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INVERSE PROBLEMS FOR A CLASS OF STURM–LIOUVILLE

OPERATORS WITH THE MIXED SPECTRAL DATA
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Abstract. In this paper, we study the inverse spectral problem for Sturm-Liouville equations
with boundary conditions polynomially dependent on the spectral parameter and establish a
uniqueness theorem with the mixed spectral data. In addition, we obtain three corollaries of
the uniqueness theorem for the above boundary value problem.

1. Introduction

Consider the following boundary value problem L := L(q,U0,U1) defined by

lu := −u′′ +q(x)u = λu, x ∈ (0,1) (1.1)

with boundary conditions

U0(u) := R01(λ )u′(0,λ )+R00(λ )u(0,λ ) = 0, (1.2)

U1(u) := R11(λ )u′(1,λ )+R10(λ )u(1,λ ) = 0, (1.3)

where λ is the spectral parameter, q is a real-valued function and q ∈ L2(0,1) ,

Rξk(λ ) =
rξk

∑
l=0

aξklλ
rξk−l, rξ1 = rξ0 = rξ � 0, aξ10 = 1, ξ ,k = 0,1,

are arbitrary polynomials of degree rξ with real coefficients such that Rξ1(λ ) and
Rξ0(λ ) , ξ = 0,1, have no common zeros.

Freiling and Yurko [4] discussed three inverse problems for the BVP L where co-
efficients q(x),Rξ1(λ ) are complex, either from the Weyl function, or from discrete
spectral data, or from two spectra and provided procedures for reconstructing this dif-
ferential operator from the above spectral data, respectively. More related results for
Sturm-Liouville equations with boundary conditions linearly or polynomially depen-
dent on the spectral parameter can be found in [1, 3, 4, 5, 11, 13, 15].
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It is well known that two spectra {λn,μn} (see below) of the classical Sturm-
Liouville problem (1.1)–(1.3), where R01(λ ) = 1, R00(λ ) =−h0 , R11(λ ) = 1, R10(λ )
= h1 , is sufficient to determine the potential q and coefficients h0,h1 , of the bound-
ary conditions (see [2, 16]). Later, Gesztesy and Simon [6] studied the inverse spectral
problem for the Sturm-Liouville operator by the Weyl function and showed that if q is
prescribed on the interval [0, 1+ε

2 ] for some ε , 0 � ε < 1, and coefficient h0 of the
boundary condition is given a priori, then parts of one spectrum are sufficient to deter-
mine the potential q on the interval [0,1] and coefficient h1 of the boundary condition
(see [6, Theorem 1.3]), which is a generalization of the Hochstadt-Lieberman theorem
[7]. More related results were obtained by this approach (see [3, 6, 8, 9, 13, 14]), or the
method of spectral mappings (see [4, 10, 16]). Suzuki [12] verified that if q is given on
[0, 1−ε

2 ] for 0 < ε < 1, then one spectrum cannot uniquely determine the potential q by
a counterexample. Therefore, it is interesting to study the inverse spectral problem for
the BVP L with partial information on the potential and parts of two spectra together
with the given boundary condition at x = 0, which is called the mixed spectral data.

The aim of this article is to investigate the inverse spectral problem for Sturm-
Liouville equations with boundary conditions polynomially dependent on the spectral
parameter. We show that if q is prescribed on [0,α1] for some α1 , 0 � α1 < 1, and
functions R0ξ (λ ) , ξ = 0,1, of the boundary condition are known a priori, then the
potential q on the interval [0,1] and functions R1ξ (λ ) , ξ = 0,1, of the boundary
condition can be uniquely determined by parts of two spectra. In particular, we still
establish either the Borg type theorem, or the Gesztesy-Simon type theorem, or the
Hochstadt-Lieberman type theorem for the BVP L . The techniques used here are based
on the methods developed in [3, 4, 6].

This article is organized as follows. In Section 2, we present preliminaries. In
Section 3, we prove our main results.

2. Preliminaries

Let S1(x,λ ) , S2(x,λ ) , u−(x,λ ) and u+(x,λ ) be solutions of Equation (1.1) under
the initial conditions

S1(0,λ ) = S′2(0,λ ) = 0, S′1(0,λ ) = S2(0,λ ) = 1
u−(0,λ ) = R01(λ ), u′−(0,λ ) = −R00(λ ),
u+(1,λ ) = R11(λ ), u′+(1,λ ) = −R10(λ ).

Denote Δ j(λ ) = U1(S j) . Clearly, U0(u−) = U1(u+) = 0, and

u−(x,λ ) = R01(λ )S2(x,λ )−R00(λ )S1(x,λ ),
u+(x,λ ) = Δ1(λ )S2(x,λ )−Δ2(λ )S1(x,λ ).

The following formula is called as the Green formula∫ 1

0
(yl(z)− zl(y)) = [y,z](1)− [y,z](0),

where [y,z](x) := y(x)z′(x)− y′(x)z(x) is the Wronskian of y and z .
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Let
Δ(λ ) := [u+,u−](x,λ ).

Then
Δ(λ ) = R01(λ )Δ2(λ )−R00(λ )Δ1(λ ) = U1(u−) = −U0(u+), (2.1)

which is called the characteristic function of L .
Denote λ = ρ2 , τ = |Imρ | , for sufficiently large |λ | , we have

S1(x,λ ) =
sinρx

ρ
+O

(
eτx

ρ2

)
, S′1(x,λ ) = cosρx+O

(
eτx

ρ

)
(2.2)

S2(x,λ ) = cosρx+O

(
eτx

ρ

)
, S′2(x,λ ) = −ρ sinρx+O(eτx), (2.3)

u−(x,λ ) = λ r0

(
cosρx+O

(
eτx

ρ

))
, (2.4)

u′−(x,λ ) = λ r0(−ρ sinρx+O(eτx)), (2.5)

u+(x,λ ) = λ r1

(
cosρ(1− x)+O

(
eτ(1−x)

ρ

))
, (2.6)

u′+(x,λ ) = λ r1(ρ sinρ(1− x)+O(eτ(1−x))). (2.7)

By calculating, we get

Δ(λ ) = λ r0+r1(−ρ sinρ + ω cosρ + κ(ρ)), (2.8)

Δ0(λ ) = u+(0,λ ) = λ r1

(
cosρ + ω0

sinρ
ρ

+
κ0(ρ)

ρ

)
, (2.9)

where

κ(ρ) =
∫ 1
0 f (t)cos(ρt)dt +O

(
eτ

ρ

)
, f ∈ L2(0,1), ω = q0−a000 +a100,

q0 = 1
2

∫ 1
0 q(t)dt,

κ0(ρ) =
∫ 1
0 f0(t)

sin(ρt)
ρ dt +O

(
eτ

ρ2

)
, f0 ∈ L2(0,1), ω0 = q0 +a100.

Let σ(L) := {λn}n�0 be the zeros (counting with multiplicities) of the entire function
Δ(ρ) . The numbers {λn}n�0 coincide with the eigenvalues of the BVP L . When n
sufficiently large, then λn are real and simple and satisfy the asymptotic formula [4]

ρn :=
√

λn = (n− r0− r1)π +
ω
nπ

+
κn

n
, {κn} ∈ l2. (2.10)

Indeed, according to (2.8) and (2.10) for sufficiently large n in the domain Dn := {λ :
|λ − (n− r0 − r1)2π2| < 1

2} , there is exactly one eigenvalue λn . Taking into account
the realvaluedness of q(x) and Rξk(λ ) , we conclude that there is also an eigenvalue

λ n ∈ Dn , and hence λn = λ n . Therefore, the functions u−(x,λn) are real-valued for
sufficiently large n . Denote Gδ := {ρ : |ρ − kπ |� δ ,k ∈ Z} for fixed δ > 0, then

|Δ(λ )| � Cδ |ρ ||λ |(r0+r1)eτ , λ ∈ Gδ , |λ | sufficiently large. (2.11)
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Let mn be the multiplicity of λn (i.e., λn = λn+1 = · · · = λn+mn−1 ), and put N0 := {n :
λn−1 �= λn} . Denote

u(ν)
− (x,λ ) :=

1
ν!

∂ ν

∂λ ν u−(x,λ ),

u−(x,λn+ν) := u(ν)
− (x,λn), n ∈ N0, ν = 1,2, · · · ,mn −1.

Therefore, u−(x,λn) is the eigenfunction corresponding to the eigenvalue λn .
Let σ(L0) := {μn}n�0 be the zeros (counting with multiplicities) of the entire

function Δ0(ρ) . The numbers {μn}n�0 coincide with the eigenvalues of the BVP L0 ,
which is defined by Equation (1.1), u+(0,λ ) = 0 and (1.3). When n sufficiently large,
then μn are real and simple and satisfy the asymptotic formula [4]

√
μn =

(
n− r1 +

1
2

)
π +

ω0

nπ
+

κn0

n
, {κn0} ∈ l2. (2.12)

Let Φ(x,λ ) be the solution of Equation (1.1) satisfying the boundary conditions U0(Φ)
= 1 and U1(Φ) = 0. Then

Φ(x,λ ) = −u+(x,λ )
Δ(λ )

. (2.13)

Denote

M(λ ) := Φ(0,λ ) = −u+(0,λ )
Δ(λ )

, (2.14)

which is called the Weyl function of the BVP L . For sufficiently large |ρ | , the asymp-
totic formula of the Weyl function M(λ ) is as follows

M(λ ) =
1

iρλ r0

(
1− a000

iρ
+o

(
1
ρ

))
, ρ ∈ Λδ ′ , (2.15)

where Λδ ′ := {ρ : argρ ∈ [δ ′,π − δ ′]} for some δ ′ > 0.
The following two lemmas are important for proofs of the main results.

LEMMA 2.1. [3, 4] Let M(λ ) be the Weyl function of the BVP L. Then M(λ )
and functions R0ξ (λ ) , ξ = 0,1, of the boundary condition can uniquely determines
functions R1ξ (λ ) , ξ = 0,1, of the boundary condition as well as q (a.e.) on the interval
[0,1] .

LEMMA 2.2. ([6, Proposition B.6]) Let f (z) be an entire function such that

1. sup|z|=Rk
| f (z)| �C1 exp(C2R

β
k ) for some β , 0 < β < 1 , some sequence Rk → ∞

as k → ∞ and C1,C2 > 0 ;

2. lim|x|→∞ | f (ix)| = 0 , x ∈ R .

Then f ≡ 0.
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3. Main results and Proofs

In this section, we discuss the inverse spectral problem for the BVP L with the
mixed spectral data. We agree that together with L we consider here and in the sequel
a boundary value problem L̃ = L(q̃,Ũ0,Ũ1) of the same form but with different coef-
ficients. If a certain symbol γ denotes an object related to L , then the corresponding
symbol γ̃ with tilde denotes the analogous object related to L̃ , and γ̂ = γ − γ̃ .

Without loss of generality, we assume all eigenvalues λn �= 0, and μn �= 0, in this
paper. For any M = {βn : βn ∈ C}∞

n=0 , denote

NM(t) = �{n ∈ N0 : |βn| � t,βn ∈ M}

for all sufficiently large t ∈ R+ , where N0 = {0,1,2, · · ·} . Here and everywhere below
we might assume if λn = λ̃ñ (resp. μn = μ̃ñ ), then mn = m̃ñ (resp. m′

n = m̃′
ñ , where

m′
n is the multiplicity of μn ).

Using partial information on the potential and parts of two spectra as mixed spec-
tral data, we have the following uniqueness theorem.

THEOREM 3.1. Let S = {λn}n∈Λ ⊆ σ(L)
⋂

σ(L̃) and S0 = {μn}n∈Λ0 ⊆ σ(L0)⋂
σ(L̃0) , where Λ,Λ0 ⊆ N0 . If the following three conditions are satisfied

1. R0ξ (λ ) = R̃0ξ (λ ) , ξ = 1,2 , q = q̃ on the interval [0,α1] for some α1 ∈ [0,1)

2. α1−α0−α � 0, where (α0,α) ∈ [0, 1
2 ]× [0, 1

2 ] .

3. The inequalities

NS(t) � (1−2α)Nσ(L)(t)+ (2r1 +2r0 +1)α − r0 + r1, (3.1)

NS0(t) � (1−2α0)Nσ(L0)(t)+ (2α0−1)r1 (3.2)

hold for all sufficiently large t ∈ R+ ,

then

q(x) a.e.= q̃(x) on [0,1], and R1ξ (λ ) = R̃1ξ (λ ), ξ = 0,1.

Moreover, we obtain the following Borg type theorem for the BVP L except for at
most r0 eigenvalues. i.e.,

THEOREM 3.2. If functions R0ξ (λ ) , ξ = 0,1 , of the boundary condition are
given a priori, then q(x) and functions R1ξ (λ ) , ξ = 0,1 , of the boundary condition
can be uniquely determined by two spectra except for at most r0 eigenvalues.

If (α1,α0,α) = ( 1+ε
2 , 1

2 , ε
2 ) for 0 � ε < 1 in Theorem 3.1, we have the following

Gesztesy-Simon type theorem for the BVP L .
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COROLLARY 3.3. If functions R0ξ (λ ) , ξ = 0,1 , of the boundary condition are

given a priori, and q(x) is proscribed on the interval [0, 1+ε
2 ] for some ε , 0 � ε < 1 ,

and the inequality

NS(t) � (1− ε)Nσ(L)(t)+
(2r1 +2r0 +1)ε

2
− r0 + r1 (3.3)

holds for all sufficiently large t ∈ R+ , then

q(x) a.e.= q̃(x) on [0,1], and R1ξ (λ ) = R̃1ξ (λ ), ξ = 0,1.

In particular, let ε = 0 in Corollary 3.3, we get the Hochstadt-Lieberman type
theorem for the BVP L .

Next, we prove Theorem 3.1.

Proof of Theorem 3.1. Let u+(x,λ ) be the solution of Equation (1.1) under the
initial conditions u+(1,λ ) = R11(λ ) and u′+(1,λ ) = −R10(λ ) . By the Green formula,
we have ∫ 1

0
q̂u+(x,λ )ũ+(x,λ )dx = [u+, ũ+](0,λ )− [u+, ũ+](1,λ )

= F(0,λ )−F(1,λ ),

where F(x,λ ) = [u+, ũ+](x,λ ).
From q̂(x) = 0 on [0,α1] , we get

F(0,λ ) = F(α1,λ ) = F(1,λ )+
∫ 1

α1

q̂(x)u+(x,λ )ũ+(x,λ )dx. (3.4)

Note that

F(0,λ ) = u+(0,λ )ũ′+(0,λ )−u′+(0,λ )ũ+(0,λ ) (3.5)

=
1

R00(λ )
(
u′+(0,λ )U0(ũ+)− ũ′+(0,λ )U0(u+)

)
, (3.6)

=
1

R01(λ )
(
ũ+(0,λ )U0(u+)−u+(0,λ )U0(ũ+)

)
, (3.7)

By virtue of (3.4), (3.6) and (3.7) together with Lemma 1 in [4], we have

F(0,λn) = F(α1,λn) = 0, ∀λn ∈ S, (3.8)

F(0,μn) = F(α1,μn) = 0, ∀μn ∈ S0. (3.9)

If λn is the repeated root of Δ(λ ) and the multiplicity of λn is mn , by virtue of (3.6) and
(3.7) together with the assumption of Theorem 3.1, we see that λn is also the repeated
root of F(0,λn) and the multiplicity of λn is mn . In addition, if λ 0 ∈ σ(L)∩σ(L0) ,
we obtain

R00(λ 0) = 0.
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This implies
R01(λ 0) �= 0.

Therefore, from (3.7), we see that λ 0 is a zero of at least order two of the function
F(0,λ ) .

Since one of the sets S and S0 is an infinite set, then (2.10) together with the
known r0 , or (2.12) shows that

r1 = r̃1.

By virtue of (3.4) and (2.6) together with Schwarz inequality, this yields

|F(α1,λ )| � |F(1,λ )|+ |∫ 1
α1

q̂(x)u+(x,λ )ũ+(x,λ )dx|
� |F(1,λ )|+ ||q̂||2(

∫ 1
α1
|u+(x,λ )ũ+(x,λ )|2dx)

1
2

� c1|λ |2r1 + c2||q̂||2
√

1−α1|λ |2r1e2τ(1−α1)

= O(|λ |2r1e2τ(1−α1)),

(3.10)

where c1,c2 are constant.
Define the functions G(λ ), G0(λ ), and K1(λ ) by

G(λ ) = ∏
λn∈S

(
1− λ

λn

)
, G0(λ ) = ∏

μn∈S0

(
1− λ

μn

)
(3.11)

and

K1(λ ) =
F(α1,λ )

G(λ )G0(λ )
. (3.12)

Then K1(λ ) is an entire function in λ .
Since Δ(λ ) is an entire functions in λ of order 1

2 , there exists a positive constant
c such that

NS(t) � Nσ(L)(t) � ct
1
2 . (3.13)

Next, we prove (3.14) by two steps

|G(iy)| � C|y|(2r1+ 1
2 )eIm

√
i(1−2α)

√
|y| (3.14)

for sufficiently large |y| , y ∈ R , C is constant.
Step 1: Let all eigenvalues λn ∈ S be real. Denote t0 := infn∈N0{|λn|, |μn|} , then

t0 > 0 and NS(t0) = Nσ(L)(t0) = 0. By the assumption (3.1) on S of Theorem 3.1, there
exists a constant t1 � t0 and C1 such that{

NS(t) � (1−2α)Nσ(L)(t)+ (2r1 +2r0 +1)α − r0 + r1, t � t1,
NS(t) � (1−2α)Nσ(L)(t)−C1, t < t1.

(3.15)

For each fixed y ∈ R, and |y| sufficiently large, we get

ln |G(iy)| = 1
2 lnG(iy)G(iy) = 1

2 ∑
λn∈S

ln
∣∣∣(1− iy

λn

)(
1+ iy

λn

)∣∣∣
= 1

2 ∑
λn∈S

ln
(
1+ y2

λ 2
n

)
= 1

2

∫ ∞
t0

ln
(
1+ y2

t2

)
dNS(t)

= 1
2 ln
(
1+ y2

t2

)
NS(t)

∣∣∞
t0
− 1

2

∫ ∞
t0

NS(t)d
(
ln
(
1+ y2

t2

))
.

(3.16)
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For sufficiently large t , since

ln

(
1+

y2

t2

)
= O

(
1
t2

)
,

then

lim
t→∞

ln

(
1+

y2

t2

)
NS(t) = 0 and lim

t→∞
ln

(
1+

y2

t2

)
Nσ(L)(t) = 0.

By virtue of (3.15) and (3.16) together with the following relation

y2

t3 + ty2 = − d
dt

(
1
2

ln

(
1+

y2

t2

))
,

we obtain

ln |G(iy)| =
∫ ∞

t0

y2

t3+ty2 NS(t)dt

=
∫ t1

t0

y2

t3+ty2 NS(t)dt +
∫ ∞

t1

y2

t3+ty2 NS(t)dt

� (1−2α)
∫ ∞

t0

y2

t3+ty2 Nσ(L)(t)dt +[(2r1 +2r0 +1)α]
∫ ∞

t0

y2

t3+ty2 dt

− [(2r1 +2r0 +1)α − r0 + r1 +C1
]∫ t1

t0

y2

t3+ty2 dt

= (1−2α) ln |Δ(iy)|+ (2r1 +2r0 +1)α − r0 + r1

2
ln

(
1+

y2

t20

)
+

(2r1 +2r0 +1)α − r0 + r1 +C1

2

(
ln

(
t20 + y2

t21 + y2

)
+ ln

(
t21
t20

))
.

(3.17)

By virtue of (3.17) together with (2.8), for sufficiently large y ∈ R , we have

|G(iy)| � C01|Δ(iy)|1−2α |y| [2(r1+2r0)+1]α−r0+r1
2

= C01|y|(2r1+ 1
2 )eIm

√
i(1−2α)

√
|y|,

(3.18)

where C01 is constant.
Step 2: Let S1 := {λnk}k0

k=1 ⊆ S , be the set of all imaginary numbers of S , where

{λnk}k0
k=1 may be /0. Choose real numbers βnk �= 0 such that βn1 < βn2 < · · · < βnk0

.
Note that the following identity:

G(λ ) =

[
k0

∏
k=1

(
1− λ

βnk

)
× ∏

λn∈S\S1

(
1− λ

λn

)]
×

k0

∏
k=1

βnk(λnk −λ )
λnk(βnk −λ )

. (3.19)

Analogues to the proof in Step 1, we have∣∣∣∣∣ k0

∏
k=1

(
1− λ

βnk

)
× ∏

λn∈S\S1

(
1− λ

λn

)∣∣∣∣∣� C02|y|(2r1+ 1
2 )eIm

√
i(1−2α)

√
|y|. (3.20)
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Thus, for each fixed y ∈ R, and |y| sufficiently large, we obtain∣∣G(iy)
∣∣� C|y|(2r1+ 1

2 )eIm
√

i(1−2α)
√

|y|.

Applying the same arguments as the above calculation of |G(iy)| , we get∣∣G0(iy)
∣∣� C0e

Im
√

i(1−2α0)
√

|y|. (3.21)

Therefore,

|G(iy)G0(iy)| � CC0|y|(2r1+ 1
2 )eIm

√
i(2−2α0−2α)

√
|y|. (3.22)

By virtue of (3.9), (3.12) and (3.22), for sufficiently large y ∈ R , we have

|K1(iy)| =
∣∣∣∣ F(α1, iy)
G(iy)G0(iy)

∣∣∣∣= O

(
1

|y| 1
2

e−2Im
√

i(α1−α0−α)
√

|y|
)

. (3.23)

From Lemma 2.2 together with (3.23), we obtain

K1(λ ) = 0, ∀λ ∈ C.

Therefore,
F(α1,λ ) = F(0,λ ) = 0, ∀λ ∈ C.

This implies

u+(0,λ )ũ′+(0,λ )−u′+(0,λ )ũ+(0,λ ) = 0, ∀λ ∈ C. (3.24)

From (3.24), we get

u+(0,λ )(R01(λ )ũ′+(0,λ )+R00(λ )ũ+(0,λ ))
= (R01(λ )u′+(0,λ )+R00(λ )u+(0,λ ))ũ+(0,λ ), ∀λ ∈ C.

(3.25)

Hence,
M(λ ) = M̃(λ ), ∀λ ∈ C. (3.26)

From Lemma 2.1 together with (3.26), we have

q(x) a.e.= q̃(x) a.e. on [0,1] and R1ξ (λ ) = R̃1ξ (λ ), ξ = 0,1.

Therefore, the proof of Theorem 3.1 is now completed. �

In the remaining of this paper, we show that Theorem 3.2 holds.

Proof of Theorem 3.2. Define the function K2(λ ) by

K2(λ ) =
F(0,λ )

Δ(λ )

∏
N1
k=1(λ−λnk )

× Δ0(λ )

∏
N2
k=1(λ−μnk )

, (3.27)
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where Nj ∈ N0 , j = 1,2 and N1 +N2 = r0 . Then K2(λ ) is an entire function in λ . It
is easy to prove

K2(λ ) = 0, ∀λ ∈ C.

This implies
M(λ ) = M̃(λ ), ∀λ ∈ C. (3.28)

Thus, we get

q(x) a.e.= q̃(x) on [0,1] and R1ξ (λ ) = R̃1ξ (λ ), ξ = 0,1.

Therefore, this completes the proof of Theorem 3.2. �
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