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INDECOMPOSABLE MATRICES DEFINING PLANE CUBICS

ANITA BUCKLEY

(Communicated by I. M. Spitkovsky)

Abstract. In this article we find all (decomposable and indecomposable) 6× 6 linear determi-
nantal representations of Weierstrass cubics. As a corollary we verify the Kippenhahn conjecture
for M6 .

1. Introduction

Let C be an irreducible curve in CP2 defined by a polynomial F(x,y,z) of degree
3. Every smooth cubic can be brought by a projective change of coordinates [15] into
a Weierstrass form

F(x,y,z) = yz2− x(x− y)(x−λy) = 0,

or equivalently
F(x,y,z) = −yz2 + x3 + αxy2 + βy3 = 0,

for some λ �= 0,1 and α,β ∈ C .
We consider the following question. For given C find a linear matrix

A(x,y,z) = xAx + yAy + zAz

such that
detA(x,y,z) = cF(x,y,z)r ,

where Ax,Ay,Az ∈M3r and 0 �= c ∈ C . Here M3r is the algebra of all 3r×3r matrices
over C .

We call A determinantal representation of C of order r . Two determinantal rep-
resentations A and A′ are equivalent if there exist X ,Y ∈ GL3r(C) such that

A′ = XAY.

We study self-adjoint representations A = A∗ modulo unitary equivalence Y = X∗
and skew-symmetric representations A = −At under Y = Xt equivalence. Obviously,
equivalent determinantal representations define the same curve. Pfaffian representation
is a representation of order 2 with all 6× 6 matrices being skew-symmetric. Study of
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pfaffian representations is strongly related to determinantal representations: every 3×3
determinantal representation A induces a decomposable pfaffian representation[

0 A
−At 0

]
.

Note that the equivalence relation is well defined since[
0 XAY

−(XAY )t 0

]
=

[
X 0
0 Yt

][
0 A

−At 0

][
Xt 0
0 Y

]
.

The history of determinantal representations of order 1 goes back to the middle
of the 19th century [10], [21]. Dickson [7] classified hypersurfaces that can be rep-
resented as linear determinants. In the last two decades determinantal representations
of hypersurfaces again became extremely popular due to their use in semidefinite pro-
gramming [24]. Semidefinite programming feasibly uses convex sets determined by
linear matrix inequalities{

(x1, . . . ,xd) ∈ R
d : A0 + x1A1 + · · ·+ xdAd � 0

}
,

where A0, . . . ,Ad are real symmetric or complex hermitian matrices. A natural question
in this framework is whether a positive integer power of the polynomial has a determi-
nantal representations.

All modern treatments of determinantal representations of order 1 involve [6], the
famous 1−1 correspondence between determinantal representations of hypersurfaces
and line bundles (i.e., points on the Jacobian variety). Analogously, there is a one to one
correspondence between linear pfaffian representations (up to equivalence) and rank 2
vector bundles (up to isomorphism) with certain properties. These well known results
are summed up in Beauville [3].

Elliptic curves are of tame representation type according to Atiyah [1]. In partic-
ular, on a given cubic curve the number of indecomposable ACM bundles of rank r
with trivial determinant equals to the number of r -torsion points. Recently, Ravindra
and Tripathi [17] used these indecomposable vector bundles to prove the existence of
indecomposable determinantal representations of order greater than two.

Vinnikov [22] explicitly parametrised 3× 3 determinantal representations of a
Weierstrass cubic by the affine points on the same cubic. In this paper we classify up
to equivalence all linear pfaffian representations of a Weierstrass cubic: the decom-
posable ones are parametrized by the affine points on the cubic, additionally there are
three indecomposable representations arising from nontrivial extensions of even theta
characteristics (i.e., line bundles corresponding to 2-torsion points). The classification
is based on Lancaster-Rodman canonical forms of matrix pairs [13]. More generally,
any linear representation of order 2 is equivalent to either a block linear matrix or its
cokernel is a degree 0 indecomposable rank 2 bundle of Atiyah.

The main result of this paper is Theorem 3.2 containing the construction of the
three indecomposable pfaffian representations for a Weierstrass cubic. We outline simi-
lar constructions for indecomposable determinantal representations of order r � 2 cor-
responding to indecomposable vector bundles of rank r . These computations are an
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appendix to the paper of Ravindra and Tripathi [17]. As a corollary we verify the Kip-
penhahn conjecture for M6 .

The author wishes to thank G. V. Ravindra for his guidance and his patience, and
to I. Klep for pointing out the connection between our constructions and the conjecture
of Kippenhahn.

2. Determinantal representations of Vinnikov

Vinnikov [22] found an explicit one to one correspondence between the 3× 3
determinantal representations (up to equivalence) of C and the points on an affine piece
of C :

LEMMA 2.1. ([22]) Every smooth cubic in P2 can be brought into the Weierstrass
form

F(x0,x1,x2) = −x1x
2
2 + x3

0 + αx0x
2
1 + βx3

1.

A complete set of determinantal representations of F is

x0 Id+x2

⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦+ x1

⎡
⎣

t
2 s α + 3

4 t2

0 −t −s
−1 0 t

2

⎤
⎦ , (1)

where s2 = t3 + αt + β . Note that the last equation is exactly the affine part F(t,1,s) .

We briefly repeat the proof as we will use similar ideas for 6×6 skew-symmetric
determinantal representations.

Proof. Let A(x0,x1,x2) = x0A0 +x2A2 +x1A1 be a representation of F(x0,x1,x2) .
First we show that it is equivalent to a representation with

A0 = Id and A2 =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ .

Observe that A0 is invertible since detA(1,0,0) �= 0. We can multiply A(x0,x1,x2) by
A−1

0 to obtain an equivalent representation with A0 = Id. The characteristic polynomial
of A2 equals detA(x0,0,−1) = x3

0 which implies that A2 is nilpotent. The nonzero
term x1x2

2 in F determines the order of nilpotency. We remark that this is a Lancaster–
Rodman canonical form for real matrix pairs [13] . Further GL3 action from left and
right which preserves this canonical form (the first two matrices in the determinantal
representation) reduces A1 to the above. �

The above is an implementation of the classic Cook–Thomas correspondence [6]:

PROPOSITION 2.2. ([3], Proposition 3.1.) Let L be a line bundle of degree 0 on
C with H0(C,L ) = 0 . Then there exists a 3×3 linear matrix A such that F = detA
and

0 → OP2(−2)3 A−→ OP2(−1)3 → L → 0.
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Conversely, let A be a 3×3 linear matrix with F = detA. Then the cokernel of A is a
line bundle L on C of degree 0 with H0(C,L ) = 0 .

The explicit formula in Lemma 2.1 is due to the fact that the set of line bundles of
degree 0 with no global sections equals to JC\OC , where JC = Pic0C is the Jacobian
of C . Recall that JC equals to the curve itsef. Therefore JC\OC can be parametrised
by the affine points on the curve C .

Observe that if the cokernel of A is L , the cokernel of At is L −1 . This can also
be seen directly from Lemma 2.1, just multiply (1) by anti-identity. Then

A = x0

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦+ x2

⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦+ x1

⎡
⎣ α + 3

4 t
2 s t

2−s −t 0
t
2 0 −1

⎤
⎦ (2)

and At correspond to the inverse points (t,s) and (t,−s) respectively on the affine part
s2 = t3 + αt + β of JC = C . We can also conclude that the above A is symmetric
if and only if s = 0. This implies that on C there are three symmetric determinantal
representations corresponding to three 2-torsion points L ∼= L −1 on JC . In the affine
coordinates these three points are (t,0) , where t3 + αt + β = 0.

3. Pfaffian representations

In this section we will implement the one to one correspondence between linear
pfaffian representations and rank 2 vector bundles with certain properties, applying
similar methods as in the proof of Lemma 2.1. The correspondence is described in

PROPOSITION 3.1. ([3], Proposition 5.1.) Let E be a rank 2 bundle on C with
detE = OC and H0(C,E ) = 0 . Then there exists a 6×6 linear skew–symmetric matrix
A such that F = PfA and

0 → OP2(−2)6 A−→ OP2(−1)6 → E → 0.

Conversely, let A be a 6× 6 linear skew–symmetric matrix with F = PfA. Then the
cokernel of A is a rank 2 bundle E on C with the above properties .

Pfaffian representations are equivalent under the action

A �→ P ·A ·Pt,

where P is an invertible 6×6 constant matrix. By suitable choices of P it is possible
to reduce the number of parameters in A . In other words, we will reduce the number of
equivalent representations in each equivalence class. The proof of Theorem 3.2 outlines
an algorithm for finding all pfaffian representations (up to equivalence) of

C = {(x,y,z) ∈ P
2 : yz2− x(x− y)(x−λy) = 0}.

For the sake of clearer notation we always write just the upper triangle of skew–
symmetric matrices.
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THEOREM 3.2. Let C be a smooth cubic in the Weierstrass form

F(x,y,z) = yz2 − x(x− y)(x−λy).

A complete set of pfaffian representations of F consists up to equivalence of three
indecomposable representations and for the whole affine curve of decomposable repre-
sentations:

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 3t2−2t(1+λ )−(1−λ )2
4 0 t−1−λ

2
0 0 0 −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for t = 0,1,λ

and

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 3t2−2t(1+λ )−(1−λ )2
4 s t−1−λ

2
0 0 −s −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where s2 = t(t−1)(t−λ ) . Note that the last equation is exactly the affine part F(t,1,s) .

The proofwill be based on Lancaster–Rodman canonical forms of matrix pairs [13].
Let A = xAx + zAz + yAy be a pfaffian representation of C . Observe that Ax is invert-
ible and Az nilpotent since C is defined by PfA and contains x3 term and no z3 term.
Moreover, yz2 determines the order of nilpotency. This determines the unique skew-
symmetric canonical form [13, Theorem 5.1] for the first two matrices. In other words,
every pfaffian representation of C can be put into the following form

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 c12 c13 c14 c15 c16

0 c23 c24 c25 c26

0 c34 c35 c36

0 c45 c46

0 c56

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since PfA defines the equation of C , we get

c36 = −1,

c26 = −c35,

c25 = −1−λ − c16− c34,

c14 = c16 + c2
16 + c34 + c16c34 + c2

34 +2c24c35 + c16c
2
35− c34c

2
35

−c23c45− c13c46 + c23c35c46− c12c56 + c13c35c56 + λ (1+ c16 + c34),
c15 = −c24− c16c35 + c34c35− c23c46− c13c56.
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There are 15− 5 parameters ci j left in the representation. Additionally, the coeffi-
cient at y3 equals c14c26c35−c14c25c36−c13c26c45 +c12c36c45 +c16(c25c34−c24c35 +
c23c45)+c13c25c46−c12c35c46−c15(c26c34−c24c36 +c23c46)+c14c23c56−c13c24c56 +
c12c34c56 = 0.

LEMMA 3.3. The action A �→ P ·A ·Pt preserves the canonical form of the first
two matrices in the representation if and only if P equals

[
P1 P2

P3 P−1
1 +P3P

−1
1 P2

]
or

[
P2 P1

−P−1
1 +P3P

−1
1 P2 P3

]

where P1 is invertible and Pi are of the form

⎡
⎣ pi1 pi2 pi3

0 pi1 pi2

0 0 pi1

⎤
⎦ , i = 1,2,3.

Proof. Denote

I =

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ and N =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ .

We will need the following obvious observation, which can be proved directly by com-
paring matrix elements:

Let Y,Y ′ be 6×6 matrices for which

Y.

[
0 I
−I 0

]
=

[
0 I
−I 0

]
.Y ′ and Y.

[
0 N

−N 0

]
=

[
0 N

−N 0

]
.Y ′ hold.

Then Y =
[
Y1 Y2

Y3 Y4

]
and Y ′ =

[
Yt

4 −Yt
3

−Yt
2 Yt

1

]
, where

Yi =

⎡
⎣ yi1 yi2 yi3

0 yi1 yi2

0 0 yi1

⎤
⎦ , i = 1,2,3,4.

We call the specific form of the above Toeplitz matrices “	 form”.
Now we can find all invertible

P =
[

P1 P2

P3 P4

]

that satisfy

P.

[
0 I
−I 0

]
.Pt =

[
0 I
−I 0

]
and P.

[
0 N

−N 0

]
.Pt =

[
0 N

−N 0

]
.
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By the above observation all Pi ’s are of 	 form. Moreover,

p11p41− p21p31 = 1,

p22p31 + p21p32− p12p41− p11p42 = 0,

p23p31 + p22p32 + p21p33− p13p41− p12p42− p11p43 = 0.

In other words, if P1 is invertible then P4 = P−1
1 +P3P

−1
1 P2 . The same way we see that

P3 = −P−1
2 +P1P

−1
2 P4 when P2 is invertible.

Since P is invertible and consists of 	 blocks, at least one of P1,P2 is also invert-
ible. Note that [

P1 P2

P3 P4

]
.

[
0 − Id
Id 0

]
=

[
P2 −P1

P4 −P3

]

exchanges P1 and P2 which finishes the proof. �
The action of Lemma 3.3 enables us to reduce the number of parameters ci j . We

can choose such P that its action eliminates

c13 = c23 = c46 = c56 = 0, c35 = 0 and c16 = c34. (3)

Indeed, if we choose p11 = 1, the above condtions determine p12 , p13 and p22 , p23 ,
p32 , p33 :

p32 → c56− c35p31 + c56p31p21,

p22 → −c23 + c35p21,

p33 → 1
2
((c16 − c34 + c2

35− c23c56)p31 +2c46(1+ p31p21)),

p23 → 1
2
(−2c13 +(−c16 + c34+ c2

35− c23c56)p21),

p12 → −c35 + c56p21,

p13 → 1
2
(c16− c34 + c2

35− c23c56 +2c46p21).

The relations among ci j then simplify to:

c14 = 3c2
16 + λ +2c16(1+ λ ),

c24 = −c15,

0 = c2
15−8c3

16− c12c45−λ −λ 2−8c2
16(1+ λ )−2c16(1+3λ + λ 2). (4)

which leaves us with 4 parameters c12,c45,c15,c16 and equation (4) connecting them:
⎡
⎢⎢⎢⎢⎢⎢⎣

0 c12 0 c14 c15 c16
0 0 −c15 −1−λ −2c16 0

0 c16 0 −1
0 c45 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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It is easy to check that A �→ P ·A ·Pt from Lemma 3.3 preserves all zeros and −1
in the above matrix if and only if

Pi =

⎡
⎣ pi1 0 0

0 pi1 0
0 0 pi1

⎤
⎦ for i = 1,2,3,4, together with p11p41− p21p31 = 1.

We can use this “diagonal” action to make c45 = 0 by choosing appropriate p41 like
in (3). When c15 �= 0 we can furthermore make c12 = 0 by p11 = p41 = 1, p31 = 0,
p21 = −c12/2c15 . The only case left to consider is c15 = 0. The action which keeps
c45 = 0 maps c12 �→ c12p2

11 where p11p41 = 1 and p31 = 0. Thus either c12 = 0 or we
can make c12 = 1.

In order to simplify notations even further, we introduce parameters t and s by
c16 = 1

2(t −1−λ ) and c15 = s . When c45 = c12 = 0 the matrix becomes

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 3t2−2t(1+λ )−(1−λ )2
4 s t−1−λ

2
0 0 −s −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and relation (4) in the new parameters equals s2 − t(t−1)(t−λ ) = 0.
Additionally we get

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 3t2−2t(1+λ )−(1−λ )2
4 0 t−1−λ

2
0 0 0 −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

where t is one of the three solutions of 0 = −t(t−1)(t−λ ) .

REMARK 3.4. The representations in Theorem 3.2 are non-equivalent to each
other, since they are not connected by the action A �→ P ·A ·Pt .

4. A remark about the moduli space of rank 2 bundles

Rank 2 bundles with trivial determinant and no sections lie in the open set

MC(2,OC) \ Θ2,OC ,

where MC(2,OC) is the moduli space of semistable rank 2 bundles with determinant
OC and Θ2,OC = {E ∈ MC(2,OC) : h0(C,E ) �= 0} . In [3, § 4] and [5, § 6] we can
find that there are no stable bundles in MC(2,OC) and the unstable part consists of
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decomposable vector bundles of the form L ⊕L −1 for L in the Jacobian JC . More-
over, Θ2,OC = {OC ⊕OC} . This yields a 1− 1 correspondence between the points in
MC(2,OC) \ Θ2,OC and the open subset of Kummer variety

(JC \ {OC})/≡,

where ≡ is the involution L �→ L −1 .
Let A and −At be 3× 3 determinantal representations with cokernels L and

L −1 respectively, like in Section 2. Obviously L ⊕L −1 and L −1 ⊕L are iso-
morphic rank 2 vector bundles. This is aligned with the corresponding decomposable
pfaffian representations. Indeed, even though A and −At are not necessarily equivalent
determinantal representations,[

0 A
−At 0

]
and

[
0 −At

A 0

]

are equivalent pfaffian representations since[
0 Id
Id 0

][
0 A

−At 0

][
0 Id
Id 0

]
=

[
0 −At

A 0

]
.

REMARK 4.1. Each point in the the moduli space MC(2,OC) corresponds to a
decomposable bundle which induces a decomposable pfaffian representation. However,
this does not imply that every rank 2 bundle on C is decomposable. This is because the
moduli space consists of S-equivalence classes rather than isomorphic bundles.

Take for example the cokernel of a symmetric 3× 3 representation; one of the
three cases where s = 0 in (2). Then L is a 2-torsion point on JC , or in other words
an even theta characteristic. For this line bundle L ∼= L −1 , the direct sum L ⊕
L and the non-trivial extension of L by L represent the same point in the moduli
space. These two bundles are clearly not isomorphic and can be realized as cokernels
of matrices from Theorem 3.2,

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 3t2−2t(1+λ )−(1−λ )2
4 0 t−1−λ

2
0 0 0 −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 3t2−2t(1+λ )−(1−λ )2
4 0 t−1−λ

2
0 0 0 −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

for t satisfying 0 = t(t−1)(t−λ ) .
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5. Determinantal representations of order � 2

Consider a linear matrix A with detA = Fr , where F defines C . Since C is
smooth, we will prove that the cokernel of A is a vector bundle of rank r . Indeed, by [3,
Theorem A] the cokernel is an arithmetically Cohen-Macaulay (ACM) sheaf. Over a
regular scheme any Cohen-Macaulay sheaf is locally free, thus it is a vector bundle.
Furthermore, localizing at the generic point of C , we can locally write A as a diagonal
matrix [F, . . . ,F,0 . . . ,0] , where F occurs r times. The same result was obtained in [8]
and [2] using purely algebraic methods for matrix factorizations of polynomials.

Atiyah [1] classified indecomposable vector bundles on C in the following theo-
rem.

THEOREM 5.1. ([1], Theorem 5, Corollary 1) Let C be an elliptic curve.

(i) For any r > 0 there exists a unique (up to isomorphism) indecomposable vector
bundle Fr with h0(Fr) = 1 . Moreover, Fr is defined inductively by the short
exact sequence

0 → OC → Fr+1 → Fr → 0, where F1 = OC.

(ii) For any indecomposable rank r bundle E of degree 0, there exists a line bundle
L such that E ∼= Fr ⊗L and L ⊗r = detE .

(iii) Fr is self-dual, Fr
∼= F∨

r .

By knowing all possible cokernels of determinantal representations, we can find
(up to equivalence) all determinantal representations of F [3, Proposition 1.11.]. For
r = 2 this 1–1 correspondence gives the following corollary.

COROLLARY 5.2. Let A be a linear 6× 6 matrix with detA = F2 . Then A is
either equivalent to a block matrix

[
A1 0
0 A2

]
, (6)

or the cokernel of A equals to a nontrivial extension of a degree 0 line bundle L �= OC

by itself. Recall that such L is the cokernel of some 3×3 determinantal representation
of C .

Proof. Denote the cokernel of A by E . Consider the short exact sequence

0 → L1 → E → L2 → 0,

where the line bundles L1,L2 are cokernels of 3×3 determinantal representations of
C . By the Riemann-Roch formula all L1,L2 and E have degree 0. Then E either
splits and defines (6), or is a nontrivial extension if and only if

Ext1(L2,L1) ∼= Ext1(L2⊗L −1
1 ,OC) ∼= H1(C,L2⊗L −1

1 ) ∼= H0(C,L1 ⊗L −1
2 ) �= 0.
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The only line bundle on C with nontrivial group of sections is OC . This means that
E is indecomposable if and only if L1⊗L −1

2 = OC . This is consistent with Atiyah’s
Theorem 5.1 where every indecomposable rank 2 bundle of degree 0 fits into the exact
sequence

0 → L → E → L → 0 (7)

for some line bundle L with detE = L ⊗2 . By [3, Proposition 1.11.], given a coherent
sheaf E on P2 , there exists an exact sequence

0 → O
P2(−2)6 A−→ O

P2(−1)6 → E → 0

if and only if H0(P2,E ) = H1(P2,E ) = 0. This gives the 1–1 correspondence between
indecomposable rank two bundles E with detE = L ⊗2 for some L �= OC of degree 0,
and indecomposable determinantal representations A with detA = F2 and CokerA =
E . Every L �= OC of degree 0 form (7) is by Proposition 2.2 a cokernel of some
3×3 determinantal representation of C . Clearly, H0(C,L ) = 0 and by Rieman–Roch
H1(C,L ) = 0, which implies H0(C,E ) = H1(C,E ) = 0. On the other hand, minimal
free resolution is unique up to isomorphism by [9]. �

Consider again A with detA = Fr and cokernel E . In [3, Theorem B] we find that
when E is additionally equipped with an ε -symmetric (ε = (−1)r−1 ) invertible form

E ×E → OC(α) for some α ∈ Z,

then A can be taken to be ε -symmetric. From here it follows that there are exactly
three symmetric 3×3 determinantal representations of C with cokernels L1,L2,L3 ,
the three even theta characteristics (i.e., 2-torsion points in JC ). Indeed, these are
the only nontrivial line bundles of degree 0 with L ⊗2 ∼= OC . In rank 2 case, Theo-
rem 5.1 shows that the only indecomposable rank 2 bundles on C with determinant
OC are the nontrivial extensions of theta characteristics Li by themselves. Take an
indecomposable pfaffian representation from Theorem 3.2. Its cokernel is indeed the
nontrivial extension of a 2-torsion point Li = L −1

i . The three non-block matrices
in Theorem 3.2 are by the above the only indecomposable skew-symmetric matrices
with determinant F2 . For r = 3 Ravindra and Tripathi [17] proved the existence of
eight indecomposable 9× 9 determinantal representations of C . The corresponding
indecomposable cokernels are extensions of the nontrivial 3-torsion points on JC with
themselves (i.e., the eight flexes on the affine Weierstrass cubic). In order to explic-
itly construct these determinantal representations, we would need to repeat the proof
of Theorem 3.2 for 9× 9 matrices. We invite the interested reader to compute them
as “extensions” of block matrices with three nonzero blocks A ; here A comes from
Lemma 2.1 with (s, t) being one of the eight flexes on the affine Weierstrass cubic.

As another interesting corollary of Theorem 3.2 we are able to verify the con-
jecture of Kippenhahn [11] for M6(C) , the algebra of 6× 6 matrices. Shapiro [19]
and [20] showed that the conjecture holds for n � 5 and for n = 6 in the case that the
minimal polynomial is cubic. On the other hand, Waterhouse [25] presented a pair of
6× 6 matrices H,K that generate M6(C) such that det(xH + yK − z Id) has repeated
linear factors, thus disproving the general form of Kippenhahn conjecture for n = 6.
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Another class of counterexamples for n = 6 has been constructed in [14]. Laffey [12]
constructed a counterexample for n = 8 with quartic minimal polynomial. The follow-
ing corollary shows that there is no similar counterexample with n = 6.

COROLLARY 5.3. The conjecture of Kippenhahn as stated here is true for n = 6 .
Let H,K be 6×6 complex Hermitian matrices and F a homogeneous polynomial

defining a smooth cubic, such that

det(xH + yK− z Id) = F(x,y,z)2.

Then H and K are simultaneously unitarily similar to direct sums. This means that
there exists an unitary matrix U and matrices H1,H2,K1,K2 ∈ M3(C) such that

UHU∗ =
[

H1 0
0 H2

]
and UKU∗ =

[
K1 0
0 K2

]
.

REMARK 5.4. Note that F in Corollary 5.3 defines a real cubic curve and that
zId − xH − yK is a definite determinantal representation of F . In the terminology of
linear matrix inequalities, F is a real zero polynomial and (0,0) lies inside the convex
set of points {(x,y) ∈ R2 : Id − xH − yK � 0} called spectrahedron. Spectrahedron
is bounded by the compact part of the curve. For more constructions of definite deter-
minantal representations of polynomials we refer the reader to [16] and [18] and the
references therein.

Proof. Every smooth real cubic can be brought into a Weierstrass form by a real
change of coordinates

⎡
⎣ x

y
z

⎤
⎦ �→ P

⎡
⎣ x

y
z

⎤
⎦ , for some P ∈ GL3(R).

In the new coordinates we get

det(xAx + yAy + zAz) =
(−yz2 + x3 + αxy2 + βy3)2

, where α,β ∈ R.

Note that Ax,Ay,Az are real linear combinations of H,K, Id and therefore Hermitian.
Since zId− xH − yK is definite, A = xAx + yAy + zAz is also definite. We showed that
the cokernel of A is a rank 2 bundle. Assume first that the cokernel is decomposable

L1⊕L2 . Then A is equivalent to a block matrix

[
A1 0
0 A2

]
, where Li is the cokernel

of Ai . In particular, each line bundle Li satisfies the conditions in [22, Theorem 7],
therefore Ai can be brought by [23, Theorem 8] into one of the two self-adjoint forms

±
⎛
⎝x

⎡
⎣ 0 0 1

0 1 0
1 0 0

⎤
⎦+ z

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦+ y

⎡
⎣α + 3

4 t2i isi
ti
2−isi −ti 0

ti
2 0 −1

⎤
⎦
⎞
⎠ , (8)
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where (si, ti) ∈ R2 satisfy −s2
i = t3i + αti + β . Moreover, Ai is unitarily equivalent to

one of the above forms. It was shown in [23], that definite self-adjoint determinantal
representations of C are exactly those corresponding to the points (s,t) in the compact
part of C(R) . This self-adjoint canonical form can be obtained also directly, using
Lancaster–Rodman canonical forms for real matrix pairs [13], like we did in Section 2.
Indeed, just replace s by is in (2).

Next we assume that the cokernel E of A is indecomposable. In Corollary 5.2
we showed that detE = L ⊗2 for some line bundle L �= OC of degree 0. Since A
is self-adjoint, L is isomorphic to the cokernel of a self-adjoint representation in (8),
Ls,t where (s, t) ∈ R2 . Note that L −1

s,t
∼= L−s,t . Since A∗(x,y,z) = A(x , y , z) and

always holds E ∼= E ∨ ⊗ detE , we conclude that E ∨ = KerA is a nontrivial extension
of L−s,t .

Analogous computations as in the proof of Theorem 3.2 show that A is unitarily
equivalent to a self-adjoint representation

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1

0 0 0 1 0

0 1 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0

0 0 1 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∗ ∗ 3t2−2t(1+λ )−(1−λ )2
4 is t−1−λ

2
0 ∗ −is −t 0

0 t−1−λ
2 0 −1
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for (s,t) ∈ R
2,

or i times the skew-symmetric representation (5)

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 i

0 0 0 i 0

0 i 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ z

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 i 0

0 0 i 0 0

0 0 0 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ y

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 i 0 3t2−2t(1+λ )−(1−λ )2
−4i 0 t−1−λ

−2i
0 0 0 −it 0

0 t−1−λ
−2i 0 −i
0 0 0

0 0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for t = 0,1,λ .

It is easy to check that none of these are definite and can thus not provide a counterex-
ample to Kippenhahn’s conjecture. �
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