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Abstract. The notion of Operator frame for the space B(H ) of all bounded linear operators on
Hilbert space H was introduced by Chun-Yan Li and Huai-Xin Cao [1] and the notion of K -
frame for an operator K ∈ B(H ) was introduced by L.Guvruta [10]. In this paper, we consider
the fusion of the two concepts and introduce K -operator frame as a generalisation of both K -
frame and operator frame for B(H ) and obtain some results which are more general than the
results proved in [1] and [10]. K -dual of a K -operator frame for B(H ) is also introduced.
Further, we also study perturbation and stability for K -operator frames for B(H ) .

1. Introduction

Frames for Hilbert spaces were formally introduced by Duffin and Schaeffer [5]
who used frames as a tool in the study of non-harmonic Fourier series. Daubechies,
Grossmann and Meyer [4] reintroduced frames and observed that frames can be used to
find series expansions of functions in L2(R) . Frames are generalizations of orthonor-
mal bases in Hilbert spaces. Frames are more flexible tools to translate information
than bases. Recall that a sequence { fk} ⊂ H is called a frame for H if there exists
two positive constants 0 < A � B < ∞ such that

A‖ f‖ �
∞

∑
k=1

|〈 f , fk〉|2 � B‖ f‖, f ∈ H .

For more literature on frame theory, one may refer to [2]. Many generalization of
frames for Hilbert spaces have been introduced and studied namely Wavelet Frames
[2], Gabor Frames [2], g -frames [12], operator value frames [9], fusion frames [3] and
operator frames [1]. The notions like g -frames, operator value frames, fusion frames
and operator frames overlap with one another up to some extent. But their approach is
independent in nature. Recently, K -frame in a Hilbert space is introduced by L. Gavruta
[10] as a generalisation of the notion of frame in Hilbert spaces. K -frames were further
studied in [11, 13, 14]. Operator frame for the space B(H ) of all bounded linear opera-
tors on Hilbert space H was introduced by Chun-Yan Li and Huai-Xin Cao [1]. In this
paper, we consider the fusion of the two concepts and introduce K -operator frame as a
generalisation of operator frame for B(H ) . K -operator frames are more general than
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operator frames in the sense that the lower frame bound holds only for the elements in
the range of K , where K is a bounded linear operator in a separable Hilbert space H .
We, also study perturbation and stability of K -operator frames for B(H ) and obtain
a sufficient condition for the stability of K -operator frame under perturbation. Also,
we consider finite sum of K -operator frames and obtained a sufficient condition for the
finite sum to be a K -operator frame. Finally, we give a result related to the stability of
the finite sum of K -operator frames.

2. Preliminaries

Throughout this paper N denotes the set of natural numbers, and B(H ) denotes
the set of bounded linear operator on separable Hilbert space H .

Li and Cao [1] defined the notion of operator frame for B(H ) . They gave the
following definition.

DEFINITION 2.1. A family of bounded linear operators {Ti} on Hilbert space H
is said to be an operator frame for B(H ) , if there exists positive constants A,B > 0
such that

A‖x‖2 � ∑
i∈N

‖Tix‖2 � B‖x‖2, ∀ x ∈ H , (2.1)

where A and B are called lower and upper bounds for the operator frame, respectively.
An operator frame {Ti} is said to be tight if A = B . It is called Parseval operator frame
if A = B = 1. If only upper inequality of (2.1) hold, then {Ti} is called an operator
Bessel sequence for B(H ) .

For a separable Hilbert space H , define

�2(H ) = {{xi} : xi ∈ H , ∑
i∈N

‖xi‖2 < ∞}.

Define an inner product on �2(H ) by

〈{xi},{yi}〉 = ∑
i∈N

〈xi,yi〉.

Then �2(H ) is a Hilbert space with pointwise operations.
An operator K defined on a Hilbert space H is said to be hyponormal if ‖K∗x‖�

‖Kx‖ , for all x ∈H . Also, for two operator S,K ∈ B(H ) , we say that S majorizes K
if there exists C > 0 such that ‖Kx‖ � C‖Sx‖ , x ∈ H .

The following terminology is given by Li and Cao [1].
Let e be a unit vector in H . For every x ∈ H , define Te

x y = 〈y,x〉e , for all
y∈H . Then Te

x is a bounded linear operator on H and Te
x is called operator response

of x with respect to e .
Next, we state a result by Douglas which is popularly known as Douglas’ ma-

jorization theorem. This result will be used in the subsequent work.
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THEOREM 2.2. [6] Let H be a Hilbert space and S,K ∈ B(H ) . Then the
following statements are equivalent:

1. R(K) ⊆ R(S) .

2. KK∗ � λ 2SS∗ , for some λ > 0 .

3. K = SQ, for some Q ∈ B(H ) .

The notion of K -frame for Hilbert spaces is introduced and studied by L. Gavruta
[10] who gave the following definition.

DEFINITION 2.3. [13] A sequence {xk} ⊂ H is called K -frame for H , if there
exist constants A,B > 0 such that

A‖K∗x‖ � ∑
k∈N

|〈x,xk〉|2 � B‖x‖2, for all x ∈ H . (2.2)

We call A ,B as lower and upper frame bounds for the K -frame {xk} ⊂ H , respec-
tively. If only the upper inequality of (2.2) is satisfied, then {xk} is called a Bessel
sequence.

Gavruta [10] also proved the following results.

THEOREM 2.4. Let { fi} ⊂ H and K ∈ B(H ) . Then following statements are
equivalent:

1. { fi} is an atomic system for K ;

2. { fi} is a K -frame for H ;

3. there exists a Bessel sequence {gi} ⊂ H such that

Kx = ∑
i∈N

〈x,gi〉 fi, ∀x ∈ H .

We call the Bessel sequence {gi} ⊂H as the K -dual frame of the K -frame { fi} .

3. K -operator frames

We began this section with the following definition.

DEFINITION 3.1. Let K ∈ B(H ) . A family of bounded linear operators {Ti} on
Hilbert space H is said to be a K -operator frame for B(H ) , if there exists positive
constants A,B > 0 such that

A‖K∗x‖2 � ∑
i∈N

‖Tix‖2 � B‖x‖2, ∀ x ∈ H , (3.3)
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where A and B are called lower and upper bounds for the K -operator frame, respec-
tively. A K -operator frame {Ti} is said to be tight if there exists a constant A > 0 such
that

∑
i∈N

‖Tix‖2 = A‖K∗x‖2, ∀ x ∈ H . (3.4)

It is called Parseval K -operator frame if A = 1 in (3.4). If only upper inequality of (3.3)
holds, then {Ti} is called a K -operator Bessel sequence in B(H ) . We call {Ti} an
exact K -operator frame for B(H ) if, it ceases to be a K -operator frame whenever any
one of its element is removed. If K = I , then K -operator frame is an operator frame.
Let K,P ∈ B(H ) such that PK = I . Then P is called the left inverse of K denoted
by K−1

l . If KP = I , then P is called the right inverse of K and we write K−1
r = P . If

KP = PK = I , then K and P are inverse of each other. We denote FK(H ) for family
of tight K -operator frames for B(H ) .

Let {Ti} be a K -operator frame for B(H ) . Define an operator R : H → �2(H )
by

Rx = {Tix}, x ∈ H .

Then R is a bounded linear operator called analysis operator of the K -operator frame
{Ti} . The adjoint of the analysis operator R , R∗({xi}) : �2(H ) → H is defined by

R∗({xi}) = ∑
i∈N

T ∗
i xi, ∀ {xi} ∈ �2(H ).

The operator R∗ is called the synthesis operator of {Ti} . By composing R and R∗ , the
frame operator S : H → H for K -operator frame is given by

S(x) = R∗Rx = ∑
i∈N

T ∗
i Tix.

Note that frame operator S , in general need not be invertible.
One may ask for the class of operators K which can guarantee the existence of

K -operator frame for B(H ) . The following two results answer this query.

PROPOSITION 3.2. Let {Ti} be a K -operator frame for B(H ) with frame bounds
A and B . Then {Ti} is an operator frame for B(H ) if K is onto.

Proof. Since K is onto, there exists γ > 0 such that

‖K∗x‖ � γ‖x‖, x ∈ H .

Also, since {Ti} is a K -operator frame for B(H ) , we have

γ2A‖x‖2 � A‖K∗x‖2 � ∑
i∈N

‖Tix‖2 � B‖x‖2, x ∈ H .

Hence {Ti} is an operator frame for B(H ) with frame bounds γ2A and B . �
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THEOREM 3.3. Let {Ti} be an operator frame for B(H ) and let K ∈ B(H ) .
Then {Ti} is a K -operator frame for B(H ) if K is hyponormal.

Proof. Straight forward. �
The advantage of studying K -operator frames is that we can always construct a K -

operator frame with the help of a sequence of operator which is not an operator frame
for B(H ) . This is evident from the following examples.

EXAMPLE 3.4. Let H be a Hilbert space and {ei} be an ONB for H . Define
{Ti} ⊂ B(H ) by

Tix =

{
〈x,ei〉ei, if i is even
1
i 〈x,ei〉ei, if i is odd.

Then {Ti} is not an operator frame for B(H ) . Let K : H → H be defined by Kx =
∑i∈N〈x,e2i〉e2i , x ∈ H . Then

‖K∗x‖2 = ∑
i∈N

|〈x,e2i〉|2

� ∑
i∈N

‖Tix‖2

= ∑
i∈N

|〈x,e2i〉|2 + ∑
i∈N

1
(2i−1)2 |〈x,e2i−1〉|2

� ∑
i∈N

|〈x,ei〉|2

= ‖x‖2, x ∈ H .

Hence {Ti} is a K -operator frame for B(H ) .

EXAMPLE 3.5. Let H be a Hilbert space and {ei} be an ONB for H . Define
{Ti} ⊂ B(H ) by

Tix =
1
i
〈x,ei〉ei.

Then {Ti} is not an operator frame for B(H ) . Let K : H → H be defined by Kx =

∑i∈N

1
i2
〈x,e2i〉e2i , x ∈ H . Then

‖K∗x‖2 = ∑
i∈N

1
i4
|〈x,e2i〉|2

� ∑
i∈N

‖Tix‖2

� ∑
i∈N

|〈x,ei〉|2

= ‖x‖2, x ∈ H .

Hence {Ti} is a K -operator frame for B(H ) .
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EXAMPLE 3.6. Let H be a Hilbert space and {ei} be an ONB for H . Define
{Ti} ⊂ B(H ) by

Tix = 〈x,ei + ei+1〉(ei + ei+1), x ∈ H .

Then

∑
i∈N

‖Tix‖2 = 2 ∑
i∈N

|〈x,ei + ei+1〉|2.

Hence {Ti} is an operator Bessel sequence in B(H ) but not an operator frame for
B(H ) . Let K : H → H be defined by Kx = ∑i∈N〈x,ei〉(ei + ei+1) , x ∈ H . Then
{Ti} is a K -operator frame for B(H ) .

Now, we give an example of an operator Bessel sequence which is not a K -operator
frame.

EXAMPLE 3.7. Let H be a Hilbert space and {ei} be an ONB for H . Define
{Ti} ⊂ B(H ) by

Tix =
1
i2
〈x,e2i〉e2i + 〈x,e2i+1〉e2i+1, x ∈ H .

Then

∑
i∈N

‖Tix‖2 � ‖x‖2, x ∈ H , x ∈ H .

Hence {Ti} is an operator Bessel sequence in B(H ) . Let K : H → H be defined by
Kx = ∑i∈N〈x,e2i〉e2i , x ∈ H . Then {Ti} is not a K -operator frame for B(H ) .

In the wake of the above examples, we have the following result.

THEOREM 3.8. For an operator Bessel sequence {Ti} ⊂ B(H ) , the following
statements are equivalent:

1. {Ti} is K -operator frame for B(H ) .

2. There exists A > 0 such that S � AKK∗ ,where S is the frame operator for {Ti} .

3. K = S1/2Q, for some Q ∈ B(H ) .

Proof. (1) ⇒ (2) Note that {Ti} is a K -operator frame for B(H ) with frame
bounds A and B and frame operator S if and only if

A‖K∗x‖2 � ∑
i∈N

‖Tix‖2 � B‖x‖2, for all x ∈ H .

Thus, we have

〈AKK∗x,x〉 � 〈Sx,x〉 � 〈Bx,x〉, for all x ∈ H .
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Hence S � AKK∗ .
(2) ⇒ (3) Suppose there exists A > 0 such that AKK∗ � S1/2S1/2∗ . This gives

‖K∗x‖2 � A−1‖S1/2x‖2 , x∈H . Therefore S1/2 majorizes K∗ . Then, by Theorem 2.2,
K = S1/2Q , for some Q ∈ B(H ) .

(3) ⇒ (1) let K = S1/2Q , for some Q ∈ B(H ) . Therefore, by Theorem 2.2, S1/2

majorizes K∗ . Thus, there exists A > 0 such that

‖K∗x‖ � A‖S1/2x‖, for all x ∈ H .

This gives KK∗ � A2S . Hence {Ti} is a K -operator frame for B(H ) . �

Now, we take up the issue of construction of a K1 -operator frame for B(H ) using
a K -operator frame.

THEOREM 3.9. Let Q∈B(H ) and {Ti} is a K -operator frame for B(H ) . Then
{TiQ} is a Q∗K -operator frame for B(H ) .

Proof. Straight forward. �

THEOREM 3.10. Let K ∈ B(H ) and {Ti} ⊂ B(H ) is a tight K -operator frame
for B(H ) with frame bound A1 . Then {Ti} is a tight operator frame for B(H ) with
frame bound A2 if and only if K−1

r = A1
A2

K∗ .

Proof. Let {Ti} ⊂ B(H ) be a K -tight operator frame for B(H ) with frame
bound A1 . If {Ti} is a tight operator frame for B(H ) with frame bound A2 . Then

∑
i∈N

‖Tix‖2 = A2‖x‖2, for all x ∈ H .

So, for each x ∈ H , we have A1‖K∗x‖2 = A2‖x‖2 . This gives

〈KK∗x,x〉 =
〈

A2

A1
x,x

〉
for all x ∈ H .

Hence K−1
r = A1

A2
K∗ . Conversely, suppose that K−1

r = A1
A2

K∗ . Then KK∗ = A2
A1

I . Thus

〈KK∗x,x〉 =
〈

A2

A1
x,x

〉
, for all x ∈ H .

Since {Ti} is a tight K -operator frame for B(H ) , we have

∑
i∈N

‖Tix‖2 = A2‖x‖2, for all x ∈ H .

Hence {Ti} is a tight operator frame for B(H ) . �
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REMARK 3.11.

1. Let K ∈ B(H ) . If {Ti} is a K -tight operator frame for B(H ) with frame bound
A , then {Ti(KN)∗} ⊂ B(H ) is KN+1 -tight operator frame for B(H ) with frame
bound A .

2. If {Ti} is a tight operator frame for B(H ) with frame bound A , then {TiK∗} is
tight K -operator frame for B(H ) with frame bound A .

3. Every operator K ∈ B(H ) has K -operator frame. Indeed, if { fk} is a frame
for H with frame bounds A and B , then Tei

fi
is an operator frame. Define

Ti = Tei
fi

K∗ , then {Ti} is K -operator frame for B(H ) with frame bounds A and
B .

Next, we prove that if {Ti} is a K1 as well as K2 -operator frame, then for scalars
α and β , it is also a (αK1 + βK2) and K1K2 -operator frame.

THEOREM 3.12. Let K1,K2 ∈ B(H ) . If {Ti} is a K1 as well as K2 -operator
frame for B(H ) and α , β are scalars, then {Ti} is a (αK1 + βK2)-operator frame
and K1K2 -operator frame for B(H ) .

Proof. Let {Ti} is a K1 as well as K2 -operator frame for B(H ) . Then there
exists positive constants 0 � Ap < ∞ and 0 � Bp < ∞ (p = 1,2) such that

Ap‖K∗
px‖2 � ∑

i∈N

‖Tix‖2 � Bp‖x‖2, for all x ∈ H .

This gives

A1A2

A2|α|2 +A1|β |2 ‖(αK1 + βK2)∗ f‖2 � ∑
i∈N

‖Tix‖2 �
(B1 +B2

2

)
‖x2‖, for all x ∈ H .

Therefore, {Ti} is a (αK1 + βK2)-operator frame for B(H ) . Also, for each x ∈ H ,
we have

‖(K1K2)∗x‖2 = ‖K∗
2K∗

1 x‖2 � ‖K∗
2‖2‖K∗

1x‖2, x ∈ H .

Since {Ti} is a K1 -operator frame for B(H ) , we have

A1

‖K∗
2‖2 ‖(K1K2)∗x‖2 � ∑

i∈N

‖Tix‖2 � B1‖x‖2, for all x ∈ H .

Hence {Ti} is a K1K2 -operator frame for B(H ) . �

COROLLARY 3.13. For any K ∈ B(H ) , if a sequence of operators {Ti} is a K -
operator frame for B(H ) , then {Ti} is an A -operator frame for any operator A in
the subalgebra generated by K .
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Next, we show that K -operator frame for H is invariant under a linear home-
omorphism, provided K∗ commutes with the inverse of a given homeomorphism. A
relation between the best bounds of a given K -operator frame and the best bounds
of K -operator frame obtained by the action of linear homeomorphism is given in the
following theorem, which generalizes Corollary 1 in [7].

THEOREM 3.14. Let {Ti} be a K -operator frame for H with best frame bounds
A and B. If Q : H → H is a linear homeomorphism such that Q−1 commutes with
K∗ , then {TiQ} is a K -operator frame for H with best frame bounds C and D satis-
fying the inequalities

A‖Q−1‖−2 � C � A‖Q‖2; B‖Q−1‖−2 � D � B‖Q‖2. (3.5)

Proof. Since B is an upper bound for {Ti} , for all x ∈ H , we have

∑
i∈N

‖TiQx‖2 � B‖Q‖2‖x‖2, x ∈ H .

Also, we have

A‖K∗x‖2 = A‖K∗Q−1Qx‖2

= A‖Q−1K∗Qx‖2

� ‖Q−1‖2 ∑
i∈N

‖TiQx‖2, x ∈ H .

Therefore, we obtain

A‖Q−1‖−2‖K∗x‖2 � ∑
i∈N

‖TiQx‖2 � B‖Q‖2‖x‖2, x ∈ H .

Hence, {TiQ} is a K -operator frame for H with bounds A‖Q−1‖−2 and B‖Q‖2 .
Now let C and D be the best bounds of the K -operator frame {TiQ} . Then

A‖Q−1‖−2 � C and D � B‖Q‖2. (3.6)

Also, {TiQ} is a K -operator frame for B(H ) with frame bounds C and D and

‖K∗x‖2 = ‖QQ−1K∗x‖2

� ‖Q‖2‖K∗Q−1x‖2, for all x ∈ H .

Hence

C‖Q‖−2‖K∗x‖2 � C‖K∗Q−1x‖2

� ∑
i∈N

‖TiQQ−1x‖2 (= ∑
i∈N

‖Tix‖2)

� D‖Q−1‖2‖x‖2.
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Since A and B are the best bounds of K -operator frame {Ti} ,we have

C‖Q‖−2 � A, B � D‖Q−1‖2. (3.7)

Hence the inequality (3.5) follows from (3.6) and (3.7). �
The following result gives an interplay between a K -frame and K -operator frame.

We omit the proof as it can worked out in few steps using the hypothesis.

THEOREM 3.15. Let { fi} be a sequence in H , K ∈ B(H ) and {ei} be a se-
quence of standard unit vectors in H . Then

1. { fi} is a K -frame for H if and only if {Tei
fi
} is a K -operator frame for B(H ) .

2. { fi} is a tight K -frame for H if and only if {Tei
fi
} is a tight K -operator frame

for B(H ) .

Motivating from Theorem 3.8 in [14], we define K -dual operator frame for K -
operator frames.

DEFINITION 3.16. Let K ∈ B(H ) and {Ti} be a K -operator frame for B(H ) .
An operator Bessel sequence {Ri} in B(H ) is called K -dual operator frame for {Ti}
if

Kx = ∑
i∈N

T ∗
i Rix, ∀ x ∈ H .

REMARK 3.17.

1. Every K -operator frame for B(H ) has K -dual operator frame.

2. K -dual operator frame {Ri} is K∗ -operator frame for B(H ) .

THEOREM 3.18. Let { fi} ⊂ H , { f̃i} ⊂ H and {ei} be a sequence of standard
unit vectors in H . Then the following statements are equivalent:

1. { f̃i} is a K -dual frame for { fi} .

2. {Tei

f̃i
} is a K -dual operator frame for {Tei

fi
} .

Proof. (1) ⇒ (2) . For any x ∈ H , we have

∑
i∈N

Tei
fi
∗Tei

f̃i
x = ∑

i∈N

Tei
fi
∗〈x, f̃i〉ei

= ∑
i∈N

〈〈x, f̃i〉ei,ei〉 fi

= Kx.
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Hence {Tei

f̃i
} is a K -dual operator frame for {Tei

fi
} .

(2) ⇒ (1) . For any x ∈ H , we have

Kx = ∑
i∈N

Tei
fi
∗Tei

f̃i
x

= ∑
i∈N

Tei
fi
∗〈x, f̃i〉ei

= ∑
i∈N

〈〈x, f̃i〉ei,ei〉 fi

= ∑
i∈N

〈x, f̃i〉 fi.

Hence { f̃i} is a K -dual frame for { fi} . �

4. Perturbation of K -operator frames

The theory of perturbation is a very important tool in many area of applied math-
ematics. In this section, we consider perturbation of K -operator frames by non-zero
operators. We begin with the following result that gives a sufficient condition for the
perturbed sequence of type {Ti + ciT0} , where {Ti} is a K -operator frame for B(H ) ,
{ci} is any sequence of scalars and T0 ∈ B(H ) .

THEOREM 4.1. Let {Ti} be a K -operator frame for B(H ) with bound A and
B. Let T0 �= 0 be any element in B(H ) and {ci} be any sequence of scalars. Then,
the perturbed sequence of operators {Ti + ciT0} is a K -operator frame for B(H ) if

∑
i∈N

|ci|2 <
A

‖T0‖ .

Proof. Let Ri = Ti + ciT0 , i ∈ N . Then, for any x ∈ H , we have

∑
i∈N

‖Tix−Rix‖2 = ∑
i∈N

‖ciT0x‖2

� ∑
i∈N

|ci|2‖T0‖2‖x‖2,

= R‖x‖2,

where R = ∑i∈N |ci|2‖T0‖2 . Therefore, {Ti + ciT0} is a K -operator frame for B(H ) if
R < A , that is, if

∑
i∈N

|ci|2 <
A

‖T0‖2 . �

REMARK 4.2. The condition that ∑i∈N |ci|2 <
A

‖T0‖2 in the Theorem 4.1 is not

necessary. Indeed, let H be a Hilbert space and {en} be a sequence of standard
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unit vectors in H . For each i ∈ N , define Tix = 〈x,ei〉ei , x ∈ H and K : H → H
by Kx = ∑i∈N〈x,ei〉ei , x ∈ H . Then {Ti} is a tight K -operator frame for H . Let
T0x = 〈x,e1〉e1 , c1 = 2 and ci = 0, n � 2, n ∈ N . Then {Ti + ciT0} is a K -operator
frame for B(H ) with ∑i∈N |ci|2 = 4.

Next, we consider perturbation of the type {αiTi − βiRi} , where {Ti} ⊂ H is
a frame for B(H ) ; {Ri} ⊂ H is any sequence and {αi} , {βi} are two positively
confined sequences and prove the following result in this direction.

THEOREM 4.3. Let {Ti} be a K -operator frame for B(H ) , {Ri} ⊂ B(H ) be
any sequence and let {αi} , {βi}⊂R be any two positively confined sequences. If there

exist constants λ ,μ with 0 � λ , μ <
1
2

such that

∑
i∈N

‖(αiTi −βiRi)x‖2 � λ ∑
i∈N

‖αiTix‖2 + μ ∑
i∈N

‖βiRix‖2, x ∈ H ,

then {Ri} is a K -operator frame for B(H ) .

Proof. Suppose that for some constants λ ,μ with 0 � λ , μ <
1
2

, we have

∑
i∈N

‖(αiTi −βiRi)x‖2 � λ ∑
i∈N

‖αiTix‖2 + μ ∑
i∈N

‖βiRix‖2, x ∈ H .

Then, for each x ∈ H ,

∑
i∈N

‖βiRix‖2 � 2
(

∑
i∈N

‖αiTix‖2 + ∑
i∈N

‖αiTix−βiRix‖2
)

� 2
(

∑
i∈N

‖αiTix‖2 + λ ∑
i∈N

‖αiTix‖2 + μ ∑
i∈N

‖βiRix‖2
)

Therefore

(1−2μ) ∑
i∈N

‖βiRix‖2 � 2(1+ λ ) ∑
i∈N

‖αiTix‖2.

This gives

(1−2μ)( inf
1�i<∞

βi)2 ∑
i∈N

‖Rix‖2 � 2(1+ λ )( sup
1�i<∞

αi)2 ∑
i∈N

‖Tix‖2.

Thus

∑
i∈N

‖Rix‖2 �
2(1+ λ )(sup1�i<∞ αi)2

(1−2μ)(inf1�i<∞ βi)2 ∑
i∈N

‖Tix‖2.

Also, for each x ∈ H , we have

∑
i∈N

‖αiTix‖2 � 2
(

∑
i∈N

‖αiTix−βiRix‖2 + ∑
i∈N

‖βiRix‖2
)

� 2
(

λ ∑
i∈N

‖αiTix‖2 + μ ∑
i∈N

‖βiRix‖2 + ∑
i∈N

‖βiRix‖2
)
, for all, x ∈ H .
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Therefore

(1−2λ )( inf
1�i<∞

αi)2 ∑
i∈N

‖Tix‖2 � 2(1+ μ)( sup
1�i<∞

βi)2 ∑
i∈N

‖Rix‖2.

This gives

(1−2λ )(inf1�i<∞ αi)2

2(1+ μ)(sup1�i<∞ βi)2 ∑
i∈N

‖Tix‖2 � ∑
i∈N

‖Rix‖2 �
2(1+ λ )(sup1�i<∞ αi)2

(1−2μ)(inf1�i<∞ βi)2 ∑
i∈N

‖Tix‖2.

Hence, {Ri} is a K -operator frame for B(H ) . �

5. Stability of K -operator frames

We begin this section with the following result.

THEOREM 5.1. Let {Ti} be a K -operator frame for H with frame bounds A
and B. Let {Ri} ⊂ H and α,R � 0 . If 0 � α + R

A < 1 such that

∑
i∈N

‖(Ti−Ri)x‖2 � α ∑
i∈N

‖Tix‖2 +R‖K∗x‖2, for all , x ∈ H .

Then {Ri} is a K -operator frame with frame bounds A
(
1−

√
α + R

A

)2
and B

(
1 +√

α + R‖K‖
B

)2
.

Proof. Let {Ti} be a K -operator frame for H with frame bounds A and B . Then
for each x ∈ H , we have

‖{Tix}‖�2(H ) � ‖{(Ti−Ri)x}‖�2(H ) +‖{Rix}‖�2(H )

�
√

α ∑
i∈N

‖Tix‖2 +R‖K∗x‖2 +
√

∑
i∈N

‖Rix‖2

�
√

α ∑
i∈N

‖Tix‖2 +
R
A ∑

i∈N

‖Tix‖2 +
√

∑
i∈N

‖Rix‖2

This gives

A
(
1−

√
α +

R
A

)2‖K∗x‖2 � ∑
i∈N

‖Rix‖2.

Also, we have

‖{Rix}‖�2(H ) � ‖{(Ti−Ri)x}‖�2(H ) +‖{Tix}‖�2(H )

�
√

B
(

α +
R‖K‖

B

)
‖x‖.
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So we get

∑
i∈N

‖Rix‖2 � B
(
1+

√
α +

R‖K‖
B

)2‖x‖2.

Hence {Ri} is a K -operator frame for H . �

COROLLARY 5.2. Let {Ti} be a K -operator frame for H with frame bounds A
and B . Let {Ri} ⊂ H . If there is an R with 0 < R < A such that

∑
i∈N

‖(Ti−Ri)x‖2 � R‖K∗x‖2, for all , x ∈ H .

Then {Ri} is a K -operator frame with frame bounds A(1−
√

R
A)2 and B(1+

√
R
B‖K‖)2 .

Proof. Follows in view of Theorem 5.1 with α = 0. �

Next, we give a sufficient condition for the stability of a K -operator frame.

THEOREM 5.3. Let {Ti} be a K -operator frame for B(H ) with frame bounds
A1 and B1 . Then a sequence {Ri} ⊂ B(H ) is a K -operator frame for B(H ) if there
exists a constant M > 0 such that

∑
i∈N

‖(Ti−Ri)x‖2 � Mmin
(

∑
i∈N

‖Tix‖2, ∑
i∈N

‖Rix‖2
)
, x ∈ H .

Proof. For each x ∈ H , we have

A‖K∗x‖2 � ∑
i∈N

‖Tix‖2

� 2
(
‖(Ti−Ri)x‖2 + ∑

i∈N

‖Rix‖2
)

�
(
M ∑

i∈N

‖Rix‖2 + ∑
i∈N

‖Rix‖2
)

� 2(M +1) ∑
i∈N

‖Rix‖2

and

∑
i∈N

‖Rix‖2 � 2
(
‖(Ti−Ri)x‖2 + ∑

i∈N

‖Tix‖2
)

� 2(M +1)B‖x‖2.

So

A
2(M +1)

‖K∗x‖2 � ∑
i∈N

‖Rix‖2 � 2(M +1)B‖x‖2.

Hence {Ri} is a K -operator frame for B(H ) . �
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REMARK 5.4. Converse part of Theorem 5.3 is valid for any co-isometry K ∈
B(H ) . Indeed, for any x ∈ H , we have

∑
i∈N

‖(Ti−Ri)x‖2 � 2
(

∑
i∈N

‖Tix‖2 + ∑
i∈N

‖Rix‖2
)

� 2
(

∑
i∈N

‖Tix‖2 +B2‖x‖2
)

� 2
(

∑
i∈N

‖Tix‖2 +
B2

A1
∑
i∈N

‖Tix‖2
)

=
(
1+

B2

A1

)
∑
i∈N

‖Tix‖2.

Similarly, we have

∑
i∈N

‖(Ti−Ri)x‖2 �
(
1+

B1

A2

)
∑
i∈N

‖Rix‖2.

Hence

∑
i∈N

‖(Ti−Ri)x‖2 � Mmin
(

∑
i∈N

‖Tix‖2, ∑
i∈N

‖Rix‖2
)
, for all x ∈ H .

Next, we consider the sum of K -operator frames for B(H ) . Let {Tn,i} , n =

1,2, . . . ,k be K -operator frames for B(H ) . Consider the sequence
{

∑k
n=1 Tn,i

}
ob-

tained by taking the sum of these K -operator frames. We observe that this sequence{
∑k

n=1 Tn,i

}
may not be a K -operator frame for B(H ) . In this direction, we give the

following examples:

EXAMPLE 5.5. Let K ∈ B(H ) . Let {Tn,i} , n = 1,2, . . . ,k be K -operator frames
for B(H ) . If for some 1 � p � k ,

Tn,ix = Tp,ix, for all x ∈ H , n = 1,2, . . . ,k and i ∈ N.

Then {∑k
n=1 Tn,ix} = {kTp,ix} , i ∈ N . Therefore

{
∑k

n=1 Tn,i

}
is a K -operator frame

for B(H ) .

EXAMPLE 5.6. Let {T1,i} and {T2,i} be two K -operator frame such that

T1,ix = −T2,ix, for all x ∈ H , n = 1,2, . . . ,k and i ∈ N.

Let K : H →H be defined by Kx = ∑i∈N〈x,ei〉ei , for all x∈H . Since ‖K∗(e1)‖2 =
1 and ∑i∈N ‖∑2

n=1 Tn,iei‖2 = 0, {∑2
n=1 Tn,i} is not a K -operator frame for B(H ) .

In the view of the above examples, we give a sufficient condition for the finite sum
of K -operator frame to be a K -operator frame.
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THEOREM 5.7. Let K ∈ B(H ) . For n = 1,2, . . . ,k , let {Tn,i} ⊂ B(H ) be K -
operator frames for B(H ) and {αn}k

n=1 be any scalars. Then {∑k
n=1 αnTn,i} is a

K -operator frame for B(H ) , if there exists β > 0 and some p ∈ {1,2, . . . ,k} such
that

β ∑
i∈N

‖Tp,ix‖2 � ∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

αnTn,ix
∣∣∣∣∣∣2, x ∈ H . (∗)

Proof. For each 1 � p � k , let Ap and Bp be the bounds of the K -operator frame
{Tp,i} . Let β > 0 be a constant satisfying (∗) . Then

Apβ‖K∗x‖2 � β ∑
i∈N

‖Tp,ix‖2

� ∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

αnTn,ix
∣∣∣∣∣∣2, x ∈ H .

For any x ∈ H , we have

∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

αnTn,ix
∣∣∣∣∣∣2 � ∑

i∈N

k
( k

∑
n=1

‖αiTn,i‖2
)

� k(max |αi|2)
k

∑
n=1

(
∑
i∈N

‖Tn,ix‖2
)

� k(max |αi|2)(
k

∑
n=1

Bi)‖x‖2.

Hence {∑k
n=1 αnTn,i} is a K -operator frame for B(H ) . �

Finally, we prove the following result related to finite sum of K -operator frames.

THEOREM 5.8. Let K ∈ B(H ) . For each n ∈ {1,2, . . . ,k} , let {Tn,i} ⊂ B(H )
be K -operator frame for B(H ) , {Rn,i} ⊂ B(H ) be any sequence. Let Q : �2(H ) →
�2(H ) be a bounded linear operator such that Q

({
∑k

n=1 Rn,i(x)
})

= {Tp,i(x)} , for

some p ∈ {1,2, . . . ,k} . If there exists a non-negative constant λ such that

∑
i∈N

‖(Tn,i−Rn,i)x‖2 � λ ∑
i∈N

‖Tn,ix‖2, x ∈ H , n = 1,2, . . . ,k.

Then
{

∑k
n=1 Rn,i

}
is a K -operator frame for B(H ) .
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Proof. For any x ∈ H , we have

∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

Rn,ix
∣∣∣∣∣∣2 � 2 ∑

i∈N

( k

∑
n=1

‖(Tn,i−Rn,i)x‖2 +
k

∑
n=1

‖Tn,ix‖2
)

� 2k
k

∑
n=1

(
λ ∑

i∈N

‖Tn,ix‖2 + ∑
i∈N

‖Tn,ix‖2
)

� 2k(1+ λ )(∑
i∈N

Bi)‖x‖2.

Also, for each x ∈ H , we have∣∣∣∣∣∣Q({ k

∑
n=1

Rn,ix
})∣∣∣∣∣∣2 = ∑

i∈N

‖Tp,ix‖2.

Therefore, we get

Ap‖K∗x‖2 � ∑
i∈N

‖Tp,ix‖2

� ‖Q‖2 ∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

Rn,ix
∣∣∣∣∣∣2, x ∈ H ,

where Ap is a lower bound of the K -operator frame {Tp,n} . This gives

Ap

‖Q‖2 ‖K∗x‖2 � ∑
i∈N

∣∣∣∣∣∣ k

∑
n=1

Rn,ix
∣∣∣∣∣∣2, x ∈ H .

Hence
{

∑k
n=1 Rn,i

}
is a K -operator frame for B(H ) . �
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