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ANALYTIC MODEL OF DOUBLY COMMUTING CONTRACTIONS

T. BHATTACHARYYA, E. K. NARAYANAN AND JAYDEB SARKAR

Abstract. An n -tuple (n � 2), T = (T1, . . . ,Tn) , of commuting bounded linear operators on a
Hilbert space H is doubly commuting if TiT ∗

j = T ∗
j Ti for all 1 � i < j � n . If in addition,

each Ti ∈C·0 , then we say that T is a doubly commuting pure tuple. In this paper we prove that
a doubly commuting pure tuple T can be dilated to a tuple of shift operators on some suitable
vector-valued Hardy space H2

DT∗ (Dn) . As a consequence of the dilation theorem, we prove that
there exists a closed subspace ST of the form

ST :=
n

∑
i=1

ΦTiH
2
ETi

(Dn),

such that H ∼= S ⊥
T and

(T1, . . . ,Tn) ∼= PS⊥
T

(Mz1 , . . . ,Mzn )|S ⊥
T

where {ETi}n
i=1 are Hilbert spaces and each ΦTi ∈ H∞

B(ETi
,DT∗ )(D

n) , 1 � i � n is either a one

variable either a one variable inner function in zi , or the zero function.
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