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ON GENERALIZED DERIVATION IN BANACH SPACES
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Abstract. In this paper we generalized two important results of B. P. Duggal [4, Theorem 2.1 and
2.6], and other results are also given. If B(X ) is the algebra of all bounded linear operators on a
complex Banach space X and J (X )={x∈B(X ) : x = x1+ix2, where x1 and x2 are hermitian} ,
two results of orthogonality in the sense of Birkhoff are shown ‖a+b‖ � ‖a+b− [x∗,x]‖ and
‖ab‖ � ‖ab− [xx∗ ,x∗x]‖ for all x ∈ J (X )∩ δ−1

a,b (0) . As application of our first result the
William’s theorem “Any hermitian element is finite element” is also established with a shorter
and simpler proof.

1. Introduction

Let X be a separable infinite dimensional complex Banach space, and B(X )
denote the algebra of all bounded linear operators on X . In general we define the
generalized derivation on B(X ) by δa,bx = ax− xb, the particular case δax = δa,ax =
ax− xa is the internal derivation induced by a ∈ B(X ) , we define also the elementary
operator Δa,bx = axb− x for any a,b and x in B(X ) .

Evidently if a and b are two elements in B(X ) such that a = a1 + ia2, b =
b1 + ib2 then δa,b = δa1,b1 + iδa2,b2 .

One consider J(X ) the algebra of all bounded linear operators x which has the
complex representation x = x1 + ix2 , where x1 and x2 are hermitian, it’s well to recal
that h ∈ B(X ) is hermitian if the algebra numerical range

V (B(X ),h) = { f (h) : f ∈ B(X )∗, f (I) = 1 = ‖ f‖}

is a subset of the set of reals [Bonsall 3, page 8].
It’s easy to prove that each x ∈ J (X ) has a unique complex representation.
We may define also the continuous linear involution on J (X ) the mapping

x −→ x∗ by x∗ = x1− ix2,∀x ∈ J (X ) where x = x1 + ix2.

Our main results in this paper are two inequalities which give us the notion of orthogo-
nality in sense of Birkhoff

‖a+b‖� ‖a+b− [x∗,x]‖
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and
‖ab‖� ‖ab− [xx∗,x∗x]‖,

forall x ∈ J (X )∩δ−1
a,b (0) , where [x,y] = xy− yx,∀x,y ∈ B(X ) .

Orthogonality in the sense of Birkhoff is defined as follows x is orthogonal to y
in a complex Banach space X if for all complex λ there holds

‖x‖ � ‖x+ λy‖,
this definition has a natural geometric interpretation. Namely, x is orthogonal to y if
and only if the complex line {x+λy;λ is a complex number} is disjoint with the open
ball K(0,‖x‖), i.e. if and only if this complex line is a tangent line to K(0,‖x‖). Note
that if x is orthogonal to y , then y need not be orthogonal to x . If X is a Hilbert space,
then ‖x‖ � ‖x+ λy‖, implies that 〈x,y〉 = 0, i.e. orthogonality in the usual sense.

A simple application of the first result gives us a very nice, simpler and shorter
proof of the William’s theorem “Any hermitian element in B(X ) is finite element”,
and in the theorem 3.5 we give a new invertibility criterion for the elements of the
range of generalized derivation, which gives us a very good applications of our results.

2. Preliminaries

THEOREM 2.1. (12, Corollary 8) Let {Tn} be a sequence of commuting normal
operators on a complex Banach space X . Then

(
∞⋂

k=1

N(Tk))⊥
∞

∑
k=1

R(Tk).

If the space X is reflexive, then

X = (
∞⋂

k=1

N(Tk))⊕⊥
∞

∑
k=1

R(Tk),

where N(Tk) and R(Tk) are respectively the kernel and range of Tk.

THEOREM 2.2. (B. P. Duggal 4, Th 2.1) If J (X ) is an algebra and δ−1
a (0) ⊆

δ−1
a∗ (0) for some a ∈ J (X ) , then ‖a‖ � ‖a− [x∗,x]‖ , for all x ∈ J (X )∩δ−1

a (0) .

THEOREM 2.3. (B. P. Duggal 4, Th 2.6) Assume that 
−1
a (0) ⊆
−1

a∗ (0) . If a ∈
B(H) (resp. a ∈ Cp the Schatten p-classes), then ‖a‖ � ‖a− [|x|, |x∗|]‖ for all x ∈
B(H)∩
−1

a (0) (resp. ‖a‖p � ‖a− [|x|, |x∗|]‖p for all x ∈ Cp ∩
−1
a (0)).

3. Main results

Let X be a complex Banach space, B(X ) denote the algebra of all bounded
linear operators on X , a,b ∈ B(X ), and {a}′,{b}′ the commutant of a , and b re-
spectively.

{a}′ = {x ∈ B(X ) : ax = xa}
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and
{b}′ = {x ∈ B(X ) : bx = xb}.

THEOREM 3.1. If J (X ) is a sub algebra of B(X ) and if
(i) {a,b} ⊆ J (X ) ,
(ii) δ−1

a,b (0) ⊆ δ−1
a∗,b∗ (0) ,

(iii) x ∈ J (X )∩δ−1
a,b (0)∩δ−1

a (0)∩δ−1
b (0) ,

then
(iv) ‖a+b‖� ‖a+b− [x∗,x]‖ .

REMARK 3.2. The result (iv) also holds if the condition (iii) is replaced by
(iii)’ x1,x2 ∈ δ−1

(b−a),(a−b) (0) , where x = x1 + ix2.

Proof. Let x ∈ J (X )∩δ−1
a,b (0) , then δa∗,b∗ (x) = δ ∗

a,b (x) = 0.
We have

δa,b (x) = 0 ⇐⇒ (a+b)x− x(a+b)+ xa−bx = 0
⇐⇒ δx(a+b)+ δb,a(x) = 0,

hence
δx1 (a+b)+ iδx2 (a+b)+ δb,a (x) = 0. (3.1)

δ ∗
a,b (x) = 0 ⇐⇒ a∗x− xb∗ = 0

⇐⇒ ax∗ − x∗b = 0

⇐⇒ −(bx∗ − x∗a) = 0

⇐⇒ δa,b (x∗) = 0,

hence by (3.1)

δ ∗
a,b (x) = 0 ⇐⇒ δx∗ (a+b)+ δa,b (x∗) = 0

⇐⇒ δx1 (a+b)− iδx2 (a+b)+ δa,b (x∗) = 0. (3.2)

If x∈ δ−1
a (0)∩δ−1

b (0) then δb,a (x) = δa,b (x∗) = 0, hence (3.1) and (3.2) become

{
δx1 (a+b)+ iδx2 (a+b) = 0
δx1 (a+b)− iδx2 (a+b) = 0

i.e. δx1 (a+b) = δx2 (a+b) = 0.
It follows by [11, corollary 8] that

‖a+b‖� min{‖a+b− δx1 (y)‖ ,‖a+b− δx2 (y)‖}

for all y ∈ J (X ) . By choosing y = 2ix2 in δx1 (y) we have δx1 (y) = [x∗,x] , then

‖a+b‖� ‖a+b− [x∗,x]‖ .
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If the condition (iii) is replaced by (iii)’ i.e x1,x2 ∈ δ−1
(b−a),(a−b) (0) , then

δb,a (x)+ δa,b (x∗) = δb,a (x1)+ δa,b (x1)+ i
[
δb,a (x2)− δa,b (x2)

]
= bx1− x1a+ax1− x1b+ i [bx2− x2a−ax2 + x2b]
= (a+b)x1− x1 (a+b)+ i [(b−a)x2− x2 (a−b)]
= −δx1 (a+b)+ iδ(b−a),(a−b) (x2)
= −δx1 (a+b),

and

δb,a (x)− δa,b (x∗) = δ(b−a),(a−b) (x1)− iδx2 (a+b)
= −iδx2 (a+b).

Hence (1)+ (2) and (1) – (2) give
{

δx1 (a+b) = 0
δx2 (a+b) = 0

then
‖a+b‖� ‖a+b− [x∗,x]‖ . �

COROLLARY 3.3. For a = b = 1
2e where e is the identity we have

‖[x∗,x]− e‖� 1 for all x ∈ J (X ) ,

and precisely for all x,y ∈ J (X ) (x = x1 + ix2 )

1 � min{‖e− δx1 (y)‖ ,‖e− δx2 (y)‖} .

It result that if h is a hermitian element of J (X ) , then

‖[h,g]− e‖ � 1

for all g ∈ J (X ) .

REMARK 3.4. The last corollary give a shorter and simpler proof of William’s
result: Any hermitian element is finite element in the William’s sense.

LEMMA 3.5. (Bonsall and Duncan [3]) If E is a complex banach algebra, then
L ∈ B(E) is hermitian if and only if ‖eitL‖ � 1.

THEOREM 3.6. Let a,b∈ J (X ) , where J (X ) is a multiplicative sub algebra of
B(X ) , if 
−1

a,b (0) ⊆
−1
a∗,b∗ (0) then, for all x ∈ 
−1

a,b (0) such that x commutes with
a and b, we have

‖ab‖ � min{‖ab− [x∗x,xx∗]‖ ,‖ab+[x∗x,xx∗]‖} .
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Proof. Let x ∈
−1
a,b (0) , then axb = x and a∗xb∗ = x, i.e. ax∗b = x∗ , hence

{
x∗x = a∗xb∗axb = abx∗xab
xx∗ = axba∗xb∗ = abxx∗ab

i.e. x∗x,xx∗ ∈ 
−1
ab (0) , by appliying [4, theorem 2.6] we have

‖ab‖ � ‖ab− [x∗x,xx∗]‖

and
‖ab‖� ‖ab− [xx∗,x∗x]‖,

then
‖ab‖ � min{‖ab− [x∗x,xx∗]‖ ,‖ab+[x∗x,xx∗]‖} .

If X be a separable infinite dimensional complex Hilbert space, GL(X ) denote
the set of all invertible elements in B(X ) , we have the nice result. �

THEOREM 3.7. Let a,b ∈ B(X ) , then the following statements are equivalent
(i) The equation ax− xb = e, where e is the identity of B(X ) , admits a solution

(i.e. e ∈ R
(
δa,b

)
).

(ii) There exists an invertible operator w in R
(
δa,b

)
commutes with a or b.

(iii) R
(
δa,b

) ⊃ GL(X )∩ [{a}′ ∪{b}′] .

Proof. (iii) =⇒ (ii) is evident since GL(X )∩ [{a}′ ∪{b}′] �= ø, because e ∈
GL(X )∩ [{a}′ ∪{b}′] .

(ii) =⇒ (i) Let w∈GL(X )∩[{a}′ ∪{b}′] and x∈B(X ) such that ax−xb= w.

Suppose that w ∈ {a}′ and let y = w−1x , then

ay− yb = aw−1x−w−1xb = w−1 (ax− xb) = w−1w = e.

(i)=⇒ (iii) Let x∈B(X ) such that ax−xb=e and let w∈GL(X )∩[{A}′ ∪{B}′] ,

suppose that w ∈ {b}′ .
Let y = xw , then

ay− yb = axw− xwb = (ax− xb)w = w,

hence w ∈ R
(
δa,b

)
. �
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