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Abstract. Let T'(f) be the block Hankel matrix of negative Fourier coefficients of a matrix val-
ued function (mvf) f € LE*Y(T) defined on the unit circle T. In the present paper a matrix
Nehari-Takagi problem is considered: Given a Hankel matrix I' and x € NU {0} find a mvf
£ €LEU(T), such that |f[l~ < 1 and rank (T'(f) —T) < k. Under certain mild assumption,
we establish a one-to-one correspondence between solutions of the Nehari-Takagi problem and
solutions of some Takagi-Sarason interpolation problem. The resolvent matrix of the Nehari-
Takagi problem is shown to belong to the class of so-called generalized y-generating matrices,
which is introduced and studied in the paper.

1. Introduction

For a summable function f defined on T = {z: |z| = 1} let us set

Yk(f)zi/

kO i0 _
57 e f(€®de (k=1,2,..). (1.1)

The Nehari problem consists of the following: given a sequence of complex numbers
% (k€ N) find a function f € Lo.(T) such that || f]| < 1 and

%) =n ((k=12,.). (1.2)

By Nehari theorem [22] this problem is solvable if and only if the Hankel matrix I' =
(Vi+j—1)7j=1 determines a bounded operator in »(N) with ||T'[| < 1. The problem (1.2)
is called indeterminate if it has infinitely many solutions. A criterion for the Nehari
problem to be indeterminate and a full description of the set of its solutions was given
in [1], [2].

In [2] Adamyan, Arov and Krein considered the following indefinite version of
the Nehari problem, so called Nehari-Takagi problem NTP,(T'): Given k¥ € N and a
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sequence {7y }r_, of complex numbers, find a function f € L..(T), such that || f]|. <1
and
rank (T(f) —T) < k.

Here I'(f) is the Hankel matrix I'(f) := (%+;-1(f));j=;- As was shown in [2], the
problem NTP,(T") is solvable if and only if the total multiplicity v_ (I —I""T") of the
negative spectrum of the operator / —I'*I" does not exceed k. In the case when the
operator [ —T"™*T is invertible and v_(I — T"*T") = K, the set of solutions of this problem
was parameterized by the formula

f() = (ar(u)e(p) +ar () (az (1)e(u) +axn(u) =", (1.3)

where 20(u) = (a,-j(u))l% j—1 is the so-called y-generating matrix and the parameter &
ranges over the Schur class of functions holomorphicon D= {z:||z|| < 1} and bounded
by one. In [2] applications of the Nehari-Takagi problem to various approximation and
interpolation problems were presented. Matrix and operator versions of Nehari problem
were considered in [25] and [3]. In the rational case matrix Nehari and Nehari-Takagi
problems were studied in [10]. A complete exposition of these results can be found also
in [24] and [8].

In the present paper we consider the general matrix Nehari-Takagi problem and
show that under some assumptions this problem can be reduced to Takagi-Sarason in-
terpolation problem studied earlier in [14]. Using the results from [14], [15] we obtain
in Theorem 5.3 a description of the set of solutions of the matrix Nehari-Takagi problem
in the form (1.3).

The resolvent matrix 2(u) = (a,-7j(u))l-27,»:1 in (1.3) is shown to belong to the
class of generalized y-generating matrices, introduced in Definition 4.1. Connections
between the class of generalized y-generating matrices and the class of generalized j-
inner matrix valued functions (mvf’s) introduced in [13] is established in Theorem 4.3.
Using this connection we present another proof of the formula for the resolvent matrix
() from [10] in the case when the Hankel matrix T" corresponds to a rational mvf.
All the results, except the last section, are presented in unified notations both for the
unit circle T and the real line R.

2. Preliminaries

2.1. Notations

Let Qf beeither D={A €C:|A| <1} or CL ={A € C: ImA| > 0}. Letus
set for arbitrary A,® € C

(2’):{ l—ld), Q+:D, o __ 1/2_’7 Q+:D?
Po ~i(A - @), @y =Cy, A, Q. =C,.

Thus, Q = {w € C: py(w) >0} and let

Q={weC:py(w)=0}, Q_={weC:py(w)<O0}.
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The following basic classes of mvf’s will be used in this paper: Hy “? (resp., H2*?) is

the class of p x g mvf’s with entries in the Hardy space H, (resp., Ho.); HY := H <t
and (HY): =LY e HY, #P*4 is the Schur class of p x g mvf’s holomorphic and
contractive on Q. , .77 (resp., .75, 1) is the class of inner (resp., outer) mvf’s in

ypxq: m
S = (s € P 5(u) s(w) = I, ae. on Qo)
S ={s €SP sHY = HY},

The Nevanlinna class .#7*9 and the Smirnov class .#;”*? are defined by

e/Vpxq:{f:hflg.gerxq hey.:ylxl}’

NP ={f=h"" HE 1 € S = S ! e
{f=h""g:g€ € Sou =S ous }-

Foramvf f(A) letusset f*(1) = f(1°)*. Denote by h the domain of holomor-
phy of the mvf f and let b = b N Q.
A pxgmvf f_ in Q_ is said to be a pseudocontinuation of a mvf f € A4P*9 if

(D) ffenrea,

(2) limyjo f— (i —iv) =limyo f+ (i +iv)(= f(1)) ae. on Q.

The subclass of all mvf’s f € 4#7*9 that admit pseudocontinuations f_ into Q_ will
be denoted I17*9.
Let (1) be a p x g mvf that is meromorphic on Q  with a Laurent expansion

P(A) = (A =2o) @+ 4+ (A —20) o1+ g+
in a neighborhood of its pole Ay € Q. . The pole multiplicity .# (@, o) is defined by
(see [20])

Ok 0
Mr(9,h0) =rankL(p, X)), T(9,A)= )
Q-1 - O

The pole multiplicity of ¢ over . is given by

Ma(9. Q)= Y Ma(p,L).
A€Q+

This definition of pole multiplicity coincides with that based on the Smith-McMillan
representation of ¢ (see [10]).

Let by (A) be a Blaschke factor (bg(A) = 1 l_ if Qy =D, and by(A) = jt—g,
if Q; =C,), and let P be an orthogonal projection in C”. Then the mvf

By(A)=I,— P+by(M)P, weEQ,,
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belongs to the Schur class .#7*? and is called the elementary Blaschke—Potapov (BP)
factor and B(A) is called primary if rank P = 1. The product

K
8%

B(z’) = HB(XJ'(A‘)’

=1
where B (A) are primary Blaschke-Potapov factors, is called a Blaschke—Potapov

product of degree K.

REMARK 2.1. For a Blaschke-Potapov product b the following statements are
equivalent:

(1) the degree of b is equal x;
Q) Ma(b', Q) =k,

2.2. The generalized Schur class

Let kK € Z; := NU{0}. Recall, that a Hermitian kernel K¢ (1) : Q x Q — C™<™
is said to have K negative squares, if for every positive integer n and every choice of
w; € Qand u; € C" (j=1,...,n) the matrix

(<ij (wk)uj’ uk>)?,k:l

has at most x negative eigenvalues, and for some choice of wy,...,m, € Q and uy,...,u,
€ C™ exactly x negative eigenvalues (see [20]).

Let .72*P denote the generalized Schur class of g x p mvf’s s that are meromor-
phic in , and for which the kernel

I, —s(A)s(w)*
Po(2)

has K negative squares on b x h . In the case where k =0, the class quXp coincides
with the Schur class .#9%P of contractive mvf’s holomorphic in Q. As was shown
in [20] every mvf s € .#P admits factorizations of the form

Ay(A) = (22)

s(A) = bp(A) \sp(A) = s,(A)br(A)Y, A en, (2.3)

where by € .S9%9, b, € /P*P are Blaschke-Potapov products of degree k, sy,s, €
/9*P and the factorizations (2.3) are left coprime and right coprime, respectively, i.e.

rank [by(A) se(A) ] =q (A €Qy) (2.4)

and
rank [b,(A)* 5,(A)* ] =p (A2 €Qy). (2.5)

The following matrix identity was established in the rational case in [16], in gen-
eral case see [13].
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THEOREM 2.2. Let s € .Z2*P have Krein-Langer factorizations
s = b;lS( = s,br_l. (2.6)

Then there exists a set of mvf’s ¢, € HE Y, dp € HZ*Y, ¢, € HE*P and d, € HE™Y, such
that
Cr dr br _d/f _ 117 0
|:—S/j bg:| [Sr co | |0 I 2.7)

2.3. The generalized Smirnov class

Let 2P*1 denote the class of rational p x ¢ mvf’s and let Kk € N. A p x g mvf
©(z) is said to belong to the generalized Smirnov class JVf <4 _if it admits the repre-
sentation

0(z) = @o(z) +7r(z), where @y€ AN re P9 and Mg (r,Q4) <K.

If k¥ =0, then the class 4" coincides with the Smirnov class 4", defined
in (2.1). The generalized Smirnov class .47’ <4 was introduced in [23]. In [15], mvf’s
¢ from </V+p <9 were characterized by the following left coprime factorization

Q(A) =be(A) " @u(R),
where by € S?™" is a Blaschke—Potapov product of degree k', ¢y € 4”7 and
rank [by(A) @ (A)] =p ford e Q..

Clearly, for ¢ € ,/Vf <4 there exists a right coprime factorization with similar proper-

ties. This implies, in particular, that the class .7 is contained in ,/Vf <.

2.4. Generalized j,,-inner mvf’s

Let j,4 be an m x m signature matrix

. I, 0
Jpg = [6) —Iq]’ where p+gq=m,

DEFINITION 2.3, [4] An m x m mvf W(A) = [w;j(2)]7—; that is meromorphic

in Q. is said to belong to the class % (j,q) of generalized j,q-inner mvf’s, if:

(i) the kernel
—W(A)jpgW (@)"

Po(A)

J
K () = 22

has Kk negative squares in by, X b\,

(i) Jpg—W(H)jpgW(u)* =0 ae. on Q.
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As is known [4, Theorem 6.8] for every W € %c(jq) the block woy(A) is invert-
ible for all A € f);{, except for at most K points in €. Thus the Potapov-Ginzburg
transform of W

~1
S(A)=PG(W) = {WHO(M W%,EM} {szlzl) W22O(7L)} &

is well defined for those A € f);{,, for which wy,(A) is invertible. It is well known that
S(A) belongs to the class .7 and S(u) is unitary for a.e. u € Qg (see [4], [13]).

DEFINITION 2.4. [131 Amvf W € %(jpq) is said to be in the class %/ (jpq), if
521 1= —wyy way € TP (2.9)
Let W € %, (jpq) and let the Krein-Langer factorization of s»; be written as

521(A) = be(A)"'se(A) = 5, (A)br(A) 7 (A € b)),

$21

where by € L1 b, € STV 50,5, € ST*P. Then, as was shown in [13], the mvf’s
bysyy and sy1b, are holomorphicin Q. , and

bysa € S99 and suby € SPXP

DEFINITION 2.5. [13] Consider inner-outer factorization of s11b, and outer-
inner factorization of bys);

s11b, = biay, bysy = arby, (2.10)

where by € SP*P by € ST ay € SEIP, ay € F)1. The pair {by,by} of in-
ner factors in the factorizations (2.10) is called the associated pair of the mvf W €
U (ipq) -

From now onwards this pair {by,b,} will be called also a right associated pair since it
is related to the right linear fractional transformation

Tiw[e] := (wi1€ +wi2) (w16 +wn) (2.11)

see [5], [7], [8]. Such transformations play important role in description of solutions of
different interpolation problems, see [2], [5], [10], [9], [12], [14]. In the case Kk =0 the
definition of the associated pair was given in [5].
For every W € % (jpq) and € € #P*9 the mvf Tiy[e] admits the dual represen-
tation
Tiv[e] = (wi; +ewlh) ' (wh; + endy).

As was shown in [13], for W € %,/(j,q) and ¢,, d\, ¢, and d; as in (2.7) the mvf

K° = (—Wlld/j—Flece)(—W21d/f+W2ZC€)_la (2.12)
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belongs to HZ™?. Ttis clear that (K°)* € HL*P(Q_).
In the future we will need the following factorization formula for the mvf W ¢
UL (jpq), obtained in [13, Theorem 4.12]:

W=0°®" inQ,, (2.13)

where |
o° = [b 1 K°b;

o o\—1
0 b2—1:|7 q)7(q)) E'/V-‘r'

3. The Takagi-Sarason interpolation problem

Problem TSP (b,by,K) Let by € 277, by € 711 be inner mvf’s, let K €
HEZ*? andlet k € Z, . A p x g mvf s is called a solution of the Takagi-Sarason problem
TSPy (b1,b2,K), if s belongs to .57 for some k' < k and satisfies

byl (s—K)by ' e 41 3.1)
The set of solutions of the Takagi-Sarason problem will be denoted by

TS (b,b2,K) = | {s€ LT b (s—K)by ' € #PEY.

K'<Kx

The problem TSP (b, b,,K) has been studied in [11], in the rational case (K € 2P*?)
the set 7.7 (b1,br, K)NZZP*4 was described in [10]. In the completely indeterminate
case explicit formulas for the resolvent matrix can be found in [14], [15]. In the general
positive semidefinite case the problem was solved in [17], [18].

‘We now recall the construction of the resolvent matrix from [15]. Let

Abr) = HY S biHE. A (b) = (H) - S b3(HE)"
H(by,by) == (b)) D (D).
and let the operators Kj; :Hg — I (by), Kip : H(by) — (b)), Kap : H(b2) —
(HY)* and P: 7 (by,by) — #(b1,by) be defined by the formulas
Kithy =) Khs, hy € Hj,
K12h2 = H,%ﬂ(bl)Khz, h2 c %(bz% (3.2)
Koohy =11_Khy, hy € . (by),

I-K K, —Ki»
P= By . 33
—Kiy  I—-K»Kxn G-

The data set by, by, K considered in [15] is subject to the following constraints:

(H1) by e PP bye s, KeHE.
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(H2) K1 =Vv_(P) < eo.
(H3) 0ep(P).

(H4) by, Nhy N 7 0.

Define also the operator

e - o “uw (3.4)

F [ I Kn)
Hi(b)  by(H])

(b))  bi(H)*
7]

As was shown in [15] for every hy € J€(by) and hy € J#.(by) the vvf’s (K{ hi)(A)
and (Kx2hy)(A) admit pseudocontinuations of bounded type which are holomorphic on
by, and b B respectively. This allows to define the operator

F(A) =EA)F : #(b1,by) — X fOI‘z,Ehhlﬂbhg
as the composition of the operator F : 5 (b,b;) — C™ and the evaluation operator
E(A):feX — f(A)eC™

Let u € by N bbg N €. Then the mvf W(A) defined by
W(A) =1—pu(A)F(A)P 'F(u) jp, for A €y, Ny (3.5)

belongs to the class %, (j,q) of generalized jp,-inner mvf’s and takes values in L5
The following theorem presents a description of the set .7.% (b1,b3,K).

THEOREM 3.1. Let (H1)—-(H4) be in force and let W(A) be the mvf, defined
by (3.5). Then W € %, (jpg) N LI and

(1) TF%(b1,b2;K)#0 <= v_(P) < K.

(2) If k1 =v_(P) < K, then

T Fe(b1,by;K) = Ty [ S0 = {Twle] : e € SL] (3.6)

K—K] K—K1J»

where Ty €] is the linear fractional transformation given by (2.11).

Proof. The proof of this statement can be derived from the proof of Theorem 5.7
in [15]. However, we would like to present here a shorter proof based on the description
of the set .7 % (b1,by; K), given in [14, Theorem 5.17].

As was shown in [ 15, see Theorem 4.2 and Corollary 4.4] the mvf W (z) belongs to
the class %, (jpq) of generalized j,q-inner mvf’s with the property (2.9) and {by,b2}
is the associated pair of W. Moreover, by construction W(z) takes values in L5,
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Let ¢y and dy be mvf’s defined in Theorem 2.2 and let K° be given by (2.12). Then
W admits the factorization (2.13) (see [13, Theorem 4.12]). This proves that all the
assumptions of Theorem 5.17 from [14] with K replaced by K° are satisfied and by
that theorem

T S (b1,by:K°) = Ty [ L] (3.7)
On the other hand it follows from [15, Theorem 4.2] that the mvf W admits the
factorization »
w=oo= b1 Kb 0n oo (3.8)
0 b2 P21 P22

with @, ®! A Comparing (3.8) with (2.13) one obtains

b (K—K°)by!
0 1

:| :q)oq)*l c </V_"_mxm
and hence
by (K —K°)by' e NP,
This implies the equality 7. (b1,b2;K) = 7.7 (b1,b2;K°), that in combination
with (3.6) completes the proof. [

4. Generalized y-generating mvf’s

DEFINITION 4.1. Let M.(jy4) denote the class of m x m mvf’s 2A(u) on o of
the form ) w
ay () ap(u
Ql - )
(1) [021(#) azz(ﬂ)}

with blocks aj; and ayy of size p X p and g X ¢, respectively, such that:
(1) 2A(u) is a measurable mvf on Qy and Jpg-unitary a.e. on €2q;

(2) the mvf’s ax () and aj (1)* are invertible for a.e. u € Qqy and the mvf

so1(p) = —an () laai (1) = —an () (an (1)) ™! 4.1
is the boundary value of a mvf s5; (1) that belongs to the class . ”;

(3) a11(u)* and ax (), are the boundary values of mvf’s af, (1) and axp(A) that
are meromorphic in C; and, in addition,

# \—1 —1
ay:=(a},) ‘b e IHP, ari=bpay, € S0, (4.2)

where by, b, are Blaschke-Potapov products of degree k', determined by Krein-
Langer factorizations of s;1 .

Mvf’s in the class 9Uy.(j,q) are called generalized right 'y-generating mvf’s. The class
M (Jpg) := MG (Jpg) Was introduced in [6], in this case conditions (2) and (3) in Defi-
nition 4.1 are simplified to:
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(2") s € S0,

. #\—1 X 1 X
(3" ay:=(d})) ' e ST, ari=ay, € Sh0

Mvf’s from the class 9" (j,q) play an important role in the description of solutions of
the Nehari problem and are called right y-generating mvf’s, [6, 8].

DEFINITION 4.2. [8] An ordered pair {b,b,} of inner mvf’s by € S P*P, b, €
94 is called a denominator of the mvf f € AP*9 if

b1fb, € e/VerXq.
The set of denominators of the mvf f € .4P*4 is denoted by den (f).

THEOREM 4.3. Let A € I N M (jpq), and let ¢, dr, c; and d; be as in
Theorem 2.2,
fo=(—and;+ancr)as. (4.3)

Then the mvf fy admits the dual representation
fo = ai(crdsy — dyaby). (4.4)
If, in addition, {by,by} € den(fy) and

W) = [’3 bfl] A(2), 4.5)

then W € %[ (jpq) and {b1,b>} is the associated pair of W .
Conversely, if W € U, (jpq) and {by,by} is the associated pair of W, then

-1
A(z) = [b(l) 1?2} W(z) e ™" NIM(jpg) and {b1,br} € den(fy).

Proof. Let A € TI"™ "™ N9M.(jpq) - 1t follows from (4.1), (4.2) and (2.3) that

—andy +ancy = [az ax)] [_j[] = [—axs axn)] [_Cﬂ

_ —dy _ _
= a22b( ! [—5/,' b/ﬁ] [ C/] =a, I(Sgdg +bgC5) =a, L
Let fy be defined by the equation (4.3). Then
fo=(—and;+ance)(—axnd; +axnc) ™.
The identity

. —dy . |—d
[er —d;] %7 jpg2 { c k] = [er =d/]jpg { c/} =0
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implies that

(c;al) — drdy) (—andy + ainey) = (cydly — dydsy) (—azidy + ancy),

and hence that fy admits the dual representation

Jo= (Craﬁl - dra?z)_l(cragl - dra§2)~

Using the identity

ais 82147

[ —dy] [“il] = [¢; —d,] [ ah ] = [er —d,] [_Sf’l’)rl] b

one obtains the equality (4.4).

Let {b1,by} € den(fo), ie. bifoby € N,

Smirnov theorem

b1f0b2 S H,f,Xq.
Let us find the Potapov-Ginzburg transform S = PG(W) of W, see (2.8). The formula

(4.5) implies that

—1 —1 —1
$21 = =Wy W21 = —dyy A21 = _b( Sty

-1 -1 -1
S0 = W22 = a22 b2 = b(, azbz,

—% —1p—1, ,—*
s11 = wy| =biaya; by wy

* * -1, —x%
= bia(cray; —drajy)by wiy

* ® — %
= biai(c,wy) —dwin)wy;

= biai(c,+drs21),

—% % * * —% %
S1o = —w Wi = brai(c,wiy —dwiy)wi way

= byay(c,wi] —dwhy +drs)

= by foba+Dbiaid,sa.
The equalities (4.6)-(4.9) lead to the formula

S(z) = {

$21

0 0

byaic, +brayd,syy by foby +braid,sa

522 }

b b1 fob biaid
_ { 1aicr bifo 2] +{ 16;1 r:| [521 522]

biayd,| ,
=T(z)+ |: 1 r] b, ! [—S( azbz] ,

1

1083

Since b foby € LE*? then by

(4.6)
(4.7)
(4.8)

(4.9)

(4.10)

where T'(z) € HZ>™ . Tt follows from (4.10) that M (S,Q.) < k. On the other hand

My (521,Q4) = Mg (—b; !

and, consequently,

5679+) =K,

Mn(S,Q+) =K.

Thus, S € .*™ and, hence, W € % (jpq). O
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5. A Nehari-Takagi problem
Let f € LE*9 and let T'(f) be the Hankel operator associated with fj:

F(f) = H,Mf‘Hg, (51)

where My denotes the operator of multiplication by f, acting from L3 into L and let
I1_ denote the orthogonal projection of L5 onto (H3 ). The operator I'(f) is bounded
as an operator from HY to (HY)*, moreover,

ITUAON < 11Nl

Consider the following Nehari-Takagi problem
Problem NTP,(fy): Given a mvf fy € LZ*?. Find f € L%, such that

rank (T(f) ~T(fp) < & and |l < 1. (5.2)

In the scalar case, the problem NTPy(fy) has been solved by V.M. Adamyan, D.Z. Arov
and M.G. Krein in [1] for the case ¥ =0 and in [2] for arbitrary k¥ € N. In the matrix
case a description of solutions of the problem NTP( fy) was obtained in the completely
indeterminate case by V.M. Adamyan, [3], and in the general positive-semidefinite case
by A. Kheifets, [19]. The indefinite case (k € N) was treated in [11] (see also [10],
where an explicit formula for the resolvent matrix was obtained in the rational case).
In what follows we confine ourselves to the case when den (fp) # @ and give a
description of all solutions of the problem NTPy(fy). Let us set for f, € LL*4

Me(fo) ={f €L f— fo e M| fll <1}
and let us denote the set of solutions of the problem NTP(fy) by
T x(fo) ={f € LL*" : rank (T'(f) —=T(fo)) < ¥ and [ fl.. <1}.
By Kronecker Theorem ([21]), the condition f — fo € A7 is equivalent to
rank (U(f) = T'(fo)) = x,

Therefore, the set A7 (fo) is represented as

T(fo) = U M (fo)- (5.3)

K'<K

In the following theorem relations between the set of solutions of the Nehari-Takagi
problem and the set of solutions of a Takagi-Sarason problem is established in the case
when den (fp) # 0.

THEOREM 5.1. Let fy € L&Y, T =T(fy), K € Z, {b1,by} € den(fy) and K =
blfobz. Then
feN(fo) & s=bifby € TS (b1,by,K).
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Proof. Let f € M(fo). Then the mvf’s @(u) := f(u) — fo(i), fo(u) and f(u)
admit meromorphic continuations ¢(z), fo(z) and f(z) on ., such that

Mi(f — fo,Q4) = K. (5.4)

Let s = by fby and K = by fyb,. Then the equality (5.4) yields Mp(s — K,Q+) < K.
Since K € H2™?, then

K‘/ = MH(S,QJ’_) :ME(S_K7Q+) < K.

Taking into account that ||s||« = || /||~ < L, one obtains s € .%,». Moreover, the condi-
tion (5.4) is equivalent to the condition (3.1), i.e. s € .. (b1,b2,K).

Conversely, if s € Yé’,xq with ¥’ < k and the condition (3.1) is in force, then for
f=by"'sb;", fo=>b;'Kb;" one obtains that (5.4) holds and || f||. < 1. Therefore,
feN(fo). O

LEMMA 5.2. Let fo € L™, T =T(fy), {b1,b2} € den(fy), K = by foby and let
P be the operator in 7 (by) ® . (b,), defined by formulas (3.2) and (3.3). Then

v-P)=v_(I-T"T).
Moreover, if v_(I—T"T) < oo, then
0epP)<=0ep(I-T7T).

Proof. Let us decompose the spaces Hy and (HY)*:
HY = bo(HY) @ 7 (b2),  (H))* = Hi(by) @ b1 (1))

and let us decompose the operator I' : HY — (HY)*, accordingly

by(H;)  Ha(br)
1,déf (Fél ElZ) : ® _ a , (5.5)
2L AH)  byHD)
where the operators
Tyy:by(HY) — HAi(br), Tia: (b)) — Hi(br), Tan: A (by) — bi(HY)"
are defined by the formulas
Cihy =Ty Khe,  hy € by(HY),
Cihy =Ty (45, Kh2, hy € H (b2), (5.6)
Toohy = (bTH,bl)Khz, hy € 7 (by).
It follows from (5.5), (5.6) and (3.2) that the operator T : Hg — (Hé7 )+ and the operator

HI (b
Kdéf (K“ K12) : 692 — 6(5 1)
0 K2/ by ()
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are connected by

U= (M |y, p) - V(A g)

and, hence, the operators I and K are unitary equivalent. Now the statements are
implied by [15, Lemma 5.10]. O

THEOREM 5.3. Let fo € LEY, T=T(fy), k €Z, k1 :=v_(I-T*T), {by,br} €
den(fo), K = by foby, let P be defined by formulas (3.3), let (H1)—~(H4) be in force, let
the mvf W (z) be defined by (3.5) and let

—1
A(u) = [bl(%) bz?ﬂ)] W(p), 1€ by by NQy. (5.7)

Then:
(1) A€M (jpq):
(2) Nelfo) £0 ifand only if x> 15
(3) Me(fo) =Tal#EL0,

(4) N T(fo) = UL T[0T

k—1
Proof. (1) By [15, Theorem 4.2] the rows of W (z) admit factorizations

(Wit wia] = by [a11 an],

[war waa] =05 [a21 ana],
where a1y € (H)™)" a1 € (H)™)*, a1 € Hy™", ax € HY™ and

§2] = —wz_zlwzl = —az_zlazl € Y,flxq.
If the mvf’s b[l, s¢, by, s, are determined by Krein-Langer factorizations of s;;
1 = b;lw = srbfl,

then in accordance with [15, Theorem 4.3] (see (4.26), (4.27))

. -1 qxq s e | PXp
ap = béazz € ‘Sﬂ()m ,  ap = (all) by € x)ut .

. bl_l 0 |wi1 wi2
A = [ 0 bz} [W21 w22
belongs to the class M. (jpq) -

(2) By Theorem 5.1 A4 (fy) is nonempty if and only if 7. (b1,b;,K) is nonempty.
Therefore (2) is implied by Theorem 3.1 and Lemma 5.2.

Thus
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(3) The statement (3) follows from the formula (3.6) proved in Theorem 3.1 and
from the equivalence

feN(fo) = bifbr € TS (b1,b2,K) = T[S c—x;)

(Theorem 5.1). This means that for every f € Ax(fo) the mvf s = b; fb, belongs to
TS «(b1,by,K) and hence it admits the representation

s = (W118 + Wu)(Wzls —|—W22)71 = Tw[S]
for some € € .%_y, . Therefore, the mvf f = bflsbg ! can be represented as
f= bfl(wne +W12)(b2W21£ + szzg)il =Ty [8}

(4) As follows from (2) A (fy) =0 for k¥’ < k. Therefore, (4) is implied by (5.3)
and by the statement (3). [

6. Resolvent matrix in the case of a rational mvf f,
Assume now that Q =D and fy is a rational mvf with a minimal realization
folz) = C(zly —A) "B, ©6.1)
where n e N, A e C™", Be C"™1, C € CP*",
c(A) C D. (6.2)

Then the corresponding Hankel operator I' = I'(fy) : H{ — (H5)* in (5.1) admits in
the standard basis the following block matrix representation

(Vjrk—1) k=1 = (CA‘HkizB);kﬂ =QE,
where y; are given by (1.1) and

CA®
E=[BAB...A"'B] and Q=] :
CAn—l

Representation (6.1) is called minimal, if the dimension of the matrix A in (6.1)
is minimal. As is known see [10, Thm 4.1.4] the representation (6.1) is minimal if and
only if the pair (A, B) is controllable and the pair (C,A) is observable, i.e.

ran2=C" and kerQ = {0}, (6.3)

The controllability gramian P and the observability gramian Q, defined by

P=Y A'BB* (A" )" =EE*, Q=Y (A"fcCcr(A) =QQ,
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are solutions to the following Lyapunov-Stein equations
P—APA*=BB*, Q—A"QA=C"C. (6.4)

As was shown in [14, Remark 4.2], a denominator of the mvf f(z) may be se-
lected as (I,,b2), where

by(z) =1, — (1 —2)B* (I, —zA*) " 'P~ (I, —A)"'B (6.5)
Straightforward calculations show that
(2, —A)"'Bby(z) = P(I, — A*) (I, —zA") "'P~ (1, — A)~'B. (6.6)
Since the mvf by(z) is inner, then by (z) ™! = bz(%)*, and hence

by(2) ' =1+ (1—2)B* (L, —A*)"'P~ ' (al, — A)'B. (6.7)

PROPOSITION 6.1. Let fo(z) be a mvf of the form (6.1), where A € C"*", B €
C™4, C € CP*" satisfy (6.2) and (6.3), and let

[-Aa0 [-L o [-0o I
w[da v [ 2] s[5 e
G(z) = [g ;)*] (M—zN)~". (6.9)

Assume that 1 ¢ 6(PQ). Then:
(1) Ne(fo) #0 ifand only if k1 :=v_(I—PQ) < K;
(2) If (1) holds then the matrix A is invertible and Ni(fo) = To[-%xc—x, |, where

A(u) =Ly — (1 —p)GU)A'G(1)" jipys (6.10)

(3) The mvf A(u) is a generalized right 'y-generating mvf of the class M. (jpq)-

The statements (1), (2) of Proposition 6.1 and the formula (6.10) for the resolvent ma-
trix A(u) are well known from [10, Theorem 20.5.1]. We will show here that (6.10)
can be derived from the general formula (3.5) for the resolvent matrix of the problem
TSPy (1,,b5,K) with

K(z) = fo(2)ba(z) = C(zl, — A) " 'Bby(2). (6.11)

Proof. (1) By Theorem 5.1 f € A (fo) if and only if s = fbr € T.7(I,,b2,K).
Alongside with TSP (1,,b,,K) consider also the problem GSTP(1,,b,,K): find a
p x g mvf s, such that:

se s and by'(s—K)by'e ML (6.12)
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As is known [14, Theorem 5.17], these problems have the same resolvent matrix. As-
sume that s satisfies (6.12). Then

Mr((s—K)by ', Q1) = Mr(s,Q4) = K.
By the noncancellation lemma [15, Lemma 2.3]
Ma(bi(s—K)by ', Q) = Mr(bys, Qs ) = Mu(s50,Q1) = 0. (6.13)
By (6.7) and (6.11) the expression by(s — I()bg1 = (sp— beK)b;l takes the form
so(Iy+ (1 —2)B* (I, — A*) " 'P~ (28, — A)'B) — b,C(zl, — A)~'B.
and hence, the condition (6.13) can be rewritten as
{s¢B*(I, —A*) " 'P71 (I, — A) — bC} (2, —A)'B € AN, (6.14)
Since the pair (A, B) is controllable, then (6.14) can be rewritten as
[by —s¢| F € A4, (6.15)

where
C

F(z)=CA—zl,)!, C= B (I — A" P\ (1, — A) |

(6.16)

Thus, the problem GSTPK(IP, by,K) is equivalent to the interpolation problem (6.15)
considered in [14]. As was shown in [14, (1.14)], the Pick matrix P, corresponding to
the problem (6.15), is the unique solution of the Lyapunov-Stein equation

A*PA—P=C"j,,C 6.17)

and the problem (6.15) is solvable if and only if kj := v_(P) < k. Since by (6.4)
CjpC=(0—P ) —A"(Q—P 1A,

one gets N
P=pP ' —Q=pP 21— P'2QpP'/%)p~1/2, (6.18)

It follows from (6.18) and Theorem 3.1 that .7.% (I,,b,K) # 0 if and only if

K1 = v_(I—PY2QP'?) < k.
Now it remains to note that (I — P'/2QP'/?) = ¢(I — PQ). In view of Theorem 5.1
this proves (1).

(2) By [14, Theorem 3.1 and Theorem 5.17] the resolvent matrix W (z), which
describes the set .7.%(1,,b,K) via the formula (3.6), takes the form

W(2) = In— (1= 2)F ()P F(1)" jng,
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where P is given by (6.17). By [14, Lemma 4.8]1 W € %/ (j,q)- Let us set
~ I, 0

Ap):= [P w 6.19

0= | W00 (6.19)

and show that the mvf

() == [16’ bz?”)} +(u—1) [’g bz?”)] FP'F(1) jpy  (620)

coincides with the mvf 2((u) from (6.10). It follows from (6.6) that
by (W)B" (I — A*) " P~ (uly — A) ™ (I, — A) = B* (I, — pA™) "' P71

In view of (6.5), (6.16), (6.8) and (6.9) this implies

{Ig bz(()u)] Fu)= [B*(%Li[;,}g)_l;l] =G(u) Lffl] : 6.21)

Next, in view of (6.16) and (6.5)

F() = [(lh—a)7'C* PN (5= A)'B] = [L PT]G(1)", (6.22)
[%’ bz(()“)] =In—(1—p)G(u) [8 _2_1] G(1)* jpy- (6.23)

Substituting (6.21), (6.22) and (6.23) into (6.20) one obtains (6.10).
By [14, Theorem 3.1 and Theorem 5.17] and Theorem 3.1 the set .7 .7 (I, b2, K)
is described by the formula

T Se(br,b2;K) = T[S ] = {Twle] - e € 1L}

Therefore, the statement (2) is implied by Theorem 5.3 (3). _
(3) Since W € % (jpq) it follows from (6.19) and Theorem 5.3 that 24 € M., (Jipq) -
O
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