
Operators
and

Matrices

Volume 11, Number 1 (2017), 71–88 doi:10.7153/oam-11-05

ON THE DJL CONJECTURE FOR ORDER 6

NAOMI SHAKED-MONDERER

Abstract. In 1994 Drew, Johnson and Loewy conjectured that for n � 4 , the cp-rank of any n×n
completely positive matrices is at most �n2/4� . Recently this conjecture has been proved for
n = 5 and disproved for n � 7 , leaving the case n = 6 open. We make a step toward proving the
conjecture for n = 6 . We show that if A is a 6×6 completely positive matrix that is orthogonal
to an exceptional extremal copositive matrix, then the cp-rank of A is at most 9 .
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[20] N. SHAKED-MONDERER, A. BERMAN, M. DÜR AND M. RAJESH KANNAN, SPN completable
graphs, Linear Algebra Appl., 509 (2016): 82–113.

Operators and Matrices
www.ele-math.com
oam@ele-math.com


