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Abstract. Fusion frames, and, more generally, operator-valued frame sequences are generaliza-
tions of classical frames, which are today a standard notion when redundant, yet stable sequences
are required. However, the question of stability of duals with respect to perturbations has not
been satisfactorily answered. In this paper, we quantitatively measure this stability by consid-
ering the associated deviations of the canonical and alternate dual sequences from the original
ones. It is proven that operator-valued frame sequences are indeed stable in this sense. Along
the way, we also generalize existing definitions for fusion frame duals to the infinite-dimensional
situation and analyze how they perform with respect to a list of desiderata which, to our minds,
a fusion frame dual should satisfy. Finally, we prove a similar stability result as above for fusion
frames and their canonical duals.

1. Introduction

Introduced in 1952 by Duffin and Schaeffer [13], frames as an extension of the
concept of orthonormal bases allowing for redundancy, while still maintaining stability
properties, are today a standard notion in mathematics and engineering. Applications
range from more theoretical problems such as the Kadison-Singer Problem [8] and
tensor decomposition [28] over questions inspired by (sparse) approximation theory
[24] to real-world problems such as wireless communication and coding theory [30],
quantum mechanics [14], and inverse scattering problems [25]. Recently, motivated
by applications and also theoretical goals, generalizations of this framework have been
developed: g-frames [31], operator-valued frames [22], and fusion frames [6].

Reconstruction of the original vector from frame, fusion frame, or more general
measurements, is typically achieved by using a so-called (alternate or canonical) dual
system. While having ensured stability of the measurement process already in the defi-
nition, the question of stability of the reconstruction with respect to perturbations of the
frame or generalizations of this concept is more involved. The most natural approach to
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quantitatively measure this stability is by considering the associated deviations of the
dual systems. However, for instance in the fusion frame setting, there are several classes
and definitions of duality in the literature and questions related to stability of these du-
als with respect to perturbations are completely open so far. These are the problems we
tackle in this paper.

1.1. Frames, fusion frames, and beyond

The two key properties of frames are redundancy and stability, which can easily
be seen by their definition. A (not necessarily orthogonal) sequence Φ = (ϕi)i∈I in a
Hilbert space H forms a frame, if it exhibits a norm equivalence ‖(〈 · ,ϕi〉)i∈I‖�2(I) �
‖ ·‖H . The associated analysis operator – allowing the analysis of a vector – is defined
by TΦ : H→ �2(I) , x �→ (〈x,ϕi〉)i∈I .

An analysis operator can be regarded as a collection of one-dimensional pro-
jections, leading in a natural way to so-called fusion frames as a generalization of
frames, serving, in particular, applications under distributed processing requirements
[6]. A fusion frame is a sequence W = ((Wi,ci))i∈I of pairs of closed subspaces
and weights, again exhibiting a norm equivalence ‖(ciPWi(·))i∈I‖⊕i∈I Wi � ‖ · ‖H with
PWi denoting the respective orthogonal projection and analysis operator being given by
TW : H →⊕

i∈I Wi , x �→ (ciPWi(·))i∈I . Increasing the flexibility level once more and
aiming for a thorough theoretical understanding, the weights and orthogonal projec-
tions are replaced by general operators (Ai)i∈I with Ai ∈ B(H,K) , i ∈ I , K a Hilbert
space, leading to operator-valued frames [22] and to the equivalent notion of g-frames
[31].

1.2. Reconstruction, expansion, and duals

At the heart of frame and fusion frame theory as well as their extensions is the
problem of reconstructing the original vector after its analysis, i.e., after applying the
analysis operator, which can also be regarded as a measurement operator or sampling
operator. In frame theory, the reconstruction formula takes the shape of

x = ∑
i∈I
〈x,ϕi〉ϕ̃i = ∑

i∈I
〈x, ϕ̃i〉ϕi, x ∈H,

where (ϕ̃i)i∈I is a so-called (alternate) dual frame. As can be seen, the second part of
this formula even allows an expansion into the frame with a closed form sequence of
coefficients. Notice that this is not self-evident due to the redundancy of the frame. The
canonical dual frame is a specific dual frame, which exhibits a closed form expression.

In the fusion frame setting, one certainly aims for a sequence with similarly ad-
vantageous properties, which one might combine in the following list of desiderata for
fusion frame duals:

(D1) Reconstruction of any x ∈H from TWx possible.

(D2) Proper generalization of alternate dual frames.
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(D3) Constitute a fusion frame themselves.

(D4) Proper generalization of the canonical dual frame.

The only approaches so far to introduce fusion frame duals can be found in [16],
[20], and [19], where the latter two appeared several years after fusion frames were
introduced in [5]. This already shows the delicacy of the fusion frame setting (noting
that the definition of a dual frame is in fact rather simple). Here, it is our objective
to consider, in particular, the effect of fusion frame perturbations on their duals. For
this reason, we check how the particular definitions of fusion frame duals perform with
respect to the above desiderata. As a result, we find that the duals from [19] and [20]
satisfy the requirements, in contrast to the definition in [16]. However, we also argue
that a particular definition from [19] is the most appropriate to our minds, raise it to
the infinite-dimensional situation and modify it slightly, culminating in the definition of
fusion frame duals which we shall work with in this paper.

Interestingly, the definition of a dual in the setting of operator-valued frames or
the slightly more general setting of operator-valued frame sequences is not that deli-
cate. The reason for this phenomenon is that it is now only required that the dual shall
constitute an operator-valued frame sequence instead of such a special sequence as a fu-
sion frame (cf. (D3)). This was also noticed in [19] as a motivation for a new definition
of fusion frame duals.

1.3. Analysis of stability

While a frame itself, its analysis operator being continuous and bounded below,
provides stability with respect to both the measuring and the reconstruction process, it
is not clear how a small perturbation of a frame, an operator-valued frame, or a fusion
frame effects the associated set of duals. Here, we consider so-called μ -perturbations
which are (operator-valued) frames or frame sequences whose anaysis operator does
not differ more than μ > 0 from the analysis operator of the original object in norm. In
the situation of frames, this is a well-studied subject (see, e.g., [2, 4, 7, 11, 15, 18]).

As discussed before, exact reconstruction or expansion is a crucial property of
frames and their extensions, which in turn depends heavily on (alternate or canonical)
dual sequences. Thus, in this paper, we study the effect of μ -perturbations on those
dual sequences. To be precise, we consider a fixed triple consisting of an operator-
valued frame sequence, a perturbation of it, and one of its duals and ask how close the
duals of the perturbed sequence are to the original dual. Not only will this provide a
very clear picture of this type of stability, but also allow us a deep understanding of the
relation between the dual sequences and the original operator-valued frame sequences.

Results on the perturbation effect on the canonical duals of frame sequences can
be found in [18]. Perturbations of sequences beyond the frame setting have hardly been
studied before. Except the works [1] and [32] on perturbations of g-frames nothing can
be found in this direction. Concerning fusion frames, the only work in this direction
seems to be the paper [6], where the authors consider the stability of the fusion frame
property in terms of a slightly different notion of perturbation.
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1.4. Our contribution

Our contributions are two-fold. First, we present a complete description of the gen-
eral setting of operator-valued frame sequences and fusion frames and consider duals in
both settings. In particular, we prove a parametrization of the duals of operator-valued
frame sequences in terms of their analysis operators. In contrast to the operator-valued
frame case (see [22] and Definition 3.1) the definition of fusion frame duals does not
allow a straightforward generalization from the frame setting and thus requires a much
more delicate handling. Therefore, we give an overview of the existing definitions of
fusion frame duals from [16, 19, 20] and discuss their performance with respect to the
list of desiderata (D1)–(D4). As a result of this discussion we define a version of dual
fusion frames (Definition 3.10) which, in the finite-dimensional case, is very close to
that of the “block diagonal dual fusion frames” from [19]. Additionally, we give a
characterization of fusion frame duals in Theorem 3.13.

Second, we provide a comprehensive perturbation analysis of both fusion frames
and general operator-valued frame sequences in terms of the effect on their (alternate
and canonical) duals, thereby generalizing and significantly improving existing results.
In Theorems 4.9, 4.12, as well as 5.6, we show that indeed stability can be achieved in
these situations and derive precise error estimates. The perturbation results Theorem
4.9 and Theorem 4.12 deal with the operator-valued frame sequence case whereas the
fusion frame situation is tackled in Theorem 5.6. In the operator-valued frame case,
we show in Theorem 4.13 that the dual, chosen in Theorem 4.12 to achieve stability,
is a best approximation of the original dual among the set of duals of the perturbation.
The big difference between the definitions of fusion frame duals and duals of operator-
valued frames leads to the fact that the perturbation problem for fusion frames is much
more delicate and requires another type of technique.

1.5. Outline

The paper is organized as follows. Section 2 is devoted to the introduction of
operator-valuedBessel and frame sequences extending and slightly deviating from [22].
Vector frames and fusion frames are discussed as special cases. Canonical and alter-
nate duals are then introduced in Section 3 and their key properties analyzed. First, in
Subsection 3.1, duals are defined and studied in the general setting of operator-valued
frame sequences. This is followed by the study of several notions of fusion frame du-
als and their performance with respect to our list of desired properties (see Subsection
3.2). The last two sections focus on the impact of perturbations of the initial sequences
on their duals, both in the general setting (Section 4) and in the fusion frame setting
(Section 5).

1.6. Notation

We close this introduction by fixing the notation we will use. The set of all
bounded and everywhere defined linear operators between two Hilbert spaces H and
K will be denoted by B(H,K) . As ususal, we set B(H) := B(H,H) . The norm on
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B(H,K) will be the usual operator norm, i.e.

‖T‖ := sup{‖Tx‖ : x ∈H, ‖x‖ = 1} .

We denote the range (i.e., the image) and the kernel (i.e., the null space) of T ∈B(H,K)
by ranT and kerT , respectively. The restriction of an operator T ∈ B(H,K) to a sub-
space V ⊂H will be denoted by T |V . If V is closed, by PV we denote the orthogonal
projection onto V in H and by IV the identity operator on V .

Throughout this paper, I ⊂ N stands for a finite or countable index set and H and
K always denote Hilbert spaces. Recall that the space of H -valued �2 -sequences over
I , defined by

�2(I,H) :=

{
(xi)i∈I : xi ∈H∀i ∈ I, ∑

i∈I
‖xi‖2 < ∞

}
,

is a Hilbert space with scalar product〈
(xi)i∈I ,(yi)i∈I

〉
= ∑

i∈I
〈xi,yi〉, (xi)i∈I ,(yi)i∈I ∈ �2(I,H).

We shall often denote

H := �2(I,H) and K := �2(I,K).

An operator T ∈ B(H,K) is called bounded below if there exists c > 0 such that
‖Tx‖� c‖x‖ for all x ∈H . In the sequel, we will frequently make use of the following
well known operator theoretical lemma.

LEMMA 1.1. Let H and K be Hilbert spaces. Then for T ∈ B(H,K) the follow-
ing statements are equivalent.

(i) T is injective and ranT is closed.

(ii) T ∗ is surjective.

(iii) T is bounded below.

2. Operator-valued sequences

This section is devoted to recalling the definition of the main object we shall work
with, namely operator-valued frame sequences. We shall introduce the associated op-
erators (analysis, synthesis, and frame operator) and discuss how vector frames and
fusion frames fit into this framework.
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2.1. Operator-valued frame sequences

As mentioned before, the concept of operator-valued frames was first introduced
and intensively studied in [22]. Here, we generalize this notion to operator-valued
Bessel sequences.

DEFINITION 2.1. Let H and K be Hilbert spaces. A sequence of operators A =
(Ai)i∈I with Ai ∈B(H,K) , i∈ I , is said to be an operator-valued (or B(H,K)-valued )
Bessel sequence if there exists β > 0 such that

∑
i∈I

‖Aix‖2 � β‖x‖2 for all x ∈H. (2.1)

The bound β is said to be a Bessel bound of A .

The following characterization of operator-valued Bessel sequences can easily be
proved by using [29, Chapter VII, p. 263].

LEMMA 2.2. Let A= (Ai)i∈I be a sequence of operators in B(H,K) and β > 0 .
Then the following statements are equivalent.

(i) A is an operator-valued Bessel sequence with Bessel bound β .

(ii) The series

∑
i∈I

A∗
i Ai

converges in the strong operator topology1 to a non-negative self-adjoint opera-
tor with norm � β .

For any sequence of operators A = (Ai)i∈I ⊂ B(H,K) we set

HA := span {ranA∗
i : i ∈ I} and PA := PHA . (2.2)

Given an operator-valued Bessel sequence A = (Ai)i∈I , we define its associated analy-
sis operator TA : H→ K by

TAx := (Aix)i∈I , x ∈H, (2.3)

where, we recall,
K := �2(I,K).

The relation (2.1) ensures that TA is well-defined and that it is an element of B(H,K)
with ‖TA‖ �

√
β . The adjoint operator T ∗

A of TA is called the synthesis operator of
A , and it is easily seen that

T ∗
A(zi)i∈I = ∑

i∈I

A∗
i zi, (zi)i∈I ∈ K. (2.4)

1A sequence (Ti)i∈I ⊂ B(H) is said to converge in the strong operator topology to T ∈B(H) if (Tix)i∈I

converges to Tx for every x ∈H .
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For this, we only have to show that the series ∑i∈I A
∗
i zi converges in H . But this is (in

the case I = N) seen from∥∥∥∥∥ n

∑
i=m+1

A∗
i zi

∥∥∥∥∥
2

= sup
‖x‖=1

∣∣∣∣∣
〈

x,
n

∑
i=m+1

A∗
i zi

〉∣∣∣∣∣
2

�
(

sup
‖x‖=1

n

∑
i=m+1

|〈Aix,zi〉|
)2

� sup
‖x‖=1

(
n

∑
i=m+1

‖Aix‖2

)(
n

∑
i=m+1

‖zi‖2

)
� β

(
n

∑
i=m+1

‖zi‖2

)
.

LEMMA 2.3. Let A = (Ai)i∈I be a B(H,K)-valued Bessel sequence. Then

ranT ∗
A = HA and kerTA = H⊥

A. (2.5)

Proof. Indeed, we have

H⊥
A = (span{ranA∗

i : i ∈ I})⊥ =
⋂
i∈I

(ranA∗
i )

⊥ =
⋂
i∈I

kerAi = kerTA.

The first relation follows from this. �
The operator SA := T ∗

ATA = ∑i∈I A
∗
i Ai (the series converging in the strong opera-

tor topology) is called the frame operator corresponding to A . It follows from Lemma
2.2 that SA is a bounded non-negative self-adjoint operator in H . Moreover, (2.5)
implies that HA is invariant under SA and that

〈SAx,x〉 = ‖TAx‖2 = ∑
i∈I

‖Aix‖2 > 0 for all x ∈HA \ {0}.

DEFINITION 2.4. A sequence A = (Ai)i∈I of operators in B(H,K) is called an
operator-valued (or B(H,K)-valued ) frame sequence if there exist α,β > 0 such that

α‖x‖2 � ∑
i∈I

‖Aix‖2 � β‖x‖2 for all x ∈HA. (2.6)

The constants α and β are called lower and upper frame bound of A , respectively.
If α = β is possible, A is said to be tight. If even α = β = 1, then A is called an
operator-valued Parseval frame sequence. If HA = H we say that A is an operator-
valued frame for H .

An operator-valued frame sequence A = (Ai)i∈I with upper frame bound β is
an operator-valued Bessel sequence with Bessel bound β since for x ∈ H we have
Ai(I−PA)x = 0 for each i ∈ I (see (2.5)) and hence

∑
i∈I

‖Aix‖2 = ∑
i∈I

‖AiPAx‖2 � β‖PAx‖2 � β‖x‖2.

Hence, SA is defined, and (2.6) is equivalent to αIHA � SA|HA � β IHA . In particular,
SA|HA is boundedly invertible.
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For each j ∈ I we define the canonical embedding E j : K→ K by

E jz := (δi jz)i∈I , z ∈ K.

Its adjoint E∗
j : K →K is given by

E∗
j(zi)i∈I = z j, (zi)i∈I ∈ K.

Hence, for an operator-valued Bessel sequence A = (Ai)i∈I ⊂ B(H,K) we have

E∗
jTA = Aj.

From this, it follows that TA determines the operator-valued Bessel sequence A uni-
quely. Therefore, we will often identify an operator-valued Bessel sequence and its
analysis operator. Even more holds: each T ∈ B(H,K) is the analysis operator of
a B(H,K)-valued Bessel sequence. Indeed, for each i ∈ I , define Ai ∈ B(H,K) by
Ai := E∗

i T . Then, we have Aix = E∗
i Tx = (Tx)i , i ∈ I , and thus

∑
i∈I

‖Aix‖2 = ‖Tx‖2 � ‖T‖2‖x‖2, x ∈H,

which implies that A = (Ai)i∈I is an operator-valued Bessel sequence. Moreover, for
x∈H we have Tx = (Aix)i∈I = TAx , hence, T =TA . In particular, the (linear) mapping
A �→ TA between the linear space of operator-valued Bessel sequences B(I,H,K) ,
indexed by I , and B(H,K) is bijective. With the norm ‖A‖ := ‖TA‖ on B(I,H,K) it
even becomes unitary.

The next lemma is the analogue of Corollary 5.5.3. in [9].

LEMMA 2.5. Let T ∈ B(H,K) . Then the following statements hold:

(i) T is the analysis operator of an operator-valued frame sequence if and only if
ranT ∗ is closed.

(ii) T is the analysis operator of an operator-valued frame if and only if T ∗ is sur-
jective.

Proof. Due to the above discussion, we have T = TA , where A := (E∗
i T )i∈I .

Moreover, by the closed range theorem (see, e.g., [23, Theorem IV-5.13]), ranT is
closed if and only if ranT ∗ is closed.

(i). By definition, A is an operator-valued frame sequence if and only if T̂ :=
TA|HA is bounded below. By Lemma 1.1 this is the case if and only if T̂ is injective
and ran T̂ is closed. By (2.5), T̂ is always injective and ran T̂ = ranTA = ranT . Hence,
A is an operator-valued frame sequence if and only if ranT is closed.

(ii). By (i) and (2.5), A is an operator-valued frame if and only if ranTA is
closed and kerTA = {0} . Due to Lemma 1.1, this holds if and only if T ∗ = T ∗

A is
surjective. �
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REMARK 2.6. (a) The definition of the analysis operator in [22] slightly differs
from the one we give here, since it is defined to be an operator in B(H, �2(I)⊗K) (see
[22, Proposition 2.3]). However, it can be seen that the spaces �2(I)⊗K and K are
isometrically isomorphic through the mapping ϒ : �2(I)⊗K → K , ϒ(e j ⊗ z) = E j(z)
where (ei)i∈I is the standard basis of �2(I) . Moreover, for the (analysis) operator θA
defined in [22, Eq. (6)], one has ϒθA = TA . Here, we prefer to work with the analysis
operator as defined in (2.3) since it is more suitable for our purposes and also it is a
natural extension of the analysis operator associated to a vector frame.

(b) In [31], Sun introduced the slightly more general concept of G-frames. G-
frames are sequences of operators Ai ∈ B(H,Ki) between Hilbert spaces H and Ki ,
satisfying (2.6) for every x ∈H . In principle, Ki could be different from K j for i �= j .
However, in [31], Sun pointed out that for any sequence of Hilbert spaces Ki one can
always find a Hilbert space K containing all Ki , namely K =

⊕
i∈I Ki . In this sense,

every G-frame is also an operator-valued frame.

2.2. Vector frames as special operator-valued frames

Recall that a sequence (of vectors) Φ = (ϕi)i∈I in a separable Hilbert space H is
called a Bessel sequence if there exists β > 0 such that

∑
i∈I

|〈x,ϕi〉|2 � β‖x‖2 for all x ∈H.

The analysis operator TΦ : H→ �2(I) corresponding to a Bessel sequence Φ = (ϕi)i∈I

is defined by
TΦx := (〈x,ϕi〉)i∈I , x ∈H.

It is well known that TΦ is bounded with norm ‖TΦ‖ �
√

β . The adjoint T ∗
Φ : �2(I) →

H of TΦ is called the synthesis operator corresponding to Φ and it is given by

T ∗
Φc = ∑

i∈I
ciϕi, c ∈ �2(I).

The operator SΦ := T ∗
ΦTΦ is called the frame operator corresponding to Φ and it is a

non-negative bounded selfadjoint operator. A sequence Φ = (ϕi)i∈I in H is called a
frame sequence in H if there exist α,β > 0 such that

α‖x‖2 � ∑
i∈I

|〈x,ϕi〉|2 � β‖x‖2 for all x ∈HΦ,

where
HΦ = span{ϕi : i ∈ I}.

A frame sequence Φ in H is called a frame for H if HΦ = H . Consequently, a vector
sequence is a frame sequence if and only if it is a frame for its closed linear span.

Given a Bessel sequence Φ = (ϕi)i∈I in H , for every i ∈ I we define an operator
Ai ∈B(H,C) by Aix := 〈x,ϕi〉 , x∈H . Thus, it is clear that A= (Ai)i∈I is an operator-
valued Bessel sequence with Bessel bound β . Noticing that A∗

i c = cϕi for c ∈ C and
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that �2(I,C) = �2(I) , we have that the analysis operator associated with A coincides
with the usual analysis operator corresponding to Φ :

TAx = (Aix)i∈I = (〈x,ϕi〉)i∈I = TΦx, x ∈H.

Consequently, we also have that T ∗
A = T ∗

Φ and SA = SΦ . It is also clear that

HA = span{ranA∗
i : i ∈ I} = span{ϕi : i ∈ I} = HΦ.

Thus, the Bessel sequences in H are exactly the B(H,C)-valued Bessel sequences,
so that operator-valued Bessel sequences naturally extend the notion of (vector) Bessel
sequences. Evidently, an analogous correspondence holds for frame sequences (frames)
and B(H,C)-valued frame sequences (frames, respectively).

On the other hand, as it was noticed in [22], an operator-valued frame sequence
A = (Ai)i∈I ⊂ B(H,K) with dimranAi = 1 for all i ∈ I defines a (vector) frame se-
quence in H . Indeed, for each i ∈ I , let ei ∈ K be a unit vector such that ranAi =
span{ei} . By the Riesz Representation Theorem, for every i ∈ I there exists ϕi ∈ H
such that Aix = 〈x,ϕi〉ei for all x ∈ H . Since A∗

i = 〈·,ei〉ϕi , we have that HΦ = HA ,
where Φ = (ϕi)i∈I . Thus, (2.6) immediately yields that Φ is a frame sequence in H .

2.3. Fusion frames as special operator-valued frames

Let (Wi)i∈I be a sequence of closed subspaces of H and (ci)i∈I a sequence of
non-negative real numbers such that for all i ∈ I we have

Wi = {0} ⇐⇒ ci = 0. (2.7)

We shall call the sequence of pairs ((Wi,ci))i∈I a fusion sequence. A fusion frame for
H is a fusion sequence ((Wi,ci))i∈I for which there exist α,β > 0 such that

α‖x‖2 � ∑
i∈I

c2
i ‖PWix‖2 � β‖x‖2 for all x ∈H.

Fusion frames appeared for the first time in the literature in 2004 (cf. [5]) as “frames
of subspaces” and were later renamed in [6]. Obviously, a fusion sequence W =
((Wi,ci))i∈I can be identified with the sequence of operators A := (ciPWi)i∈I which is
a B(H)-valued frame for H if and only if W is a fusion frame for H . Therefore, the
set of fusion frames for H can be considered as a special (proper) subset of the B(H)-
valued frames for H . We shall also call W a Bessel fusion sequence (fusion frame
sequence) whenever A is a B(H)-valued Bessel sequence (frame sequence, resp.).
The analysis operator and the fusion frame operator of the Bessel fusion sequence W
are then defined by TW := TA and SW := SA , respectively. In accordance with (2.2),
we also define

HW := span{Wi : i ∈ I} and PW := PHW .

At this point we would like to remark that in previous works (see, e.g., [5, 6]) the
analysis operator TW was not considered as an operator from H to H = �2(I,H) but
from H to

⊕
i∈I Wi ⊂ H .
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3. Duals of operator-valued frame sequences and fusion frames

In this section we describe and investigate the concept of duals of operator-valued
frame sequences and provide a useful parametrization for the set of all duals of a
given operator-valued frame sequence. As we shall see, operator-valued duals of fu-
sion frames are in general not fusion frames. Therefore, we will discuss and compare
the notions of duality for fusion frames existing in the literature and agree on the one
that we will consider in this paper.

3.1. Duals of operator-valued frame sequences

In the case of vector sequences there exist several notions of duals of frame se-
quences (cf. [10, 21] and also [17]). In what follows, we define duals of operator-valued
frame sequences, thereby generalizing the notion of the so-called Type I duals of vector
frame sequences from [21].

DEFINITION 3.1. Let A = (Ai)i∈I ⊂ B(H,K) be an operator-valued frame se-
quence and Ã = (Ãi)i∈I ⊂ B(H,K) an operator-valued Bessel sequence. We say that
Ã is a dual operator-valued frame sequence (or simply a dual ) of A if

HÃ ⊂HA and ∑
i∈I

Ã∗
i Aix = x for all x ∈HA. (3.1)

It is immediately seen that (3.1) is equivalent to

ranT ∗
Ã ⊂HA and T ∗

ÃTA = PA.

And as the above inclusion can equivalently be replaced by an equality, it follows from
Lemma 2.5 that a dual is itself an operator-valued frame sequence.

By D(A) we denote the set of all duals of the operator-valued frame sequence A
(which we identify with their analysis operators), that is,

D(A) := {T ∈ B(H,K) : T ∗TA = PA, ranT ∗ ⊂ HA} .

Among all duals of A there is the so-called canonical dual which will play a special
role in the sequel. It is defined by(

Ai(SA|HA)−1PA
)
i∈I . (3.2)

It is easily seen that this is indeed a dual of A and that its analysis operator is given by

TA(SA|HA)−1PA.

In analogy to the vector frame sequence case, we call the remaining duals of A alter-
nate duals.

The following lemma provides a characterization of the duals of A in terms of
their analysis operators. It can be viewed as an operator theoretical variant of a classical
result in [26] (see also [9]).
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LEMMA 3.2. Let A = (Ai)i∈I ⊂B(H,K) be an operator-valued frame sequence.
Then

D(A) =
{
(TA(SA|HA)−1 +L)PA : L ∈ B(HA,K), L∗TA = 0

}
.

Proof. Let T = (TA(SA|HA)−1+L)PA , where L∈B(HA,K) is such that L∗TA =
0. Then T ∗ = (SA|HA)−1T ∗

A +L∗ , which implies ranT ∗ ⊂ HA , and

T ∗TA = ((SA|HA)−1T ∗
A +L∗)TA = (SA|HA)−1T ∗

ATA = (SA|HA)−1SA = PA,

which proves T ∈ D(A) .
Conversely, let T ∈D(A) , i.e. ranT ∗ ⊂HA and T ∗TA = PA . Define the operator

L := (T |HA)−TA(SA|HA)−1 ∈ B(HA,K) . Then we have

L∗TA = PAT ∗TA− (SA|HA)−1T ∗
ATA = PA−PA = 0,

and T |HA = TA(SA|HA)−1 +L . Since ranT ∗ ⊂ HA implies H⊥
A ⊂ kerT , we find

that T = (TA(SA|HA)−1 +L)PA . �
In what follows we shall frequently make use of the following notation for an

operator-valued frame sequence A :

LA := {L ∈ B(HA,K) : T ∗
AL = 0} .

It is obvious that LA is a closed linear subspace of B(HA,K) .

COROLLARY 3.3. The set of duals D(A) of a B(H,K)-valued frame sequence
A is a closed affine subspace of B(H,K) .

Proof. By Lemma 3.2, we have D(A) = TA(SA|HA)−1PA +L′
A , where L′

A :=
{LPA : L ∈ LA} ⊂ B(H,K) . �

REMARK 3.4. If H is finite-dimensional, I is finite, and A = (Ai)i∈I ⊂ B(H,K)
is an operator-valued frame for H , we have

LA = {L ∈ B(H,K) : T ∗
AL = 0} .

Note that K = K|I| in this case. The space LA is then perpendicular to TAS−1
A with

respect to the Hilbert-Schmidt scalar product

〈X ,Y 〉HS = Tr(Y ∗X), X ,Y ∈ B(H,K),

since for L ∈ LA we have 〈TAS−1
A ,L〉HS = Tr(L∗TAS−1

A ) = 0. Moreover, it is easily
seen that the orthogonal projection onto LA (with respect to the inner product 〈·, ·〉HS )
is then given by

PLAX = PkerT ∗AX , X ∈ B(H,K). (3.3)

However, these observations cannot be generalized to the infinite-dimensional situation
since TAS−1

A cannot be Hilbert-Schmidt in this case. Indeed, if TAS−1
A was Hilbert-

Schmidt, then the operator (TAS−1
A )∗TAS−1

A = S−1
A would be compact, implying that

SA is not bounded. A contradiction.
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If L ∈ LA we denote by Ã(L) the dual of A with the analysis operator

TÃ(L) =
(
TA(SA|HA)−1 +L

)
PA. (3.4)

Thus, Ã(0) is the canonical dual. Note that the mapping LA →D(A) , L �→ Ã(L) , is
one-to-one and therefore parametrizes the duals of A .

REMARK 3.5. We mention that each operator in LA can be written in the form
PkerT ∗

AM with M ∈B(HA,K) . Since I−PkerT ∗
A = PranTA = TA(SA|HA)−1T ∗

A , we have

D(A) =
{[

TA(SA|HA)−1 +(I−TA(SA|HA)−1T ∗
A)M

]
PA : M ∈ B(HA,K)

}
=
{[

TA(SA|HA)−1 (I−T ∗
AM)+M

]
PA : M ∈ B(HA,K)

}
.

Although this representation of the duals of A is slightly more explicit, it does not
provide a parametrization as M �→ PkerT ∗

AM is not one-to-one.

COROLLARY 3.6. If A is an operator-valued frame sequence and L ∈ LA then
the frame operator of Ã(L) is given by

SÃ(L) =
(
(SA|HA)−1 +L∗L

)
PA.

Proof. As L∗TA = 0, and thus also T ∗
AL = 0, we have

SÃ(L) =
(
(TA(SA|HA)−1 +L)PA

)∗(TA(SA|HA)−1 +L)PA

= PA
(
(SA|HA)−1T ∗

A +L∗)(TA(SA|HA)−1 +L)PA
= PA

[
(SA|HA)−1T ∗

ATA(SA|HA)−1 +L∗L
]
PA

= PA
(
(SA|HA)−1 +L∗L

)
PA

= ((SA|HA)−1 +L∗L)PA,

which proves the claim. �

REMARK 3.7. The frame operator of the canonical dual Ã = Ã(0) of A is given
by (SA|HA)−1PA . This implies that if 0 < α � β are frame bounds for A , then
0 < β−1 � α−1 are frame bounds for Ã . In particular, this last fact gives∥∥TA(SA|HA)−1PA

∥∥ � 1√
α

, (3.5)

which we will use frequently below.

In Subsection 2.3, it was shown that fusion frames can be regarded as special
operator-valued frames. However, as the next proposition shows, the operator-valued
duals of fusion frames might themselves not correspond to fusion frames. We shall say
that two operator-valued Bessel sequences A and B are orthogonal if HA ⊥HB .
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PROPOSITION 3.8. For a fusion frame sequence W = ((Wi,ci))i∈I in H the fol-
lowing statements are equivalent:

(i) The canonical dual of (ciPWi)i∈I is a fusion frame sequence.

(ii) W is a union of mutually orthogonal tight fusion frame sequences.

Proof. The canonical dual of (ciPWi)i∈I is given by (ciPWi(SW |HW)−1PW)i∈I (cf.
(3.2)). It obviously corresponds to a fusion frame sequence if and only if for each
i ∈ I the operator PWi(SW |HW)−1 coincides with a positive multiple of an orthogonal
projection in HW . As the range of this operator coincides with Wi , (i) is satisfied if
and only if for each i ∈ I there exists di > 0 such that PWi(SW |HW)−1 = diPWi |HW ,
and, by adjunction,

(SW |HW)−1(PWi |HW) = di(PWi |HW) ∀i ∈ I.

This is equivalent to
SWPWi = d−1

i PWi ∀i ∈ I. (3.6)

Hence, (i) holds if and only if there exists (di)i∈I ⊂ (0,∞) such that (3.6) holds.
(i) =⇒ (ii). Let (di)i∈I ⊂ (0,∞) be as in (3.6). Define an equivalence relation ∼

on I by i1 ∼ i2 :⇐⇒ di1 = di2 , i1, i2 ∈ I . Let J ⊂ I be a set of representatives of all
the cosets in I/ ∼ , and for j ∈ J put I j := [ j]∼ . Then, (I j) j∈J is a partition of I . For
j ∈ J we further define λ j := d−1

i if i ∈ I j and Vj := span{Wi : i ∈ I j} . Then (3.6)
implies that Vj ⊂ ker(SW −λ jId) , and since eigenspaces of self-adjoint operators are
mutually orthogonal, we have that Vj ⊥Vk for j �= k , j,k ∈ J . Hence, ((Wi,ci))i∈Ij and
((Wi,ci))i∈Ik are orthogonal for j �= k , j,k ∈ J . It remains to show that for each j ∈ J
the sequence W j := ((Wi,ci))i∈Ij is a tight fusion frame sequence. For this, let j ∈ J
and x ∈Vj . Then the tightness is seen by

SW j x = ∑
i∈Ij

c2
i PWix = ∑

k∈J
∑
i∈Ik

c2
i PWix = ∑

i∈I
c2
i PWix = SWx = λ jx,

where in the second equality we use that (Vj) j∈J are mutually orthogonal.
(ii) =⇒ (i). Due to (ii), there exist a partition I =

⋃
j∈J I j of I and (α j) j∈J ⊂ (0,∞)

such that W j := ((Wi,ci))i∈Ij is an α j -tight fusion frame sequence for each j ∈ J and
W j and Wk are orthogonal for j �= k . Put Vj := HW j . Then, by the tightness of the
W j , for x ∈H we have

SWx = ∑
j∈J

∑
i∈Ij

c2
i PWix = ∑

j∈J
SW j x = ∑

j∈J
α jPVjx.

For i ∈ I , let j(i) ∈ J be such that i ∈ I j(i) . Then the mutual orthogonality of the W j

gives
SWPWi = ∑

j∈J
α jPVjPWi = α j(i)PWi ,

which is (3.6) for di = α−1
j(i) . �

REMARK 3.9. Note that (ii) in Proposition 3.8 implies that each Wi is a subspace
of some eigenspace of SW (cf. (3.6)).
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3.2. Duals of fusion frames

Since their introduction in 2004 (see [5]), fusion frames have been extensively
studied. However, there have only been two approaches yet to define duals of fusion
frames (see [16, 20], and also [19] for the finite-dimensional case). In fact, this is a
delicate task since it quickly turns out that one has to give up on certain analogues to
the vector frames case.

The first proposal for what a dual fusion frame should be was made by P. Găvruţa
in [16]. He calls a Bessel Fusion sequence V = ((Vi,di))i∈I a dual of a fusion frame
W = ((Wi,ci))i∈I if

∑
i∈I

cidiPViS
−1
W PWix = x for all x ∈H.

Here, we shall call these fusion sequences Găvruţa duals. Although it is proven in
[16] that a Găvruţa dual V of W is itself a fusion frame, it is in general not true that,
conversely, W is a Găvruţa dual of V . A simple counterexample is the following:

H = C
2, W = ((span{ei},1))2

i=1, V = ((C2,1))2
i=1.

In fact, we have SW = I and SV = 2I , and thus

2

∑
i=1

cidiPViS
−1
W PWi = I, whereas

2

∑
i=1

cidiPWiS
−1
V PVi =

1
2
I.

Recently, in [20] (see also [19]), a Bessel fusion sequence V = ((Vi,di))i∈I was
called a dual fusion frame of W = ((Wi,ci))i∈I if there exists a bounded operator

Q :
⊕
i∈I

Wi →
⊕
i∈I

Vi

such that
x = ∑

i∈I

di
(
Q(c jPWj x) j∈I

)
i, x ∈H. (3.7)

However, given a fusion frame for H , every fusion frame for H is a corresponding
dual fusion frame in this sense. Indeed, let W = ((Wi,ci))i∈I and V = ((Vi,di))i∈I be
fusion frames for H . Define

Q := (TVS−1
V S−1

W T ∗
W)
∣∣∣⊕

i∈I

Wi.

Note that ranQ ⊂⊕
i∈I Vi so that Q can be seen as an operator in B(

⊕
iWi,

⊕
iVi) .

Now, for x ∈H we have (note that (c jPWjx) j∈I = TWx )

∑
i∈I

di
(
Q(c jPWjx) j∈I

)
i = ∑

i∈I
di
(
TVS−1

V S−1
W T ∗

WTWx
)
i = ∑

i∈I
di
(
TVS−1

V x
)
i

= ∑
i∈I

d2
i PViS

−1
V x = S−1

V ∑
i∈I

d2
i PVix = S−1

V SVx = x.
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Thus, V is a dual of W in the sense of [20].
This shows that there is too much freedom in the choice of the operator Q in

this definition and it seems reasonable to work with particular classes of operators Q .
In fact, in [19, 20] the classes of “component-preserving” and “block-diagonal” duals
were considered (the latter only in the finite-dimensional case) which arise from al-
lowing only diagonal operators in the above definition. In this paper, we will consider
normalized diagonal operators Q . In what follows, we shall explain and justify our
choice in detail.

First, we find that the reconstruction formula (3.7) – in this general form – seems
to be of hardly any use in applications. However, if one restricts the set of “admissible”
operators Q to diagonal operators Q = diag(Qi)i∈I with Qi ∈ B(Wi,Vi) for each i ∈ I ,
formula (3.7) becomes considerably simpler (cf. [19]):

x = ∑
i∈I

cidiQiPWix, x ∈H,

Since here we prefer to work with H = �2(I,H) instead of
⊕

i∈I Wi and
⊕

i∈I Vi , we
allow Qi ∈ B(H) for each i ∈ I and ask for the validity of

x = ∑
i∈I

cidiPViQiPWix, x ∈H. (3.8)

Since the weights (di)i∈I are somewhat arbitrary in this version (if (Qi)i∈I and (di)i∈I

satisfy (3.8), also (αiQi)i∈I and (α−1
i di)i∈I do for every bounded positive sequence

(αi)i∈I ), we shall furthermore require that ‖Qi‖ = 1 for each i ∈ I . Moreover, since
in (3.8) only the action of Qi on Wi is important and, in addition, only that part being
further mapped to Vi , we shall also require that W⊥

i ⊂ kerQi and ranQi ⊂ Vi . Then
(3.8) reduces to

x = ∑
i∈I

cidiQix, x ∈H, (3.9)

since in this case we have Qi = PViQi = QiPWi .
For two fusion sequences V = ((Vi,di))i∈I and W = ((Wi,ci))i∈I in H we define

(see (2.7))

I0(V ,W) := {i ∈ I : Vi = {0} or Wi = {0}} = {i ∈ I : ci = 0 or di = 0}.

DEFINITION 3.10. Let W = ((Wi,ci))i∈I be a fusion frame for H . A Bessel
fusion sequence V = ((Vi,di))i∈I will be called a dual fusion frame (or a fusion frame
dual or, shortly, a FF-dual ) of W if there exists a sequence (Qi)i∈I ⊂ B(H) satisfying

W⊥
i ⊂ kerQi, ranQi ⊂Vi, and ‖Qi‖ = 1 if i /∈ I0(V ,W) (3.10)

for each i ∈ I such that (3.9) holds.

REMARK 3.11. (a) The first condition in (3.10) yields ranQi = QiWi . Hence, the
second means QiWi ⊂ Vi . If Vi = {0} or Wi = {0} the first two conditions in (3.10)
imply Qi = 0.
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(b) A dual fusion frame ((Vi,di))i∈I as defined in [20] was called component-
preserving if there exists a bounded sequence (Qi)i∈I ⊂ B(H) satisfying (3.8) and
QiWi = Vi (and not only QiWi ⊂ Vi ) for each i ∈ I . Here, we shall not further study
this subclass. If ((Vi,di))i∈I is a fusion sequence in the finite-dimensional Hilbert space
H satisfying Definition 3.10 (without the normalization condition), then it is a block-
diagonal dual fusion frame as defined in [19].

(c) If V = ((Vi,di))i∈I is a Găvruţa dual of W = ((Wi,ci))i∈I with the prop-
erty that PViS

−1
W PWi = 0 =⇒ i ∈ I0(V ,W) for every i ∈ I , then the fusion sequence

((Vi,‖PViS
−1
W PWi‖di))i∈I is a fusion frame dual of W . Indeed, if for i ∈ I we put

Ai := PViS
−1
W PWi as well as Qi := Ai/‖Ai‖ if Ai �= 0 and Qi := 0 otherwise, then (Qi)i∈I

satisfies (3.10), and for x ∈H we have x = ∑i∈I cidiAix = ∑i∈I ci(‖Ai‖di)Qix . See also
[19, Example 6.1].

After having presented the notions of duality from [16, 20, 19] and the one in
Definition 3.10, it seems convenient to us to enumerate a few desiderata which duals of
a fusion frame W = ((Wi,ci))i∈I should satisfy and then see how the different proposals
stated above perform with respect to them:

(D1) They should allow for reconstructing signals x ∈H from their fusion frame mea-
surements ciPWix , i ∈ I .

(D2) They should properly generalize the notion of dual (vector) frames, that is:

(D2a) If (ψi)i∈I is a dual of the frame (ϕi)i∈I for H , then ((span{ψi},‖ψi‖))i∈I

is a dual fusion frame of ((span{ϕi},‖ϕi‖))i∈I .

(D2b) If dimWi ∈ {0,1} for each i∈ I and V = ((Vi,di))i∈I is a dual fusion frame
of W with dimVi ∈ {0,1} for each i ∈ I , then there exist vectors ϕi ∈Wi

and ψi ∈Vi with ‖ϕi‖= ci and ‖ψi‖= di , i ∈ I , such that (ψi)i∈I is a dual
frame of (ϕi)i∈I .

(D3) If V is a dual fusion frame of W then it should itself be a fusion frame and also
W should be a dual fusion frame of V .

(D4) The fusion sequence ((S−1
WWi,ci‖S−1

W |Wi‖))i∈I should be a dual fusion frame of
W (the canonical dual).

Whereas (D1)–(D3) are evident requirements, the choice of the weights of the canonical
dual fusion frame in (D4) might not be clear a priori. To explain our choice, consider
the canonical dual (S−1

Φ ϕi)i∈I of a (vector) frame Φ = (ϕi)i∈I . Translated to the fusion
frame setting, we have Wi = span{ϕi} and ci = ‖ϕi‖ as well as Vi = span{S−1

Φ ϕi} =
S−1

Φ Wi and di = ‖S−1
Φ ϕi‖ . Thus, if ci �= 0, the weights of the canonical dual are di =

ci‖S−1
Φ (ϕi/‖ϕi‖)‖ = ci‖S−1

Φ |Wi‖ . The same trivially holds for ci = 0.
As we have shown in the beginning of this subsection, Găvruţa duals do not satisfy

desideratum (D3). For completeness, we mention that if one might want to directly
generalize the duality definition for (operator-valued) frames by requiring that T ∗

VTW =
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I for a dual V of W , this definition would violate (D4). A simple example for this is
given by

H = C
2, W1 = span{e1}, W2 = span{e1 + e2}, c1 = c2 = 1,

where {e1,e2} is the canonical standard basis of C2 .
As it turns out, all definitions of fusion frame duals from [20, 19] as well as Defi-

nition 3.10 satisfy the desiderata (D1)–(D4). Indeed, this follows essentially from [19,
Sections 3 and 4] and [20, Section 3]. However, for the convenience of the reader, we
prove this claim for the FF-duals from Definition 3.10.

PROPOSITION 3.12. The desiderata (D1)–(D4) are satisfied for the notion of fu-
sion frame duals defined as in Definition 3.10.

Proof. It is clear that the definition satisfies (D1) (see (3.8)). Moreover, (3.8) is
equivalent to T ∗

VQTW = I , where Q =
⊕

i∈I Qi . This identity yields both ranT ∗
V = H

and T ∗
WQ∗TV = I . Therefore, V is a fusion frame for H (cf. Lemma 2.5), and W

is a FF-dual of V , meaning that (D3) is satisfied. To prove that (D4) holds, we note
that ((S−1

WWi,ci))i∈I is a Găvruţa dual of W by [16]. It has the property in Remark
3.11 (c). Hence, ((S−1

WWi,ci‖S−1
W |Wi‖))i∈I is a FF-dual of W since ‖PS−1

WWi
S−1
W PWi‖ =

‖S−1
W PWi‖ = ‖S−1

W |Wi‖ .
Let us see that also (D2) is satisfied. For this, let (ψi)i∈I be a dual of the frame

(ϕi)i∈I for H as in (D2a). For i ∈ I , we put Wi := span{ϕi} , Vi := span{ψi} , and

Qix :=

{
0 if ϕi = 0 or ψi = 0〈
x, ϕi

‖ϕi‖
〉

ψi
‖ψi‖ otherwise

, x ∈H.

Then (Qi)i∈I satisfies (3.10). Moreover, we have

∑
i∈I

‖ϕi‖‖ψi‖Qix = ∑
i∈I,ψi �=0,ϕi �=0

‖ϕi‖‖ψi‖
〈

x,
ϕi

‖ϕi‖
〉

ψi

‖ψi‖ = ∑
i∈I

〈x,ϕi〉ψi = x.

Hence, ((Vi,‖ψi‖))i∈I is a FF-dual of ((Wi,‖ϕi‖))i∈I , as desired in (D2a).
For (D2b), let (Qi)i∈I ⊂B(H) be a sequence as in Definition 3.10. Choose ϕi ∈Wi

with ‖ϕi‖ = ci , i ∈ I . We put ψi := c−1
i diQiϕi if ci �= 0. If ci = 0 we choose an

arbitrary ψi ∈Vi with ‖ψi‖ = di . Let us see that ‖ψi‖= di for each i ∈ I . This is clear
if ci = 0. Let ci �= 0. If Qi �= 0 then ‖Qi‖ = 1 and hence ‖Qiϕi‖ = ci , i.e., ‖ψi‖ = di .
If Qi = 0 then i ∈ I0(V ,W) , implying that Vi = {0} as ci �= 0 yields Wi �= {0} . But
then di = 0 and thus ‖ψi‖ = 0 = di . For arbitrary x ∈H we have

∑
i∈I

|〈x,ψi〉|2 = ∑
di �=0

|〈x,ψi〉|2 = ∑
di �=0

d2
i ‖PVix‖2 = ∑

i∈I
d2

i ‖PVix‖2 = ‖TVx‖2.

This implies that (ψi)i∈I is a Bessel sequence in H . Finally,

∑
i∈I

〈x,ϕi〉ψi = ∑
ci �=0

c−1
i di〈x,ϕi〉Qiϕi = ∑

ci �=0

c−1
i diQi

(〈x,ϕi〉ϕi
)

= ∑
ci �=0

cidiQiPWix = ∑
i∈I

cidiQix = x.
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Hence, (ψi)i∈I is a dual frame of (ϕi)i∈I . �
The following theorem provides a characterization of fusion frame duals. Note

that implication (iii) =⇒ (i) is essentially [20, Lemma 3.5].

THEOREM 3.13. Let W = ((Wi,ci))i∈I be a fusion frame for H and let V =
((Vi,di))i∈I be a Bessel fusion sequence. Then the following statements are equivalent:

(i) V is a fusion frame dual of W .

(ii) There exists a sequence (Qi)i∈I ⊂ B(H) satisfying (3.10) such that (diQ∗
i )i∈I is

a B(H)-valued dual of (ciPWi)i∈I .

(iii) There exists a Bessel sequence L = (Li)i∈I ⊂ B(H) with T ∗
LTW = 0 such that

for the operators Ai := (ciS
−1
W + L∗

i )PWi , i ∈ I , we have ranAi ⊂ Vi and, if i /∈
I0(V ,W) , ‖Ai‖ = di .

Proof. (i) =⇒ (ii). Let (Qi)i∈I ⊂ B(H) be as in Definition 3.10. Then this se-
quence satisfies (3.10) and x = ∑i∈I cidiQix for all x ∈ H . Since Qi = PViQi and
‖Qi‖ � 1 for each i ∈ I , we have for x ∈H :

∑
i∈I

‖diQ
∗
i x‖2 = ∑

i∈I
d2

i ‖Q∗
i PVix‖2 � ∑

i∈I
d2

i ‖PVix‖2 = ‖TVx‖2,

which shows that B := (diQ∗
i )i∈I is a Bessel sequence. Moreover,

T ∗
BTWx = ∑

i∈I

diQi(ciPWix) = ∑
i∈I

cidiQix = x

for x ∈H . This proves (ii).
(ii) =⇒ (iii). As before, put B := (diQ∗

i )i∈I . By Lemma 3.2, there exists some
L ∈ B(H,H) with L∗TW = 0 such that TB = TWS−1

W +L . Put Li := E∗
i L , i ∈ I . Then

L := (Li)i∈I is a B(H)-valued Bessel sequence with TL = L . From TB = TWS−1
W +L

we conclude that diQ∗
i = ciPWiS

−1
W +Li for i ∈ I , that is, diQi = ciS

−1
W PWi +L∗

i . And
since Qi = QiPWi , we obtain diQi = (ciS

−1
W +L∗

i )PWi = Ai , i ∈ I . Therefore, ranAi ⊂Vi

and ‖Ai‖ = di if i /∈ I0(V ,W) .
(iii) =⇒ (i). For i ∈ I , define Qi := d−1

i Ai if di �= 0 and Qi := 0 otherwise. Then
ranQi ⊂Vi and W⊥

i ⊂ kerQi , i∈ I . If di �= 0 then ‖Qi‖= 1 for i /∈ I0(V ,W) . If di = 0
then Vi = {0} , i.e., i ∈ I0(V ,W) . Hence, (Qi)i∈I satisfies (3.10). Moreover, for x ∈H
we have

∑
i∈I

cidiQix = ∑
di �=0

ciAix = ∑
i∈I

ciAix = ∑
i∈I

(
c2
i S

−1
W PWix+ ciL

∗
i PWix

)
= S−1

W SWx+T∗
LTWx = x,

and (i) follows. �
As desired in (D4) and proved in Proposition 3.12, given a fusion frame W =

((Wi,ci))i∈I , the Bessel fusion sequence ((S−1
WWi,ci‖S−1

W |Wi‖))i∈I is always a FF-dual
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of W (and therefore itself a fusion frame). In analogy with the vector frame setting,
we call

W̃ :=
(
(S−1

WWi,ci‖S−1
W |Wi‖)

)
i∈I (3.11)

the canonical fusion frame dual of W = ((Wi,ci))i∈I . If ranTW = W :=
⊕

i∈I Wi then
there exist no other FF-duals than extensions of the canonical one. Indeed, in this case,
T ∗
L|W = 0 in condition (iii) of Theorem 3.13, and so L∗

i |Wi = 0 for each i ∈ I . It is an
open question whether in all remaining cases there always exist FF-duals other than the
canonical one or extensions of it. In [20] this was shown to be true for a very special
class of harmonic fusion frames. In the finite-dimensional situation, the question can be
answered in the affirmative, as proven in [19, Prop. 3.9]. This fact can be also deduced
from the next corollary, which is an immediate consequence of Theorem 3.13.

COROLLARY 3.14. Let I be finite, and let W = ((Wi,ci))i∈I be a fusion frame
for the finite-dimensional Hilbert space H . Then for each L ∈ B(H,H) with ranL ⊂
kerT ∗

W , the sequence ((ranAi,‖Ai‖))i∈I , where

Ai := (ciS
−1
W +L∗Ei)PWi , i ∈ I,

is a fusion frame dual of W .

4. Perturbations of operator-valued frame sequences

In this section, we prove that – in some sense and under certain conditions – duals
of operator-valued frames and frame sequences are stable under small perturbations. In
our results we utilize the following notion of μ -perturbation.

DEFINITION 4.1. Let μ > 0, and let A and B be two B(H,K)-valued Bessel
sequences. We say that B is a μ -perturbation of A (and vice versa) if

‖TA−TB‖ � μ .

REMARK 4.2. (a) We mention that the notion of μ -perturbation is a special case
of the perturbations of Paley-Wiener type which have been considered in, e.g., [9, Thm.
15.1.1] or in [4].

(b) The term μ -perturbation as such was originally introduced in [18] for vector
sequences which might not be Bessel sequences. However, if two vector Bessel se-
quences are μ -perturbations of one another in the sense of [18], this means that the
difference of their synthesis operators has a norm which does not exceed μ . There-
fore, in the case K = C , the above definition coincides with the one in [18] (for Bessel
sequences). Furthermore, we mention that ‖TA−TB‖ � μ implies ‖Ai −Bi‖ � μ for
every i ∈ I since

‖Ai−Bi‖ = ‖E∗
i TA−E∗

i TB‖ � ‖TA−TB‖ � μ .

(c) Note that (A,B) �→ ‖TA−TB‖ = ‖TA−B‖ is the distance induced by the norm
‖C‖ = ‖TC‖ on B(I,H,K) , see page 308.
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In order to treat perturbations of operator-valued frame sequences, we will make
use of the notion of the gap between subspaces of a Hilbert space.

4.1. Perturbations and the gap between subspaces

For two closed subspaces V and W of H the gap from V to W is defined by

δ (V,W ) := sup{‖v−PWv‖ : v ∈V, ‖v‖ = 1} = ‖(I−PW )|V‖ = ‖PW⊥|V‖.
We remark that in [18], δ (V,W ) was called the gap between V and W . Here, we agree
to follow, e.g., [12], and choose a different term in order to emphasize the order of V
and W in δ (V,W ) . It is worth noting that

δ (W⊥,V⊥) = ‖PV |W⊥‖ = ‖(PW⊥|V )∗‖ = ‖PW⊥|V‖ = δ (V,W ). (4.1)

Instead of the gap, some authors prefer to work with the infimum cosine angle R(V,W )
from V to W which is given by

R(V,W ) := inf{‖PWv‖ : v ∈V, ‖v‖ = 1} .

It is easy to see that

δ (V,W ) =
√

1−R(V,W)2. (4.2)

As δ is not a metric, Kato (see [23, §IV.2]) defines the gap between V and W by

Δ(V,W ) := max{δ (V,W ),δ (W,V )} , (4.3)

and shows that
Δ(V,W ) = ‖PV −PW‖.

The next lemma is well known (see, e.g., [3, 12] or [23, Theorem I-6.34]). For the sake
of completeness, we provide a short proof here.

LEMMA 4.3. The following statements hold.

(i) If δ (V,W ) < 1 , then V ∩W⊥ = {0} , and PW |V ∈ B(V,W) is bounded below.

(ii) If Δ(V,W) < 1 then δ (V,W ) = δ (W,V ) , and the operators PW |V ∈ B(V,W) and
PV |W ∈ B(W,V) are isomorphisms.

Proof. (i). From (4.2), we see that R(V,W ) > 0 which implies that the operator
PW |V is bounded below. In particular, V ∩W⊥ = ker(PW |V ) = {0} .

(ii). By (i), PW |V and PV |W are bounded below. And since PV |W = (PW |V )∗ , we
conclude from Lemma 1.1 that these operators are bijective. Finally,

R(V,W )−1 = ‖(PW |V )−1‖ = ‖((PW |V )∗)−1‖ = ‖(PV |W )−1‖ = R(W,V )−1

proves δ (V,W ) = δ (W,V ) . �
The following well known lemma can be traced back to the paper [27]. However,

for the sake of self-containedness we provide a proof here. It is based on the fact that
δ (V,W ) = sup{dist(v,W ) : v ∈V, ‖v‖ = 1} which easily follows from the definition.
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LEMMA 4.4. Let X ,Y be Hilbert spaces, T,S ∈ B(X ,Y ) , and assume that there
exists c > 0 such that ‖Tx‖ � c‖x‖ for each x ∈ (kerT )⊥ . Then ranT is closed and

δ
(
ranT, ranS

)
� ‖T −S‖

c
.

Proof. Using the formula from the above discussion, we have

δ
(
ranT, ranS

)
= sup

{
inf

z∈ranS
‖y− z‖ : y ∈ ranT, ‖y‖ = 1

}
= sup

{
inf
u∈X

‖Tx−Su‖ : x ∈ (kerT )⊥, ‖Tx‖ = 1

}
� sup

{
‖Tx−Sx‖ : x ∈ (kerT )⊥, ‖Tx‖ = 1

}
� ‖T −S‖ sup{‖x‖ : x ∈ (kerT )⊥, ‖Tx‖ = 1} � c−1‖T −S‖.

The fact that ranT is closed follows from Lemma 1.1. �
It is clear that Lemma 4.4 is only useful if ‖T − S‖ < c , that is, when S is suffi-

ciently close to T in norm. In fact, since later T and S will be analysis operators of
frames which are (small) perturbations of one another, the condition ‖T −S‖ < c will
be satisfied with c being the perturbation parameter. The same remark also applies to
the estimates in the next corollary.

COROLLARY 4.5. Let A be a B(H,K)-valued frame sequence with lower frame
bound α and let B a B(H,K)-valued Bessel sequence. Then

δ (HA,HB) � ‖TA−TB‖√
α

and also δ
(
ranTA, ranTB

)
� ‖TA−TB‖√

α
.

Proof. The second relation follows immediately from Lemma 4.4 with X = H ,
Y = K , T = TA , and S = TB . For the first relation we choose X = K , Y =H , T = T ∗

A ,
and S = T ∗

B . Then Lemma 4.4 is applicable since (kerT ∗
A)⊥ = ranTA and for z∈ ranTA

we have ‖T ∗
Az‖ �

√
α‖z‖ . The claim then follows from Lemma 2.3. �

The following theorem shows in particular that the perturbation of a frame se-
quence remains being a frame sequence when the perturbation parameter and the gap
are sufficiently small. This was already proven in [12, Thm. 2.1]. However, for the
convenience of the reader, we present a short proof.

THEOREM 4.6. Let A be a B(H,K)-valued frame sequence with frame bounds
α � β , and let B be a μ -perturbation of A . Then we have

δ (HA,HB) � μ√
α

. (4.4)

Moreover, if μ <
√

α and Δ(HA,HB) < 1 , then the following statements hold:
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(i) B is an operator-valued frame sequence with frame bounds(√
α − μ

)2
and

(
δ (HB,H⊥

A)
√

β + μ
)2

. (4.5)

If A is an operator-valued frame for H then so ist B .

(ii) For the gap Δ(ranTA, ranTB) between the closed subspaces ranTA and ranTB
we have

Δ(ranTA, ranTB) � μ√
α − μ

.

Proof. The relation (4.4) follows directly from Corollary 4.5. Assume now that
μ <

√
α and Δ := Δ(HA,HB) < 1.

(i). For the upper frame bound of B , let x ∈HB . Then

‖TBx‖ � ‖(TB−TA)x‖+‖TA(PA|HB)x‖ �
(

μ +
√

β‖PA|HB‖
)
‖x‖.

For the lower frame bound, let x ∈HA . Then we have (see (2.5))

‖TBPBx‖ = ‖TBx‖ � ‖TAx‖−‖(TA−TB)x‖ � (
√

α − μ)‖x‖ � (
√

α − μ)‖PBx‖.

And as (due to Δ < 1) PB maps HA bijectively onto HB , a lower frame bound of B
is (

√
α − μ)2 . It also follows from Δ < 1 that B is an operator-valued frame if A is.
(ii). Applying Corollary 4.5 to both (A,B) and (B,A) , we obtain

δ (ranTA, ranTB) � μ√
α

and δ (ranTB, ranTA) � μ√
α − μ

.

Since the second right hand side is larger than the first (unless μ = 0), the claim follows
from (4.3). �

REMARK 4.7. (a) The condition Δ(HA,HB) < 1 cannot be omitted in (i). A
counterexample in the vector sequence case can be found in [9, Example 15.3.1].

(b) Note that Δ in Theorem 4.6 tends (linearly) to zero with μ (cf. (4.4)).

4.2. The perturbation effect on the duals

In [18], it was studied how perturbations of a vector frame sequence affect the
canonical dual. A similar approach was made in [32] for G-frames. In the following,
we consider the problem in a much more general setting. Firstly, we consider operator-
valued frame sequences and secondly, we include all duals in our considerations. Since
our methods are different from those in [18] and [32], we can significantly improve the
estimates.

For the formulation of the following statements we ask the reader to recall the
parametrization LA → D(A) , L �→ Ã(L) , in (3.4) of the duals of an operator-valued
frame sequence A .
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LEMMA 4.8. Let A and B be two B(H,K)-valued frame sequences and let L ∈
LA and M ∈ LB . Then we have

TB̃(M) −TÃ(L) = TB(SB|HB)−1PB(T ∗
A−T ∗

B)RPAPB

+TB(SB|HB)−1PB(I−PA)PB

−RPA(I−PB)+
(
M−PkerT ∗

BRPA
)

PB,

(4.6)

where R := TA(SA|HA)−1 +L ∈ B(HA,K) .

Proof. For a more comfortable reading we write S−1
B instead of (SB|HB)−1 (anal-

ogously for A). Consider the right hand side of (4.6). Let us first extract the sum of
those terms which do not contain R :

S1 := TBS−1
B PB(I−PA)PB +MPB = TB̃(M) −TBS−1

B PBPAPB.

Now we extract the sum of terms containing L (inside R). Note that T ∗
AL = 0 and

PranTB = TB(SB|HB)−1T ∗
B . This sum is

S2 : = TBS−1
B PB(T ∗

A−T ∗
B)LPAPB−LPA(I−PB)−PkerT ∗

BLPAPB

= −TBS−1
B T ∗

BLPAPB−LPA(I−PB)−PkerT ∗
BLPAPB

= −LPAPB−LPA(I−PB) = −LPA.

The rest of the sum is given by

S3 : = TBS−1
B PB(T ∗

A−T ∗
B)TAS−1

A PAPB−TAS−1
A PA(I−PB)−PkerT ∗

BTAS−1
A PAPB

= (TBS−1
B PB−PranTBTAS−1

A )PAPB−TAS−1
A PA(I−PB)−PkerT ∗

BTAS−1
A PAPB

= TBS−1
B PBPAPB−TAS−1

A PAPB−TAS−1
A PA(I−PB)

= TBS−1
B PBPAPB−TAS−1

A PA.

Thus,
S1 +S2 +S3 = TB̃(M) −LPA−TAS−1

A PA = TB̃(M) −TÃ(L),

and the lemma is proven. �
Let us first study how perturbation effects the canonical duals of original and per-

turbed sequence.

THEOREM 4.9. Let A be a B(H,K)-valued frame sequence with lower frame
bound α , let B be a μ -perturbation of A , μ <

√
α , and assume that the gap Δ :=

Δ(HA,HB) < 1 . Then B is a B(H,K)-valued frame sequence and for the canonical
duals Ã and B̃ of A and B , respectively, we have∥∥TÃ−TB̃

∥∥ � 2μ +(2
√

α − μ)Δ√
α(

√
α − μ)

.



THE EFFECT OF PERTURBATIONS ON DUALS 325

Proof. The fact that B is a B(H,K)-valued frame sequence follows directly from
Theorem 4.6. This theorem also yields that B has the lower frame bound (

√
α − μ)2

and that Δ(ranTA, ranTB) � μ√
α−μ . We now make use of Lemma 4.8 and find that

(setting M = 0 and L = 0)

TB̃−TÃ = TBS−1
B PB(T ∗

A−T ∗
B)TAS−1

A PAPB +TBS−1
B PB(I−PA)PB

−TAS−1
A PA(I−PB)−PkerT ∗BTAS−1

A PAPB

= TBS−1
B PB(T ∗

A−T ∗
B)TAS−1

A PAPB +(PkerT ∗A −PkerT ∗B)TAS−1
A PAPB

+TBS−1
B PB(I−PA)PB−TAS−1

A PA(I−PB),

where we again agree to write S−1
A = (SA|HA)−1 and S−1

B = (SB|HB)−1 . Now, we
observe that

‖(I−PA)PB‖ = ‖(I−PA)|HB‖ = Δ = ‖(I−PB)|HA‖ = ‖(I−PB)PA‖.
Making extensive use of (3.5), we obtain∥∥TB̃−TÃ

∥∥� μ√
α(

√
α − μ)

+
Δ(kerT ∗

A,kerT ∗
B)√

α
+
(

1√
α − μ

+
1√
α

)
Δ.

But this is the claim as Δ(kerT ∗
A,kerT ∗

B) = Δ(ranTA, ranTB) , see (4.1). �
Let us state Theorem 4.9 especially for the case of (operator-valued) frames (where

HA = HB = H and Δ = 0).

COROLLARY 4.10. Let A be a B(H,K)-valued frame for H with lower frame
bound α and let B be a μ -perturbation of A , μ <

√
α . Then B is a B(H,K)-valued

frame for H and for the canonical duals Ã and B̃ of A and B , respectively, we have∥∥TÃ−TB̃
∥∥ � 2μ√

α(
√

α − μ)
.

REMARK 4.11. As mentioned above, the perturbation effect on the canonical du-
als has been considered before in [18] and [32]. However, our setting is more general
and the estimates are better. For example, [32, Theorem 4.1] states that if A1 and
A2 are B(H,K)-valued frames with frame bounds α j � β j ( j = 1,2) which are μ -
perturbations of each other, then

‖TÃ1
−TÃ2

‖ � α1 + β1 +
√

β1β2

α1α2
μ .

With α2 = (
√

α1− μ)2 and β2 = (
√

β1 + μ)2 (cf. (4.5)), this is

‖TÃ1
−TÃ2

‖ � (α1 +2β1 +
√

β1μ)μ
α1(

√
α1 − μ)2 .

It is now not hard to see that the bound in Corollary 4.10 is significantly better.
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In the following, we shall study the perturbation effect on the alternate duals. In
particular, we show that whenever A is an operator-valued frame sequence, Ã a dual
of A , and B a small perturbation of A , then there is a dual B̃ of B which is also a
small perturbation of Ã . We explicitly specify this dual.

THEOREM 4.12. Let A be a B(H,K)-valued frame sequence with lower frame
bound α and let B be a B(H,K)-valued μ -perturbation of A , μ <

√
α , such that

Δ := Δ(HA,HB) < 1 . Then B is an operator-valued frame sequence, and for every
L ∈ LA the dual

B̃L := B̃
(
PkerT ∗

BTÃ(L)|HB
)

of B is a λ -perturbation of Ã(L) , where

λ =
μ +(2

√
α − μ)Δ√

α(
√

α − μ)
+
(

μ√
α − μ

+ Δ
)
‖L‖. (4.7)

Proof. First note that by Lemma 3.2, B̃L is a dual of B . Using the notation from
Lemma 4.8, we have TÃ(L) = RPA . Setting M := PkerT ∗

BTÃ(L)|HB , we observe that

TB̃L
−TÃ(L) = TB(SB|HB)−1PB(T ∗

A−T ∗
B)RPAPB

+TB(SB|HB)−1PB(I−PA)PB−RPA(I−PB).

Hence, ∥∥∥TB̃L
−TÃ(L)

∥∥∥ � μ‖R‖√
α − μ

+
Δ√

α − μ
+‖R‖Δ � λ ,

since ‖R‖ � α−1/2 +‖L‖ . �

In the case of operator-valued frames, Theorem 4.12 reduces to the first statement
of the next theorem. In this case our choice of the dual of the perturbed frame turns out
to be perfect in terms of best approximations.

THEOREM 4.13. Let A be a B(H,K)-valued frame with lower frame bound α
and let B be a μ -perturbation of A , where μ <

√
α . Then B is an operator-valued

frame, and for each L ∈ LA the dual B̃L := B̃(PkerT ∗
BTÃ(L)) of B is a best approxima-

tion2 of Ã(L) in D(B) and a λ -perturbation of Ã(L) , where

λ =
μ√

α − μ

(
1√
α

+‖L‖
)

. (4.8)

Proof. We only have to show that B̃L is a best approximation of Ã(L) in D(B) .
Note that PA = PB = I in this case. We have to show that ‖TB̃L

−TÃ(L)‖ � ‖TB̃(M) −
2With respect to the norm ‖A‖ = ‖TA‖ on B(I,H,K) , see page 308.
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TÃ(L)‖ for all M ∈ LB . Put M0 := PkerT ∗
BR , where R = TAS−1

A +L . Then B̃L = B̃(M0)
and for arbitrary M ∈ LB we have

TB̃(M) −TÃ(L) =
(
TBS−1

B +M
)−R = PranTB

(
TBS−1

B −R
)
+PkerT ∗

B (M−R).

In particular, TB̃(M0) −TÃ(L) = PranTB
(
TBS−1

B −R
)
. Thus, for any x ∈H we have∥∥∥(TB̃(M) −TÃ(L)

)
x
∥∥∥2

�
∥∥PranTB

(
TBS−1

B −R
)
x
∥∥2

=
∥∥∥(TB̃L

−TÃ(L)

)
x
∥∥∥2

,

which proves the claim. �

REMARK 4.14. (a) Intriguingly, Theorem 4.12 shows that the canonical dual B̃
of B is in general not a best approximation of the canonical dual Ã of A in D(B) .
Indeed, in the operator-valued frame case it follows from the above proof that for x∈H
(and L = 0) we have∥∥(TB̃−TÃ

)
x
∥∥2 −

∥∥∥(TB̃L
−TÃ

)
x
∥∥∥2

=
∥∥∥PkerT ∗

BTAS−1
A x

∥∥∥2
.

For example, assume that I is finite, dimH < ∞ , and ranTA ∩ ranTB = {0} . Then
PkerT ∗

BTAS−1
A is injective. Thus, there exists c > 0 such that ‖PkerT ∗

BTAS−1
A x‖ � c‖x‖

for all x ∈H . This yields

‖TB̃−TÃ‖2 � ‖TB̃L
−TÃ‖2 + c2 > ‖TB̃L

−TÃ‖2.

Hence, in this case, B̃ is not a best approximation of Ã in D(B) .
(b) Let H be finite-dimensional and |I| be finite. Then (B(H,K),〈·, ·〉HS) is a

Hilbert space, TBS−1
B is perpendicular to LB , and the orthogonal projection onto LB

is given by (3.3) (see Remark 3.4). Hence, the orthogonal projection onto the affine
subspace D(B) = TBS−1

B +LB is given by

PD(B)X = TBS−1
B +PkerT ∗

BX , X ∈ B(H,K).

Therefore, the best approximation in the Hilbert space (B(H,K),〈·, ·〉HS) of TÃ(L) =

TAS−1
A +L in D(B) is

PD(B)TÃ(L) = TBS−1
B +PkerT ∗

BTÃ(L),

which is exactly the analysis operator belonging to the dual of B that we have chosen
in Theorem 4.13.

(c) Note that in all estimates above the upper frame bound of A does not play a
role.

(d) During our studies on the subject, we came across the paper [1] where the
authors prove the following: Given an operator-valued frame A , a dual Ã of A
and μ > 0 sufficiently small, then for every operator-valued frame B being a μ -
perturbation of A there exist C > 0 and a dual B̃ of B which is a Cμ -perturbation of
Ã . The main differences to Theorem 4.13 are as follows:
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• In [1] it is required that μ < ‖L‖−1 , whereas in Theorem 4.13, μ and L are
unrelated and L can be arbitrary.

• We explicitly provide the dual B̃ of B whereas in [1] it only appears in the proof:
it is defined via TB̃ := (TBS−1

B +L)(I +T ∗
BL)−1 (which exists as μ < ‖L‖−1 is

assumed and T ∗
AL = 0).

• We evaluate the quality of our choice of the dual B̃ by proving that it is a best
approximation of Ã(L) in D(B) . Such an analysis is not contained in [1].

• The constant C in [1] is hidden in the proof and depends on the frame bounds of
A , B , and Ã , and on ‖L‖ . Here, we explicitly specify C = λ which does only
depend on the lower frame bound of A and ‖L‖ .

Hence, Theorem 4.13 can be seen as an essential improvement of [1].

Theorem 4.12 shows that, given two operator-valued frame sequences A and B
which are close to each other, then for any dual Ã of A there exists a special dual B̃
of B which is close to Ã (in the frame situation as close as possible). The following
proposition now states that the mapping Ã �→ B̃ between D(A) and D(B) is one-to-
one and onto.

PROPOSITION 4.15. Let A be a B(H,K)-valued frame sequence with lower
frame bound α and let B be a μ -perturbation of A such that Δ(HA,HB) < 1 and
μ <

√
α/2 . Then the (affine) mapping

D(A) →D(B), Ã(L) �→ B̃
(
PkerT ∗

BTÃ(L)|HB
)

,

is bijective.

Proof. It obviously suffices to prove that the affine mapping LA → LB , L �→
PkerT ∗BTÃ(L)|HB , is bijective. Removing the constant affine part reduces the task to
showing that the linear map

R : LA →LB, RX := PkerT ∗
BX(PA|HB), X ∈ LA,

is bijective. For this, we observe that μ <
√

α/2 and Theorem 4.6 (ii) imply that
Δ(ranTA, ranTB) < 1. Thus, also Δ(kerT ∗

A,kerT ∗
B) < 1 (see (4.1)). Define an operator

Q by

Q : LB →LA, QY :=
(
PkerT ∗

B |kerT ∗
A
)−1

Y (PA|HB)−1 , Y ∈ LB.

Note that the inverses in the definiton of Q exist due to Lemma 4.3(ii) and that Y maps
HB to kerT ∗

B so that Q is well defined. Now, for X ∈ LA and Y ∈ LB we have

QRX =
(
PkerT ∗

B |kerT ∗
A
)−1

PkerT ∗
BX(PA|HB)(PA|HB)−1 = X ,
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as well as

RQY = PkerT ∗
B

(
PkerT ∗

B |kerT ∗
A
)−1

Y (PA|HB)−1 (PA|HB) = Y.

Hence, R−1 = Q exists. �

EXAMPLE 4.16. Let us consider the so-called Mercedes-Benz frame in R2 , which
is defined as

A =

{√
2
3
(0,1),

√
2
3

(√
3

2
,−1

2

)
,

√
2
3

(
−
√

3
2

,−1
2

)}
.

Let ε ∈ (0,
√

15/4) and let B be the set

B =

{√
2
3

(
ε,
√

1− ε2
)

,

√
2
3

(√
3

2
,−1

2

)
,

√
2
3

(
−
√

3
2

,−1
2

)}
.

The analysis operators TA,TB ∈ B(R2,R3) ∼= R
3×2 are given by

TA =
1√
6

⎛⎝ 0 2√
3 −1

−√
3 −1

⎞⎠ and TB =
1√
6

⎛⎝ 2ε 2
√

1− ε2√
3 −1

−√
3 −1

⎞⎠
and ‖TA − TB‖ = 2

√
δ/3, where δ = 1−√

1− ε2 . As ε <
√

15/4, we have that
2
√

δ/3 < 1, and since A is a tight frame for R2 with frame bound 1, it follows from
Theorem 4.6 that B is a frame for R2 with frame bounds (1− ε)2 , (1+ ε)2 .

Given any dual of A , we will compute explicitly the dual of B which is the best
approximation in the sense of Theorem 4.13. For this, recall that by Lemma 3.2, a dual
Ã(L) of A has the analysis operator TÃ(L) = TAS−1

A +L , where L ∈ R3×2 such that
L∗TA = 0. An easy calculation shows that any L with the latter property is of the form

L =

⎛⎝a b
a b
a b

⎞⎠ , a,b ∈ R.

Let us fix a,b ∈ R and thereby a dual Ã(L) for A . Then, by Theorem 4.13, the best
approximation to Ã(L) in D(B) is B̃L = B̃(PkerT ∗

BTÃ(L)) whose analysis operator is

TB̃L
= TBS−1

B +PkerT ∗
BTÃ(L) = TBS−1

B +(I−TBS−1
B T ∗

B)TÃ(L)

=
1
Δ

⎛⎜⎜⎜⎜⎜⎝
3(1+2t)a

(√
6+3b

)
(1+2t)

Δ√
2
+ p−(t)a −

√
3
2 Δ +

(√
2
3 +b

)
p−(t)

−Δ√
2
+ p+(t)a −

√
3
2 Δ +

(√
2
3 +b

)
p+(t)

⎞⎟⎟⎟⎟⎟⎠ ,
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where Δ = 9−4ε2 , t =
√

1− ε2 , and p±(t) = 6t2 +(3±2
√

3ε)t ±√
3ε .

As is easily seen, for each considered ε the best approximation of the canonical
dual of A (L = 0) in D(B) is not the canonical dual of B (cf. Remark 4.14). But let
us compute the dual of A having the canonical dual of B as its best approximation
in D(B) . One possibility to do this is to compute the first row of TBS−1

B and then to
compare with that of TB̃L

above to obtain a and b . The first row of TBS−1
B is given by

eT
1 TBS−1

B =
√

2/3(ε,t)S−1
B =

√
6

Δ
(ε, 3t) .

From here, we retrieve (a,b) =
√

2/3(1+2t)−1(ε,t −1) .

5. Perturbations of fusion frames

This section is devoted to studying the behavior of the canonical FF-dual (as de-
fined in (3.11)) under perturbations. We consider perturbations of fusion frames in the
same sense as of operator-valued frames. More precisely:

DEFINITION 5.1. Let μ > 0, and let W = ((Wi,ci))i∈I and V = ((Vi,di))i∈I be
two Bessel fusion sequences in H . We say that V is a μ -perturbation of W (and vice
versa) if (diPVi)i∈I is a μ -perturbation of (ciPWi)i∈I in the sense of Definition 4.1, that
is, when ‖TW −TV‖ � μ .

REMARK 5.2. (a) If V = ((Vi,di))i∈I is a μ -perturbation of W = ((Wi,ci))i∈I ,
then for each i ∈ I we have

‖ciPWi −diPVi‖ = ‖(T ∗
W −T∗

V)Ei‖ � μ . (5.1)

In particular, if ci = di = 1, i∈ I , then Δ(Wi,Vi) � μ for all i∈ I . Since ci = ‖ciPWi‖ �
‖ciPWi −diPVi‖+di and di � ‖ciPWi −diPVi‖+ ci , relation (5.1) implies

|ci −di| � ‖ciPWi −diPVi‖ � μ .

(b) In [6], a different notion of perturbation for fusion frames was considered (see
[6, Definition 5.1]) and it was proven that fusion frames are stable under these pertur-
bations (see [6, Proposition 5.8]). When W = ((Wi,ci))i∈I and V = ((Vi,ci))i∈I are
Bessel fusion sequences and the sequence of weights c := {ci}i∈I belongs to �2(I) ,
the notion of perturbation in [6] implies that V is a μ -perturbation of V for μ =
(λ1 + λ2 + ε)‖c‖�2(I) , with λ1,λ2 � 0 and ε > 0 being the perturbation parameters of
[6, Definition 5.1]. On the other hand, by (5.1), Definition 5.1 implies [6, Definition
5.1] only when the weights satisfy infi∈I ci > 0. However, in the finite-dimensional
setting, both notions of perturbation are equivalent.

In the following, we will show that the canonical FF-dual of a μ -perturbation of a
fusion frame W will be a Cμ -perturbation of the canonical FF-dual W̃ of W , where
C > 0 depends on μ and W . For this, we shall exploit the following two lemmas.
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LEMMA 5.3. Let P and Q be orthogonal projections in H and c,d > 0 . Then

‖P−Q‖ �
√

1
c2 +

1
d2 · ‖cP−dQ‖.

Proof. Let x ∈H , ‖x‖ = 1. Then we have

‖cPx−dQx‖2 = ‖cQPx+ c(I−Q)Px−dQx‖2

= ‖Q(cPx−dx)‖2 + c2‖(I−Q)Px‖2

� c2‖(I−Q)Px‖2.

Analogously, one obtains ‖cPx−dQx‖2 � d2‖(I−P)Qx‖2 . Thus, we have

‖(I−Q)P‖ � 1
c
‖cP−dQ‖ and ‖(I−P)Q‖ � 1

d
‖cP−dQ‖.

Hence, also ‖Q(I − P)‖ = ‖((I − P)Q)∗‖ = ‖(I − P)Q‖ � 1
d ‖cP− dQ‖ . Since, for

x ∈H ,

‖(P−Q)x‖2 = ‖QPx+(I−Q)Px−Qx‖2 = ‖Q(I−P)x‖2 +‖(I−Q)Px‖2,

the claim follows from the above inequalities. �

LEMMA 5.4. Let W ⊂H be a closed subspace and A ∈ B(H) boundedly invert-
ible. Then, for every λ > 0 , the operator

R(λ ) := APW + λA−∗PW⊥

where A−∗ = (A−1)∗ , is boundedly invertible and we have

PAW = R(λ )−∗PWA∗. (5.2)

Moreover, if c,d > 0 are such that c‖x‖ � ‖Ax‖ � d‖x‖ for x ∈H then

d−1 min{1,λ−1cd}‖x‖ � ‖R(λ )−1x‖ � c−1 max{1,λ−1cd}‖x‖. (5.3)

As a consequence, we obtain

d−1‖PWA∗x‖ � ‖PAWx‖ � c−1‖PWA∗x‖. (5.4)

Proof. First of all, we note that (AW )⊥ = A−∗W⊥ . From this, it immediately
follows that R(λ ) is boundedly invertible and that PAWR(λ ) = APW . The latter implies
PAW = APWR(λ )−1 . Adjoining this gives (5.2). For the proof of (5.3) let x ∈H . Then
we obtain

‖R(λ )x‖2 = ‖APWx‖2 + λ 2‖A−∗PW⊥x‖2 � c2‖PWx‖2 + λ 2d−2‖PW⊥x‖2

� min{c2,λ 2d−2}‖x‖2,
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as well as

‖R(λ )x‖2 = ‖APWx‖2 + λ 2‖A−∗PW⊥x‖2 � d2‖PWx‖2 + λ 2c−2‖PW⊥x‖2

� max{d2,λ 2c−2}‖x‖2.

This implies (5.3). Setting λ = cd and using (5.2) yields (5.4). �
We briefly remark that Lemma 5.4 immediately implies the following corollary

which was already proven in [16, Theorem 2.4].

COROLLARY 5.5. Let ((Wi,ci))i∈I be a fusion frame for H with bounds α � β
and let A ∈ B(H) be boundedly invertible. Then also ((AWi,ci))i∈I is a fusion frame
for H with bounds αγ−2 � β γ2 , where γ = ‖A‖‖A−1‖ .

We are now ready to prove our main result in this section.

THEOREM 5.6. Let W = ((Wi,ci))i∈I be a fusion frame for H with fusion frame
bounds α � β and let V = ((Vi,di))i∈I be a μ -perturbation of W , where 0 < μ <

√
α .

If both sequences (ci)i∈I and (di)i∈I are bounded from below by some τ > 0 then the
canonical FF-dual Ṽ of V , is a Cμ -perturbation of the canonical FF-dual W̃ of W ,
where

C =
c2 +d2

α

[
1+(α−1 + β )2

√
α

(√
2

τ
+ cd2

)
+d2 (1+ c2d2)]

with c := 2
√

β + μ and d := (
√

α − μ)−1 .

Proof. For i ∈ I we define the operators

RWi := S−1
W PWi +SWPW⊥

i
and RVi := S−1

V PVi +SVPV⊥
i

.

By Lemma 5.4, these are boundedly invertible and we have

PS−1
WWi

= R−∗
Wi

PWiS
−1
W and PS−1

V Vi
= R−∗

Vi
PViS

−1
V .

Furthermore,

‖R−1
Wi

‖ � max{β ,α−1} � α−1 + β and ‖R−1
Vi

‖ � max{c2,d2} � c2 +d2.

Put ĉi := ‖S−1
W |Wi‖ci and d̂i := ‖S−1

V |Vi‖di . Then ĉi � α−1ci and d̂i � (
√

α−μ)−2di =
d2di . For x ∈H define

Δi(x) :=
∥∥∥ĉiPS−1

WWi
x− d̂iPS−1

V Vi
x
∥∥∥=

∥∥∥ĉiR
−∗
Wi

PWiS
−1
W x− d̂iR

−∗
Vi

PViS
−1
V x

∥∥∥ .

Since ‖TW̃x−TṼx‖2 = ∑i∈I Δ2
i (x) , it is our aim to estimate Δi(x) . We have

Δi(x) �
∥∥∥ĉi(R−∗

Wi
−R−∗

Vi
)PWiS

−1
W x

∥∥∥+
∥∥∥R−∗

Vi

(
ĉiPWiS

−1
W x− d̂iPViS

−1
V x

)∥∥∥
�
∥∥∥R−1

Wi
−R−1

Vi

∥∥∥α−1ci‖PWiS
−1
W x‖+

∥∥∥R−1
Vi

∥∥∥∥∥ĉiPWiS
−1
W x− d̂iPViS

−1
W x

∥∥
+
∥∥∥R−1

Vi

∥∥∥d2di
∥∥PVi

(
S−1
W −S−1

V
)
x
∥∥ .
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Since R−1
Wi

−R−1
Vi

= R−1
Wi

(RVi −RWi)R
−1
Vi

and ‖R−1
Vi

‖ � c2 +d2 by Lemma 5.4, with

Δ(1)
i := α−1

∥∥∥R−1
Wi

∥∥∥‖RWi −RVi‖ and Δ(2)
i :=

∣∣∥∥S−1
W |Wi

∥∥−∥∥S−1
V |Vi

∥∥∣∣
we obtain

Δi(x)
c2 +d2 � Δ(1)

i ci
∥∥PWiS

−1
W x

∥∥+d2di
∥∥PVi

(
S−1
W −S−1

V
)
x
∥∥+ Δ(2)

i ci
∥∥PWiS

−1
W x

∥∥
+
∥∥S−1

V |Vi
∥∥∥∥(ciPWi −diPVi)S−1

W x
∥∥

�
(

Δ(1)
i + Δ(2)

i

)
ci
∥∥PWiS

−1
W x

∥∥+d2di
∥∥PVi

(
S−1
W −S−1

V
)
x
∥∥

+d2
∥∥(ciPWi −diPVi)S−1

W x
∥∥ .

Let us start with estimating Δ(2)
i . For this, observe that S−1

W −S−1
V = S−1

V (SV −SW)S−1
W

and SW −SV = T ∗
W(TW −TV)+ (T ∗

W −T ∗
V)TV . Hence,∥∥S−1

W −S−1
V
∥∥� 2

√
β + μ

α(
√

α − μ)2
μ .

From this, ‖S−1
W |Wi‖ = ‖S−1

W PWi‖ , Lemma 5.3, and Remark 5.2 it thus follows that

Δ(2)
i =

∣∣∥∥S−1
W PWi

∥∥−∥∥S−1
V PVi

∥∥∣∣ �
∥∥S−1

W PWi −S−1
V PVi

∥∥
�
∥∥S−1

W (PWi −PVi)
∥∥+

∥∥S−1
W −S−1

V
∥∥

� α−1

√
1

c2
i

+
1

d2
i

‖ciPWi −diPVi‖+
(2
√

β + μ)μ
α(

√
α − μ)2

�
√

2μ
τα

+
(2
√

β + μ)μ
α(

√
α − μ)2

= Mμ ,

where

M =
1
α

(√
2

τ
+

2
√

β + μ
(
√

α − μ)2

)
=

1
α

(√
2

τ
+ cd2

)
.

In order to estimate Δ(1)
i , we observe that

‖RWi −RVi‖ =
∥∥∥S−1

W PWi +SWPW⊥
i
−S−1

V PVi −SVPV⊥
i

∥∥∥� Mμ +
∥∥∥SWPW⊥

i
−SVPV⊥

i

∥∥∥
� Mμ +

∥∥∥SW (
PW⊥

i
−PV⊥

i

)∥∥∥+
∥∥∥(SW −SV)PV⊥

i

∥∥∥
�
(

1
α

(√
2

τ
+ cd2

)
+

√
2β
τ

+ c

)
μ

=
(
α−1 + β

)(√
2

τ
+ cd2 · 1+ αd−2

1+ αβ

)
μ

�
(
α−1 + β

)(√
2

τ
+ cd2

)
μ = α

(
α−1 + β

)
Mμ ,
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where in the last inequality we have used that d−2 � β . Thus, we have

Δ(1)
i + Δ(2)

i �
(
α−1 + β

)2
Mμ +Mμ =

(
1+

(
α−1 + β

)2)
Mμ .

Now, define the functionals

ri(x) :=
(
1+

(
α−1 + β

)2)
Mμci

∥∥PWiS
−1
W x

∥∥ ,

si(x) := d2di
∥∥PVi

(
S−1
W −S−1

V
)
x
∥∥ ,

ti(x) := d2
∥∥(ciPWi −diPVi)S−1

W x
∥∥

as well as

R(x) :=
√

∑
i∈I

r2
i (x), S(x) :=

√
∑
i∈I

s2
i (x), and T (x) :=

√
∑
i∈I

t2i (x).

Then (c2 + d2)−1Δi(x) � ri(x)+ si(x)+ ti(x) and, by applying the triangle inequality
on �2(I) , one obtains

1
(c2 +d2)2 ∑

i∈I
Δ2

i (x) � ∑
i∈I

(ri(x)+ si(x)+ ti(x))
2 � (R(x)+S(x)+T(x))2 .

We have (see Remark 3.7)

R2(x) =
(
1+

(
α−1 + β

)2)2
M2μ2

∥∥TWS−1
W x

∥∥2

�
(

1+
(
α−1 + β

)2
√

α

)2

M2μ2‖x‖2,

S2(x) = d4
∥∥TV (S−1

W −S−1
V
)
x
∥∥2

� α−2c4d8μ2‖x‖2,

T 2(x) = d4
∥∥(TW −TV)S−1

W x
∥∥2

� α−2d4μ2‖x‖2.

That is,

1
c2 +d2

√
∑
i∈I

Δ2
i (x) �

[
1+

(
α−1 + β

)2
√

α
M + α−1c2d4 + α−1d2

]
μ‖x‖.

This shows that ‖TW̃ −TṼ‖ � Cμ . �
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