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Abstract. Fusion frames, and, more generally, operator-valued frame sequences are generaliza-
tions of classical frames, which are today a standard notion when redundant, yet stable sequences
are required. However, the question of stability of duals with respect to perturbations has not
been satisfactorily answered. In this paper, we quantitatively measure this stability by consid-
ering the associated deviations of the canonical and alternate dual sequences from the original
ones. It is proven that operator-valued frame sequences are indeed stable in this sense. Along
the way, we also generalize existing definitions for fusion frame duals to the infinite-dimensional
situation and analyze how they perform with respect to a list of desiderata which, to our minds,
a fusion frame dual should satisfy. Finally, we prove a similar stability result as above for fusion
frames and their canonical duals.
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