a multiple
eigenvalue. If ε > 0 then these matrices are irreducible because their real and imaginary
parts have no common eigenvectors. This proves A ∈ F3 .

Let A be of the form (5.3) with a � 1. It suffices to consider a > 1, the case a = 1
would follow by taking the limit. We apply transformations (5.1), namely the affine
transformation R2 → R2 , [x,y] �→ [x+ y

√
a2−1,y] followed by a unitary transforma-

tion A �→ u∗Au with unitary

u := 1
a
√

2

[
0 1−i

√
a2−1 1−i

√
a2−1

0 a −a
a
√

2 0 0

]
.

By means of these transformations we may assume that

ℜ(A) = diag[a,a,−a] and ℑ(A) = 1
a

[
0 0 0
0
√

a2−1 i

0 − i −
√

a2−1

]
.

Now it is obvious that for all ε > 0 the matrix

diag[a,a,−a]+ i
a

[
0 0 ε
0
√

a2−1 i

ε − i −
√

a2−1

]

is unitarily irreducible and Rem. 4.3(3) shows that it lies in F3 . Since the matrix
converges to A for ε → 0, the proof is complete. �

Lemmas 4.4, 5.4 and 5.5 combined yield the following.

THEOREM 5.6. The set E3 ∩F3 is the subset of all reducible matrices A ∈ R3

where W (A) is a point, a segment, or an ellipse with the normal eigenvalue of A on the
boundary.
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