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ANALYTIC FUNCTIONS ON THE BIDISK AT BOUNDARY

SINGULARITIES VIA HILBERT SPACE METHODS
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Abstract. We investigate the behavior of a generalized Hilbert space model of a function in
the Schur class of the bidisk at singular boundary points that satisfy a growth condition. We
examine the relationship between the boundary behavior of Schur functions and the geometry
of corresponding generalized Hilbert space models. We describe a geometric condition on an
associated operator that classifies the behavior of the directional derivative of the underlying
Schur function at a carapoint.

1. Introduction

The Schur class in one variable, denoted by S , is the set of analytic functions
ϕ ∈ S that map the complex unit disk D into itself. Beginning in the early 20th
century, analysts studied the Schur class and conformally related families of functions.
A classical theorem due to C. Carathédory and R. Julia from this period relates the
differentiability of Schur functions at boundary points to a regularity condition at the
boundary [10, 7].

In this paper, we consider the two variable Schur-Agler class, denoted by S2 . A
function ϕ is in S2 if ϕ is an analytic map of the bidisk D2 into D . In two vari-
ables, the situation is complicated by the existence of nontrivial singular sets at the
distinguished boundary of the bidisk, the torus T2 , even for rational functions. Despite
this obstruction, it is possible to formulate a version of the classical theorem in several
variables (see, e.g. [1, 6, 13, 14]). In particular, in a paper of 2010, Agler, McCarthy,
and Young generalized the classical theorem to two variables by way of an operator
theoretic construct called a Hilbert space model. Beyond giving a natural generaliza-
tion of the one variable case, Agler, McCarthy and Young’s theorem characterized the
boundary behavior of two variable Schur functions in terms of the objects in the Hilbert
space model.

In [5], the author, with J. Agler and N.J. Young, developed a generalized Hilbert
space model particularly suited to the study of the behavior of rational functions at
boundary singularities, at the cost of losing the ability to use operator theoretic condi-
tions at certain boundary singularities to detect the differential structure in the function
being modeled.
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We first develop the notion of singular and regular generalized models by looking
at a geometric condition on the model Hilbert space. With these definitions, our main
results in this paper, Theorem 7 and Theorem 8, characterize the differential structure of
a Schur function at a singular boundary point in terms of generalized models, recovering
the spirit of the two variable Julia-Carathéodory Theorem in [4].

The central object in generalized Hilbert space models is an operator-valued ra-
tional inner function in two variables. In [11], G. Knese describes boundary behavior
of rational inner functions from the bidisk into the disk. In [12], J. E. Pascoe develops
a method for constructing rational inner functions of a given level of regularity at the
boundary. We anticipate that this work will lead to further extension of the generalized
Hilbert space model approach to a larger set of boundary singularities.

The author would like to thank N.J. Young for support and for providing a key
insight [15].

2. Preliminaries

2.1. Carapoints

For a function ϕ ∈ S2 , points that satisfy the following Carathéodory condition
are called carapoints [5].

DEFINITION 1. Let ϕ ∈ S2 . A point τ ∈ T2 is a carapoint for ϕ if there exists a
sequence {λn} ⊂ D2 tending to τ such that

1−|ϕ(λ )|
1−‖λ‖∞

is bounded. (2.1)

In the bidisk, a set S approaches τ nontangentially if there exists a positive con-
stant c so that for all λ ∈ S ,

‖τ −λ‖∞ � c(1−‖λ‖∞),

where ‖λ‖∞ = max{∣∣λ 1
∣∣ , ∣∣λ 2

∣∣} . A sequence {λn} is said to approach τ nontan-

gentially, that is λn
nt→ τ , if {λn} ⊂ S for some set S ⊂ D2 that approaches τ non-

tangentially.

2.2. Models

A primary tool used to study the boundary behavior of functions in S2 is a Hilbert
space model.

DEFINITION 2. Let ϕ ∈ S2 . A pair (M ,u) is a model for ϕ if M = M1⊕M2

is an orthogonally decomposed separable Hilbert space and u : D2 → M is an analytic
map such that

1−ϕ(μ)ϕ(λ ) =
〈
(1− μ1λ 1)uλ ,uμ

〉
M1

+
〈
(1− μ2λ 2)uλ ,uμ

〉
M 2 (2.2)
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holds for every λ ,μ ∈ D2 , where uλ = u(λ ) . Abusing notation slightly within the
inner product on M , if we let λ inside the inner product represent the operator on M
given by

λ = λ 1PM1 + λ 2PM2 ,

then (2.2) can be written in compressed notation as

1−ϕ(μ)ϕ(λ ) =
〈
(1− μ∗λ )uλ ,uμ

〉
M

. (2.3)

Every function in S2 has a model [2, 3].
Hilbert space models and realizations encode function theoretic data about Schur-

Alger functions into the structure of a Hilbert space and associated maps.

DEFINITION 3. For a given function ϕ ∈ S2 , a point τ ∈ Dd is a B-point of
the model if u is bounded on every subset of D

d that approaches τ nontangentially.
The point τ is a C -point of the model if, for every subset S of Dd that approaches τ
nontangentially, u extends continuously to S∪{τ} (with respect to the norm topology
on M ).

In [4], Agler, McCarthy, and Young used Hilbert space model techniques to gen-
eralize the classical Carathéodory-Julia Theorem to two variables in terms of the prop-
erties of a model at a boundary point. The following theorems represent a qualitative
version of those results.

THEOREM 1. (Agler, McCarthy, Young) Let ϕ ∈ S2 , and τ ∈ T2 . The following
are equivalent:

1. τ is a carapoint for ϕ ;

2. there exists a model (M ,u) of ϕ such that τ is a B-point;

3. for every model (M ,u) of ϕ , τ is a B-point.

THEOREM 2. (Agler, McCarthy, Young) If τ is a B-point for a model (M ,u) of
ϕ , then the nontangential limit of ϕ at τ given by

ϕ(τ) := lim
λ nt→τ

ϕ(λ )

exists.

THEOREM 3. (Agler, McCarthy, Young) τ is a C-point for a model (M ,u) of ϕ
if and only if ϕ is nontangentially differentiable at τ .

That is, boundedness and continuity of the model function uλ at a boundary point
characterizes the boundary behavior of the Schur function at that point. More can be
said about the differential structure of functions at carapoints (the subject of [4]), which
will be discussed in the following sections.
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3. Generalized models and directional derivatives

In [5], the author with J. Agler and N. Young developed a generalized model for
functions in S2 with a singular carapoint τ ∈ T

2 , where the operator λ in (2.2) is re-
placed by a contractive operator-valuedmap I defined in terms of a positive contraction
on a Hilbert space. In the case that ϕ has a singular carapoint at τ , IY models the be-
havior of the singularity. We first introduce a natural generalization of the Carathéodory
condition in Definition 1.

DEFINITION 4. Let I be a contractive operator-valued map on D2 . Then τ ∈ T2

is a carapoint for I if there exists a sequence {λn} ⊂ D2 tending to τ such that

liminf
λ→τ

1−‖I(λ )‖
1−‖λ‖∞

is bounded.

The following Lemma is proved in [5, Theorem 3.6].

LEMMA 1. Let Y be a positive contraction on a Hilbert space M and let τ ∈T
2 .

Define an operator-valued, degree (1,1) rational map IY (λ ) from C2 → L (M ) by

IY (λ ) =
τ1λ 1Y + τ2λ 2(1−Y)− τ1τ2λ 1λ 2

1− τ1λ 1(1−Y)− τ2λ 2Y
. (3.1)

Then IY is contractive and analytic on D2 , τ is a singular carapoint for IY (in
the sense of Definition 4), and IY (τ) = 1M .

Note that a a generalized model reduces to a standard Hilbert space model in the
case that the operator Y is a projection.

The utility of generalized models at carapoints arises from the existence of a model
for which the model function v extends continuously to τ on sets that approach τ
nontangentially.

THEOREM 4. (Agler, Tully-Doyle, Young) Let τ ∈ T2 be a carapoint for ϕ ∈
S2 . Then there exists a Hilbert space M , a positive contraction Y on M , an an-
alytic map v : D2 → M such that for all λ ,μ ∈ D2 ,

1−ϕ(μ)ϕ(λ ) =
〈
(1− I(μ)∗I(λ ))vλ ,vμ

〉
and τ is a C-point for (M ,v, IY ) .

We begin by characterizing the directional derivative of a function ϕ in terms of
the positive contraction Y . The following lemma appears in the proof of Theorem 4.1
of [5].

LEMMA 2. If ϕ has a carapoint at τ ∈ T2 then there exist a Hilbert space M , a
positive contraction Y on M and a vector vτ ∈M such that the directional derivative
of ϕ for a direction δ pointing into the bidisc at τ is given by the formula

Dδ ϕ(τ) =
〈

τ1τ2δ 1δ 2

τ1δ 1(1−Y)+ τ2δ 2Y
vτ ,vτ

〉
.
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Proof. Let λt = τ + tδ where δ = (δ 1,δ 2) ∈ C2 and Reδ 1,Reδ 2 < 0 (so that
λt ∈ D2 for small enough t > 0.)

By Theorem 4, ϕ has a generalized model such that

1−ϕ(λ )ϕ(μ) =
〈
(1− IY (μ)∗IY (λ ))vλ ,vμ

〉
, (3.2)

and such that τ is a C -point for the model. vλ extends continuously to the boundary
on nontangential sets approaching τ , and thus has a nontangential limit vτ as λ → τ .

Then applying limits to (3.2) as μ nt→ τ gives

1−ϕ(τ)ϕ(λ ) = 〈(1− I(τ)∗I(λ ))vλ ,vτ〉 .
Multiplying through by −ϕ(τ) gives

ϕ(λ )−ϕ(τ) = ϕ(τ)〈(I(λ )−1)vλ ,vτ 〉
= ϕ(τ)〈(I(λ )−1)vτ ,vτ 〉+ ϕ(τ)〈(I(λ )−1)(vλ − vτ),vτ 〉 . (3.3)

The difference I(λt)− I(τ) is given by

I(λt)− I(τ) =
[

τ1λ 1
t Y + τ2λ 2

t (1−Y)− τ1τ2λ 1
t λ 2

t

1− τ1λ 1
t (1−Y)+ τ2λ 2

t Y
−1

]

=
[

τ1(τ1 + tδ 1)Y + τ2(τ2 + tδ 2)(1−Y)− τ1τ2(τ1 + tδ 1)(τ2 + tδ 2)
1− τ1(τ1 + tδ 1)(1−Y)− τ2(τ2 + tδ 2)Y

−1

]

=
[
(1+ tτ1δ 1)Y +(1+ tτ2δ 2)(1−Y)− (1+ tτ1δ 1)(1+ tτ2δ 2)

1− (1+ tτ1δ 1)(1−Y)− (1+ tτ2δ 2)Y
−1

]

=
tτ1τ2δ 1δ 2

τ1δ 1(1−Y)+ τ2δ 2Y
, (3.4)

(We have used the fact that IY (τ) = 1M from Lemma 1). Upon dividing by t and
applying the limit as t → 0+ , we get

Dδ I(τ) =
τ1τ2δ 1δ 2

τ1δ 1(1−Y)+ τ2δ 2Y
(3.5)

=
δ 1δ 2

τ2δ 1(1−Y)+ τ1δ 2Y
. (3.6)

Combining with (3.3), we calculate a difference quotient.

ϕ(λt)−ϕ(τ)
t

= ϕ(τ)
1
t

〈
(I(λt)−1)vλt ,vτ

〉

= ϕ(τ)
〈

I(λt)− I(τ)
t

vτ ,vτ

〉
+ ϕ(τ)

〈
I(λt)− I(τ)

t
(vλt − vτ),vτ

〉
.

Finally, letting t → 0+ , we conclude

Dδ ϕ(τ) =
〈

δ 1δ 2

τ2δ 1(1−Y)+ τ1δ 2Y
vτ ,vτ

〉
. � (3.7)

(A similar argument appears in [4] in the proof of Lemma 4.2.)
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4. Structure of rational model functions

By Theorem 4, any Schur function ϕ with a carapoint at τ ∈ T2 has a continuous
generalized model at τ . Be removing the modeling of a discontinuity from vλ , we lose
the ability to characterize the nature of the discontinuity in terms of the model; that
is, we cannot use the behavior of vλ to examine differential structure of ϕ at τ . Our
main objective is to recapture a geometric condition that distinguishes between these
two cases, in the spirit of the two variable Julia-Carathéodory theorem in [4].

We begin with an example of a family of simple rational functions that possess
a single nondifferentiable carapoint, illustrating the complicated nature of boundary
singularities even for nice functions.

LEMMA 3. Let

ϕy(λ ) =
τ1λ 1y+ τ2λ 2(1− y)− τ1τ2λ 1λ 2

1− τ1λ 1(1− y)− τ2λ 2y
.

For all y ∈ (0,1) , the function ϕy has a nondifferentiable carapoint at the point τ =
(τ1,τ2) ∈ T2 .

Proof. By calculation,

D−δ ϕy(λ ) =
δ 1δ 2

τ2δ 1(1− y)+ τ1δ 2y
,

which is not linear in δ , and so ϕy fails to be nontangentially differentiable at τ . To
see that ϕy has a carapoint at τ , it is enough to check the Carathéodory condition along
the ray (rτ1,rτ2) as r → 1. On this ray,

ϕy(rτ1,rτ2) = r.

Hence, if λ = (rτ1,rτ2) tends to τ ,

liminf
λ→τ

1− ∣∣ϕy(λ )
∣∣

1−‖λ‖∞
= liminf

r→1

1−|r|
1− r

= 1

and so ϕy has a carapoint at τ . �

In the boundary cases y = 0 and y = 1, the functions ϕ0 and ϕ1 are well behaved,
as

ϕ1(λ ) = τ1λ 1, ϕ0(λ ) = τ2λ 2, (4.1)

respectively. That is, the singularity at τ disappears.
Note that the function ϕy is the scalar case of the generalized model function IY

in Theorem 4.
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LEMMA 4. Let Y be a positive contraction on a Hilbert space M . Then there
exists a projection-valued measure E supported on the unit interval such that

IY (λ ) =
∫

ϕy(λ )dE(y). (4.2)

Furthermore, if σ(Y )∩ (0,1) = /0 , that is Y = P is a projection, then

IY (λ ) = τ1λ 1P+ τ2λ 2(1−P), (4.3)

the operator present in the standard model (2.3).

Proof. Equation (4.2) follows immediately on application of the spectral theorem
to Y .

To see Equation (4.3), note that if σ(Y )∩ (0,1) = /0 , so that Y = P , then
∫

ϕy(λ )dE(y) = τ1λ 1E1 + τ2λ 2E0 = τ1λ 1P+ τ2λ 2(1−P). �

LEMMA 5. Let (M ,v, IY ) be a model for ϕ ∈ S2 . If Y is a projection, then
(M ,v, IY ) is a standard model.

Proof. If Y is a projection, then IY can be written as in (4.3). Then the generalized
model equation can be rewritten as

1−ϕ(μ)ϕ(λ ) =
〈
1− I(μ)∗I(λ )uλ ,uμ

〉
=

〈
(1− (τ1μ1P+ τ2μ2(1−P))∗(τ1λ 1P+ τ2λ 2(1−P)))uλ ,uμ

〉
=

〈
(1− μ∗λ )uλ ,uμ

〉
,

and thus (M ,v, IY ) is a standard model as in Definition 2. �

To investigate the behavior of a generalized model (M ,u, IY ) , we first develop
some properties of the one parameter family of scalar functions ϕy . Every function ϕy

has an explicit model (a statement that appears without proof as Proposition 6.3 in [4]).

LEMMA 6. For a real number y, 0 < y < 1 , let ϕy be the inner function on C2

given by

ϕy(λ ) =
τ1λ 1y+ τ2λ 2(1− y)− τ1τ2λ 1λ 2

1− τ1λ 1(1− y)− τ2λ 2y
. (4.4)

Then any model (M ,u) of ϕy has a B-point at τ = (τ1,τ2) ∈ T2 . Furthermore,
(C2,uy) is a model for ϕy , where uy,λ has the form

uy,λ =
1

1− τ1λ 1(1− y)− τ2λ 2y

( √
y(1− τ2λ 2)√

1− y(1− τ1λ 1)

)
. (4.5)
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With respect to the orthonormal basis of C2 given by

e+ =
(√

1− y√
y

)
, e− =

( √
y

−√
1− y

)
,

we can write the model as

uy,λ =

√
(1− y)y(τ1λ 1− τ2λ 2)

1− τ1λ 1(1− y)− τ2λ 2y
e+ + e−. (4.6)

Proof. A straightforward calculation shows that

1−ϕy(λ )∗ϕy(λ ) =
〈
(1− μ∗λ )uy,λ ,uy,μ

〉
.

To show that τ is a B-point for ϕt , we need to show that uy,λ is bounded as λ → τ
nontangentially. Let S be a set in D2 that approaches τ nontangentially. Then there
exists a c > 0 so that for λ ∈ S ,

|τ −λ |� c(1−|λ |).

We will show that the coefficient of e+ in (4.6) is bounded on S . To do so, notice that
∣∣τ1λ 1− τ2λ 2

∣∣ =
∣∣(1− τ2λ 2)+ (τ1λ 1−1)

∣∣
�

∣∣1− τ1λ 1
∣∣+ ∣∣1− τ2λ 2

∣∣
� 2max{∣∣1− τ1λ 1

∣∣ , ∣∣1− τ2λ 2
∣∣}

� 2cmin{(1− ∣∣τ1λ 1
∣∣),(1− ∣∣τ2λ 2

∣∣)}
� 2c[(1− y)(1− ∣∣τ1λ 1

∣∣)+ y(1− ∣∣τ2λ 2
∣∣)]

= 2c[(1− y)− (1− y)
∣∣τ1λ 1

∣∣+ y− y
∣∣τ2λ 2

∣∣]
= 2c[1− (1− y)

∣∣τ1λ 1
∣∣− y

∣∣τ2λ 2
∣∣]

� 2c
∣∣1− (1− y)τ1λ 1− yτ2λ 2

∣∣ .
Then uy,λ is bounded on the set S , as

∥∥uy,λ
∥∥ =

∥∥∥∥∥
√

y(1− y)(τ1λ 1− τ2λ 2)
1− (1− y)τ1λ 1− yτ2λ 2

e+ + e−

∥∥∥∥∥
� 2c

√
y(1− y)‖e+‖+‖e−‖

= 2c
√

y(1− y)+1, (4.7)

which depends only on y . Then uy,λ is bounded as λ → τ nontangentially, and so by
Theorem 2, τ is a B-point for ϕy . �

Together, Lemmas 3 and 6 imply that any model for ϕy where y ∈ (0,1) has a
B-point that is not a C -point at τ .
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5. The structure of generalized models at a carapoint

We are now prepared to examine the relationship between the geometry of the
model (M ,u, IY ) and the differentiability of ϕ . We begin by addressing the trivial
case in which ϕ ∈ S2 has a generalized model where the contraction Y in the formula
for I is in fact a projection.

LEMMA 7. Suppose that ϕ ∈ S2 has a continuous generalized model (M ,v, IP)
where P is a projection acting on M . Then ϕ has a differentiable carapoint at τ .

Proof. By Lemma 5, (M ,v, IP) is a standard model. By hypothesis, v extends
continuously at τ , and so τ is a C -point for (M ,v, IP) viewed as a standard model.
Therefore, by Theorem 3, ϕ has a differentiable carapoint at τ . �

We need the following geometrical Lemma about the behavior of the model func-
tion at τ . Recall that if a model has a C -point at τ then the model function extends
continuously to τ on sets approaching τ nontangentially (see Definition 3). In this
case, a sequence vλ as λ → τ will have a nontangential limit at τ , which we denote
lim

λ nt→τ
vλ = vτ .

THEOREM 5. Let ϕ ∈ S2 have a carapoint at τ ∈ T2 . Then for a generalized
model (M ,v, IY ) with a C-point at τ ,

‖vτ‖ > 0.

Proof. On taking limits as μ → λ , the model equation

1−ϕ(μ)ϕ(λ ) =
〈
(1− I(μ)∗I(λ ))vλ ,vμ

〉
becomes

1−‖ϕ(λ )‖2 = ‖vλ‖2−‖I(λ )vλ‖2 . (5.1)

From (3.4), when λt = τ + tδ ,

I(λt)− I(τ) =
tδ 1δ 2

τ2δ 1(1−Y)+ τ1δ 2Y
.

When λt = τ + t(−τ) , this becomes

I(λt)−1 = −t

and so I(λt) = 1− t . Plugging into (5.1),

1−|ϕ(λt)|2 =
∥∥vλt

∥∥2−∥∥(1− t)vλt

∥∥2 = (2t− t2)
∥∥vλt

∥∥2
. (5.2)

Additionally,

1−‖λt‖2
∞ = 1−‖(τ + t(−τ)‖2

∞ = (2t− t2)‖τ‖2
∞ = (2t− t2). (5.3)
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Combining (5.2) with (5.3) yields

∥∥vλt

∥∥2 =
1−|ϕ(λt)|2
1−‖λt‖2

∞
.

On application of limits, we get

‖vτ‖2 = lim
t→0+

1−|ϕ(λt)|2
1−‖λt‖2

∞
= lim

t→0+

1−|ϕ(λt)|
1−‖λt‖∞

.

However, as τ is a carapoint of ϕ , this quantity has a non-tangential limit, and hence

lim
t→0+

1−|ϕ(λt)|
1−‖λt‖∞

= liminf
λ nt→τ

1−|ϕ(λ )|
1−‖λ‖∞

.

(see, for example, [4] or [9]). Finally, so long as ϕ is not constant, as τ is a carapoint
for ϕ , by [4, Theorem 4.9],

liminf
λ nt→τ

1−|ϕ(λ )|
1−‖λ‖∞

= α > 0,

which gives ‖vτ‖ > 0. �

We are now prepared to state and prove the a converse of Theorem 4. The content
of the following Theorem is essentially that a generalized model is a sum of scalar
standard models, and the singular behavior modeled by IY is built up from the singular
behavior of the scalar functions ϕy sharing a singular carapoint at τ .

THEOREM 6. Let ϕ be a function in S2 and (M ,v, IY ) a model for ϕ with a
C-point at τ . Then τ is a carapoint for ϕ .

Proof. First, in the case that σ(Y )∩ (0,1) = /0 , Y is a projection and Lemma 7
implies that ϕ has a differentiable carapoint at τ .

On the other hand, assume that σ(Y )∩ (0,1) 
= /0 . By Lemma 4, there exists a
spectral measure E such that

IY (λ ) = λ 1E1 + λ 2E0 +
∫

(0,1)
ϕy(λ )dE(y),

As (M ,v, IY ) is a model,

1−ϕ(μ)ϕ(λ ) =
〈
(1− IY (μ)∗IY (λ ))vλ ,vμ

〉
. (5.4)

We will show that τ is a carapoint for ϕ by deriving a standard model for ϕ and then
proving that the model is nontangentially bounded at τ , that is we will show that τ is a
B-point and thus by Theorem 1 that τ is a carapoint for ϕ .
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First, we derive an expression for 1− IY(μ)∗IY (λ ) :

1− IY (μ)∗I(λ ) (5.5)

= 1−
(

μ1E1 + μ2E2 +
∫

(0,1)
ϕy(μ)dE(y)

)∗
(5.6)

×
(

λ 1E1 + λ 2E0 +
∫

(0,1)
ϕy(λ )dE(y)

)

= 1−
(

μ1λ 1E1 + μ2λ 2E0 +
∫
(0,1)

ϕy(μ)ϕy(λ )dE(y)
)

= (1− μ1λ 1)E1 +(1− μ2λ 2)E0 (5.7)

+
∫
(0,1)

(1−ϕy(μ)ϕy(λ ))dE(y). (5.8)

Each function ϕy can be modeled with (C2,uy,λ ) as given in Lemma 6, so continuing
from (5.8), we get

(1− μ1λ 1)E1 +(1− μ2λ 2)E0 +
∫
(0,1)

(1−ϕy(μ)ϕy(λ ))dE(y)

= (1− μ1λ 1)E1 +(1− μ2λ 2)E0 +
∫
(0,1)

〈
(1− μ∗λ )uy,λ ,uy,μ

〉
dE(y)

= (1− μ1λ 1)E1 +(1− μ2λ 2)E0

+
∫
(0,1)

〈
(1− μ1λ 1)u1

y,λ ,u1
y,μ

〉
dE(y)

+
∫
(0,1)

〈
(1− μ2λ 2)u2

y,λ ,u2
y,μ

〉
dE(y)

= (1− μ1λ 1)
(

E1 +
∫
(0,1)

〈
u1

y,λ ,u1
y,μ

〉
dE(t)

)

+(1− μ2λ 2)
(

E0 +
∫

(0,1)

〈
u2

y,λ ,u2
y,μ

〉
dE(y)

)
. (5.9)

If we let

U1(λ ) = 1E1 +0E0 +
∫
(0,1)

u1
y,λ dE(y),

U2(λ ) = 0E1 +1E0 +
∫
(0,1)

u2
y,λ dE(y) (5.10)

then we can substitute into (5.9) to get

1− I(μ)∗I(λ ) = (1− μ1λ 1)U1(μ)∗U1(λ )+ (1− μ2λ 2)U2(μ)∗U2(λ ). (5.11)

Upon substitution of this expression into the generalized model equation (5.4), we get

1−ϕ(μ)ϕ(λ ) =
〈
(1− I(μ)∗I(λ ))vλ ,vμ

〉
=

〈
((1− μ1λ 1)U1(μ)∗U1(λ )+ (1− μ2λ 2)U2(μ)∗U2(λ ))vλ ,vμ

〉
= (1− μ1λ 1)

〈
U1(λ )vλ ,U1(μ)vμ

〉
+(1− μ2λ 2)

〈
U2(λ )vλ ,U2(μ)vμ

〉
.
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Then we have shown that (M ⊕M ,U) is a model for ϕ in the sense of Definition 2,
where Uλ is the function

Uλ = U(λ ) =
(

U1(λ )vλ
U2(λ )vλ

)
. (5.12)

To show that τ is a B-point for ϕ , by Theorem 2 it is enough to show that U(λ ) is

bounded as λ nt→ τ . We will show that the component U1(λ )vλ is bounded on a set
that approaches τ nontangentially (that U2(λ )vλ is bounded follows similarly). First,
U1(λ ) is a bounded operator. To see this, let S be a set that approaches τ nontangen-
tially such that for all λ ∈ S ,

|τ −λ |� c(1−|λ |).
Trivially, the operator 1E1 is bounded. By Lemma 6, for any y with 0 < y < 1,

for all λ ∈ S , ∥∥uy,λ
∥∥ � 2c

√
y(1− y)+1.

As the maximum of the function f (x) =
√

y(1− y) is 1/2, for all y ∈ (0,1) ,
∥∥uy,λ

∥∥ � c+1.

Thus, the family {uy,λ} is uniformly bounded on S . Let u,v be arbitrary vectors in
M . Since E is a spectral measure,

∣∣∣∣
〈(∫

(0,1)
ui

y,λ dE(y)
)

u,v

〉∣∣∣∣ =
∣∣∣∣
∫

(0,1)
ui

y,λ dEu,v(y)
∣∣∣∣

�
∫

(0,1)

∣∣∣ui
y,λ

∣∣∣ d |Eu,v(y)|

�
∫

(0,1)
(c+1)d |Eu,v(y)|

� (c+1)‖Eu,v(y)‖
� (c+1)‖u‖‖v‖ . (5.13)

Then U1(λ ) is a bounded operator, and as the bound does not depend on the choice of
λ ∈ S , the family of operators {U1(λ )}λ∈S is uniformly bounded on S . By (5.13), for
all λ ∈ S , ∥∥Ui(λ )vλ

∥∥ �
∥∥Ui(λ )

∥∥‖vλ‖ �
√

c+1‖vλ‖ . (5.14)

Recall that by hypothesis, the generalized model function vλ has a C -point at τ and

thus vλ → vτ as λ nt→ τ . Then for any sequence λn
nt→ τ in S , by Theorem 5,

∥∥Ui(λ )vλ
∥∥ �

√
c+1‖vλ‖→

√
c+1‖vτ‖ = (

√
c+1)α.

As each component of the model function U is bounded on S as λ → τ , so too is
U . Then the model (M ⊕M ,U) has a B-point at τ , and thus ϕ has a carapoint at τ
by Theorem 2. �
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6. Model geometry and differentiability

We are now in position to establish a condition on a generalized model for a func-
tion ϕ ∈ S2 at a carapoint τ that characterizes the differential structure of ϕ at τ ,
in keeping with the spirit of Agler, McCarthy, and Young’s generalization of the Julia-
Carathéodory Theorem [4]. Recall that the purpose of a generalized model is to move
the singular behavior out of the model function vλ and into the operator-valued map
IY (λ ) . Accordingly, while we can no longer look at the behavior of the model function
vλ to characterize the differentiability of ϕ , the positive contraction Y encodes this
information.

DEFINITION 5. Suppose that a Schur function ϕ with a carapoint at τ has a gen-
eralized model (M ,v, IY ) . Let N = kerY (1−Y ) and denote the orthogonal comple-
ment of N in M by N ⊥ . Say that a generalized model is regular if PN ⊥vτ = 0.
Otherwise, the model is singular. If instead PN vτ = 0, then the generalized model is
purely singular.

REMARK 1. We should point out that by the above definitions, if Y is a projection
then (M ,v, IY ) is a regular generalized model.

These definitions allow us to make an explicit classification of the nontangential
differentiability of a function ϕ at a carapoint τ in terms of the geometry of the model.

THEOREM 7. Let ϕ be a function in S2 . ϕ has a singular generalized model at
τ if and only if ϕ has a nondifferentiable carapoint at τ .

Proof. (⇒) : We show the contrapositive. Suppose that ϕ has a nontangentially
differentiable carapoint at τ . Let (M ⊕M ,U) be the standard model derived from
(M ,u, IY ) given in (5.10) and (5.12). Then by Theorem 3, the model function U(λ )
extends by continuity to τ on any set S that approaches τ nontangentially, and so there
exists a vector U(τ) so that

lim
λ nt→τ

U(λ ) = U(τ).

Note that

(
U1(λ )vλ
U2(λ )vλ

)
=

(
U1(λ )vτ
U2(λ )vτ

)
+

(
U1(λ )(vλ − vτ)
U2(λ )(vλ − vτ)

)
,

and so

U(τ) = lim
λ nt→τ

U(λ ) = lim
λ nt→τ

(
U1(λ )vτ
U2(λ )vτ

)
.
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Now, consider the quantity

∥∥∥∥
(

U1(λ )vτ
U2(λ )vτ

)
−

(
U1(μ)vτ
U2(μ)vτ

)∥∥∥∥
2

=
∥∥∥∥
(

(U1(λ )−U1(μ))vτ
(U2(λ )−U2(μ))vτ

)∥∥∥∥
2

=
2

∑
i=1

〈(Ui(λ )−Ui(μ))vτ ,(Ui(λ )−Ui(μ))vτ 〉

=
2

∑
i=1

〈(Ui(λ )−Ui(μ))∗(Ui(λ )−Ui(μ))vτ ,vτ 〉

=
2

∑
i=1

〈∫
(0,1)

∣∣∣ui
y,λ −ui

y,μ

∣∣∣2 dE(y)vτ ,vτ

〉

=
2

∑
i=1

∫ ∣∣∣ui
y,λ −ui

y,μ

∣∣∣2 dEvτ ,vτ (y).

For any distinct sequences λn,μn
nt→ τ ,

lim
n→∞

2

∑
i=1

∫ ∣∣∣ui
y,λn

−ui
y,μn

∣∣∣2 dEvτ ,vτ (y)

= lim
n→∞

∥∥∥∥
(

U1(λn)vτ
U2(λn)vτ

)
−

(
U1(μn)vτ
U2(μn)vτ

)∥∥∥∥
2

= 0. (6.1)

By Theorem 5, ‖vτ‖ > 0, and so Evτ ,vτ is a finite, positive measure supported on σ(Y )
(see, e.g. [8, p.257]). Then for y ∈ σ(Y )∩ (0,1) , Equation (6.1) implies that

lim
n→∞

∣∣∣ui
y,λn

−ui
y,μn

∣∣∣ = 0. (6.2)

But this would imply that the model function uy,λ had a C -point at τ , which cannot
happen for y ∈ (0,1) by Lemma 3 and Lemma 6. Thus if U extends continuously at
τ , it must be the case that PkerY (1−Y)⊥vτ = 0. We conclude that the generalized model
(M ,v, IY ) cannot be singular.

(⇐) : Suppose that ϕ ∈ S2 has a nondifferentiable carapoint at τ . By Theorem
4, there exists a generalized model (M ,v, IY ) with a C -point at τ .

To show that (M ,v, IY ) is singular, we show that

PN ⊥vτ 
= 0,

using facts about the directional derivative of ϕ at τ . From Lemma 2, for δ pointing
into the bidisk,

Dδ ϕ(τ) =
〈

δ 1δ 2

τ2δ 1(1−Y)+ τ1δ 2Y
vτ ,vτ

〉
. (6.3)

Decompose Y as 1E1+0E0+Y0 , where E1 and E0 are projections onto kerY and
ker1−Y respectively. Let E = 1−E0 −E1 . Then Y can be written in block matrix
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form as

Y =

⎡
⎣1 0 0

0 0 0
0 0 Y0

⎤
⎦ M1

M0

Ms

where M1 = E1M , M0 = E0M , and Ms = EM . (Recall that Y is a positive con-
traction.) Then

(τ2δ 1(1−Y)+ τ1δ 2(Y ))−1 =

⎡
⎣τ1δ 2 0 0

0 τ2δ 1 0
0 0 τ2δ 1(1−Y0)+ τ1δ 2Y0

⎤
⎦
−1

=

⎡
⎢⎣

τ1

δ 2 0 0

0 τ2

δ 1 0
0 0 (τ2δ 1(1−Y0)+ τ1δ 2Y0)−1

⎤
⎥⎦ ,

and so

δ 1δ 2

τ2δ 1(1−Y)+ τ1δ 2Y
=

⎡
⎢⎣

τ1δ 1 0 0
0 τ2δ 2 0

0 0 δ 1δ 2

τ2δ 1(1−Y0)+τ1δ 2Y0

⎤
⎥⎦

= τ1δ 1E1 + τ2δ 2E0 +
δ 1δ 2

τ2δ 1(1−Y0)+ τ1δ 2Y0
E.

Then the formula given in (6.3) decomposes as

Dδ ϕ(τ) =
〈
τ1δ 1E1vτ ,E1vτ

〉
+

〈
τ2δ 2E0vτ ,E0vτ

〉

+
〈

δ 1δ 2

τ2δ 1(1−Y0)+ τ1δ 2Y0
Evτ ,Evτ

〉
. (6.4)

As ϕ has a nondifferentiable carapoint at τ , the directional derivative cannot be
linear in δ . This implies that Evτ must be non-zero, but this is precisely the condition

lim
λ nt→τ

PN ⊥vλ 
= 0.

Therefore, (M,v, IY ) is a singular generalized model for ϕ at τ . �

THEOREM 8. Let ϕ ∈ S2 have a carapoint at τ . ϕ has a regular generalized
model if and only if τ is a differentiable carapoint for ϕ .

Proof. (⇒) : Suppose that ϕ has a regular generalized model (M ,v, IY ) at τ .
From (6.4),

Dδ ϕ(τ) =
〈
δ 1E1vτ ,E1vτ

〉
+

〈
δ 2E0vτ ,E0vτ

〉

+
〈

δ 1δ 2

δ 1(1−Y0)+ δ 2Y0
Evτ ,Evτ

〉
,
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but as the model is regular, this reduces to

Dδ ϕ(τ) =
〈
δ 1E1vτ ,E1vτ

〉
+

〈
δ 2E0vτ ,E0vτ

〉
.

Clearly the directional derivative is linear in δ , and thus τ is a differentiable carapoint
for ϕ .

(⇐) : Assume that ϕ has a differentiable carapoint. By Theorem 4, there is a
generalized model (M ,v, IY ) of ϕ . Any expression for the directional derivative will
have to be linear in δ , but this means that PN ⊥vτ = 0, and so the model is regular. �
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