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LIFTING COMMUTING 3-ISOMETRIC TUPLES

BENJAMIN RUSSO

(Communicated by T. Ando)

Abstract. Anoperator T is called a 3-isometry if there exists operators By (7*,T) and B»(T*,T)
such that
O(n) =T™T" = 14nB(T*,T) +n*By(T*,T)

for all natural numbers n. An operator J is a Jordan operator of order 2 if J =U + N where
U is unitary, N is nilpotent order 2, and U and N commute. An easy computation shows that
J is a 3-isometry and that the restriction of J to an invariant subspace is also a 3-isometry.
Those 3-isometries which are the restriction of a Jordan operator to an invariant subspace can
be identified, using the theory of completely positive maps, in terms of a positivity condition on
the operator pencil Q(s). In this article, we establish the analogous result in the multi-variable
setting and show, by modifying an example of Choi, that an additional hypothesis is necessary.
Lastly we discuss the joint spectrum of sub-Jordan tuples and derive results for 3-symmetric
operators as a corollary.

1. Introduction

Let H denote a complex Hilbert space and B(H) the bounded linear operators on
H. An operator T on H is a 3-isometry if

TS3T3 3727 +3T*T — 1 =0.

Equivalently an operator T is a 3-isometry if there exist operators By (T*,T), Bo(T*,T)
€ B(H) such that,
T*"T" = [+ nB(T*,T) +n*By(T*,T) (1)

for positive integers n. Similarly, 7 € B(H) is a 3-symmetric operator if
exp(—is.T*)exp(is.7) =1+ sB\(T*, T )+ s*Bo(T*,.T) 2)

for some B (7 *,.7), Bo(7*,7) € B(H) and all real numbers s. In particular, if 7
is a 3-symmetric operator, then 7 = exp(i.7) is a 3-isometric operator.

An operator J is s-Jordan (of order 2) if J =S+ N, where S and N commute,
N is nilpotent order two, and S is self-adjoint. A calcuation shows J is an example
of a 3-symmetric operator. Similarly J is u-Jordan (of order 2) if J =U + N, where
U and N commmute, U is unitary, and N is nilpotent of order two. One can check
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that u-Jordan operators are 3-isometric and if J is an s-Jordan operator, then exp(iJ)
is u-Jordan. For the remainder of the paper we will refer to u-Jordan and s-Jordan
operators as simply Jordan when it is clear from context which type is being discussed.

An operator T on a Hilbert space H has an extension or lifts to an operator J on a
Hilbert space if there is an isometry V : H — K such that VT =JV . If J is 3-isometric
(resp. 3-symmetric) and T lifts to J, then T is 3-isometric (resp. 3-symmetric) since,
in that case,

T*}’ZT}’Z — V*J*}’ZJ"V

and the right hand side is quadratic in 7.

THEOREM 1. 7 € B(H) is a 3-symmetric operator if and only if T has an ex-
tension to an operator of the form
ALl
7=(0%)

where A is self-adjoint and A € C.

Agler established Theorem 1 in the general case in [1]. A preliminary version of
the result was initially proven by Helton in [7].

The notation A > O indicates that the operator A on Hilbert space is positive
semidefinite. Given ¢ > 0, let §, denote the class of 3-isometric operators 7" such
that

. 1
O(T,s) :==I1+sB\(T*,T)+s*By(T*,T) — —B2(T*,T) = 0
C
forall s € R.

THEOREM 2. [8] (3-isometric lifting theorem) An operator T on a Hilbert space
H is in the class §. if and only if there is a unitary operator U on a Hilbert space K
and an isometry V : H — K ® K such that VT = JV, where

UcU
/= ( <l ) |
Moreover, if T is invertible, then, VT ~' = J~1V, the spectrum of T is a subset of the
unit circle, and U can be chosen so that 6(T) = o (U) = o(J).

By use of a functional calculus argument Theorem 1 can be recovered from Theo-
rem 2.

In the case of tuples of 3-symmetric and 3-isometric operators, the picture is not
as clear. Ball and Helton [3] first considered a natural simplification of the problem.
Let

{Jn = Sn + Nn}

be a finite collection of commuting Jordan operators such that the nilpotent parts have
the following relation,
NiN; =0
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for all i and j and the S, are self-adjoint. We will call this a commuting Jordan family.
Let {7,} be a finite collection of commuting 3-symmetric operators that satisfy the
following,

e TX e T* e iq j ]
Q(S) —e is T e is1 T} el.SlTl ”'elka}( — 2 le,...,jks{l "'Sik'

CJUedi
Jitetr<2

We will call this a commuting family of 3-symmetric operators.

CONJECTURE 1. [3] A collection of operators {T,} can be extended to a com-
muting Jordan family {J,} if and only if {T,} is a commuting family of 3-symmetric
operators.

Ball and Helton established this result using disconjugacy theory for multivariable
Sturm-Liouville operators for tuples 7 of 3-symmetric operators with a cyclic vector
and satisfying a certain smoothness hypothesis. In this paper we show that an analog of
this conjecture for tuples of 3-isometric operators is false and give a counter-example.

DEFINITION 1. A commuting 2-tuple of operators T = (T}, T») is a 2-tuple of 3-
isometries if there exists bounded operators B; ; for 0 <i+ j <2 (and i,j > 0) such
that

Or(n.m) =T"T"TITY = Y, min/By,
0<i+j<2

for all (n,m) € N>. We will call Q7 the associated quadratic pencil.

DEFINITION 2. Fix positive real numbers ¢,d . A 2-tuple of commuting 3-isometries
T =(T;,T>) is in the class S(ea) if

1
Bpr =0

Or(@.B) = 0r(0.B) ~ 5B20— 3

forall (a,B) € R?.

The following definition identifies a canonical class of model operators for the
class 7. 4.

DEFINITION 3. Given ¢,d > 0 a 2-tuple J = (J;,J») is in the class J, 4 if

U1 CU1 0 U2 0 dU2
h=lo0o U o], KL=|l0U, 0 |. (3)
0 0 U 00 U,

for some unitary operators Uy, U, that commute.
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Given J € J. 4, compute, for non-negative integers m,n,

Ut ncU} 0 Uy 0 mdUy
Ji=( 0 Uy 0|, o= 0US O
0 0 Uy 0o o uy
and
1 nc md
LI = | ne n*4+1 nemd | . 4)

md nemd m*d?+1
It follows that J. 4 C Fcq-

THEOREM 3. A 3-isometric 2-tuple T = (T, T») in the class §q lifts to a 2-tuple
J = (J1,J2) inthe class J.q if and only if the quadratic pencil Or (e, B) factors in the
form,
QT(a,ﬁ) = (Vo +aVi+ ﬂVQ)*(V() +aVy+ ﬁVQ)

for some operators Vo, V| and V, in B(H).

Theorem 3 is proved in Section 2.

The proof of the first part of the following remark for 3-symmetric operators ap-
pears in [3]. The proof of the result for 3-isometries is similar. The proof of the second
part of the remark can be found in Section 3.

REMARK 1. If H is finite dimensional and T € §, 4, then T is a pair of commut-
ing u-Jordan operators and the sufficient condition of Theorem 3 is easily verified. Oth-
erwise H is infinite dimensional and Qr factors in the form above with V; : H — 7,
where 77 is an auxiliary Hilbert space, if and only if it factors with V; € B(H).

Section 3 exhibits, by construction, a 3-isometric 2-tuple 7 in the class §. 4 for
which QT does not factor (in the form given in Theorem 3). We show that this 7" does
not lift to a J € J.4 and further that 7' does not lift to any Jordan operator in any class
Jzq forany ¢ and d. In this sense the 3-isometric analog of the conjecture of Ball-
Helton is false. In Section 4 we show, by a functional calculus argument, that a 2-tuple
of 3-symmetric operators lift if and only if its associated operator polynomial factors.

2. Extensions of theorems

We begin by extending the results found in [8] to 2-tuples of invertible commuting
3-isometries in § 4. While the proofs only deal with 2-tuples, the extension to general
n-tuples is apparent.

A subspace A of B(H) is unital if it contains the identity and is self-adjoint if
T € A implies T* € A. For a given N € N, let My(C) be the space of N x N matrices
with complex entries, denoted My when the context is clear. Moreover, we denote with
My (A) the space of N x N matrices with entries from A. Note My (A) can be identified
with a subspace of the bounded operators on H M=H& --®&H (N -copies) as well as
with My ®A.
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DEFINITION 4. Suppose H and K are Hilbert spaces and A is a unital self-adjoint
subspace of B(H). A mapping p : A — B(K) is called positive if it maps positive
elements to positive elements i.e. p(a) >0 if a > 0. A mapping p : A — B(K) is
called completely positive if the mapping I, @ p : M,, ® A — M,, ® B(K) is positive for
all n e N.

DEFINITION 5. Let n, N and M be given positive integers. An hereditary poly-
nomial p(x,y) (in two variables) of size n and bi-degree at most (M,N) in invertible
variables x1,v1,x2, and y, such that y; and y, commute and x; and x, commute, is a
polynomial of the form

MN

p(xL,yx2, ) = Y, py,aﬁ,sygy‘f%fxg. (5)
8, y=—M
o,f=—N

Here the sum is finite and py 4 g 5 are n x n matrices over C. Again, let &, be the
collection of 2-variable hereditary polynomials of size n and let &2 = (£,), denote
the collection of all hereditary polynomials.

Given a pair of commuting invertible operators 77 and 7> on the Hilbert space H,
let
HA(T1,Ty) = span{ Ty T} *TP T - v, 08,8 € 7). (6)

Note that .7#(T1,T>) is a unital self-adjoint subspace of B(H ). Recall that the Gelfand-
Naimark-Segal construction realizes an abstract C* -algebra as a subalgebra (unital and
self-adjoint) of some B(H).

THEOREM 4. (Stinespring) Let </ be a unital C*-algebra and ¢ : o/ — B(H)
a linear map. If ¢ is completely positive, then there exists a Hilbert space ¥ , a
unital *-homomorphism w : o/ — B(.%"), and a bounded operator V : H — & with
lo(D = V][> such thar
¢(a) =V*r(a)V.

‘We now present a version of the Arveson Extension Theorem for 2-tuples of oper-
ators.

THEOREM 5. (Arveson Extension Theorem) Suppose that Ty and T, are invert-
ible operators on a Hilbert space H and Jy and J, are invertible operators on a Hilbert
space K. There is a Hilbert space ¥, a representation T :B(K) — B(#'), and an
isometry V : H — K such that VTlﬁ sz = (J1)Br(J)?V forall B,y € Z if and only if
the mapping p : 7 (J1, J») — (11, T5) is completely positive.

Proof. Suppose the mapping p : € (Ji, Jo) — J€(T1, Tp) determined by
p (11T gP J8) = T;VTr*TP T3 is well defined and completely positive. A seminal
result of Arveson implies that p extends to a completely positive map, still denoted by
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p,on B(H). In this case, by Theorem 4, there is a Hilbert space ¢, a representation
m:B(H) — B(#') and an isometry V : H — .# such that

Vi b 2y = p 3 reab iy = et .

Since 7 is an algebraic homomorphism which preserves the involution,
V(L) () O n ()P () = T TroTP T 7)
For each y,B € Z,
V(L) Ta(h) P r)P )V = TP TP Ty
=V (L) () Pvvir)Pr(h)V
by Equation (7). Hence
V(L) () Pa()Pr()V —Via(h) e Pvvir()Br(h)V =o.

Since I —VV* is a projection and hence idempotent,

VEr(h) ()P — v r)Pr()V =o.

Therefore
(I—VvV)r(J)Pr(h)V =0.
Consequently
()P r(hL)V =vVvin()Pr(n)V.
Again by Equation (7),

VTPl = n(1)Pr(n)v.

Since the converse is not needed for any of our theorems, we omit the straightfor-
ward proof. [

In [8], a strong variant of Theorem 5 was proven using Agler’s symmetrization
technique.

DEFINITION 6. Given a two-variable hereditary polynomial p(x;,x2,y1,y2) asin
Equation 5, define its symmetrization p® by

P =Y 0 o pyhyafal (8)
Similarly, let
ATy, T) = span{ P T7oT2TP - 0B e ). 9)

In order to prove a strong variant of Theorem (5) we will need several lemmas. They
are presented below.
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DEFINITION 7. (Pairwise rotationally symmetric) A pair of operators S; and S,
is pairwise rotationally symmetric if for all t € R?, t = (t1,t,), there exists a unitary
operator U, such that

eS| = U'S U, and ™8, = US> U,
EXAMPLE 1. Define on .#%(T?) the operators
7y LHT?) — LX) Zif(z1,22) = 21.f(z1,22) (10)

and
Zy: LHT?) — LHT?) Zof(z1,22) = 22f(21,22)- an

Given 1, define U; on Z%(T?) by U f(&1,%) = flexplit )1, exp(ity){p). A calcu-
lation shows U;Z; = exp(itj)Z;U;. Hence the pair (Z;,Z,) is pairwise rotationally
symmetric.

LEMMA 1. If S| and S, are pairwise rotationally symmetric operators and T
and T, are operators on a common Hilbert space, then T) =Ty ®S) and Th =Th ® S
are pairwise rotationally symmetric.

Proof. Since S and S, are pairwise rotationally symmetric, for each 1 = (11,5,) €
R? there exists a unitary operator U; such that

e"S =US|U, and ™S, =US:U;.

Since " T; =T} @ e Sy and 2T =T ®e™8;, to see that Ti and T are pairwise
rotationally symmetric, consider the operators U, = (I® U;). O

Givenapair T = (T}, 1), let T =Z®T = (2 ®T,Z, ® T») , where Z is the tuple
in example 1. Thus 7 is rotationally symmetric. It is also straightforward to verify, if
T € Fea. thensois T and similarly if 7 € 3.4, thensois 7.

LEMMA 2. If J| and J, are pairwise rotationally symmetric, g € & and q(J1,J>)
=0, then ¢*(J1,J2) = 0.

Let Ty and T, be given invertible operators on the Hilbert space H and let W :
H — H® Z(T?) denote the isometry Wh=h® 1. If P € P, then

P, T, T, 1) = (Lo W) P(T, T1 " T, T (L @ W).
We will occasionally use the notation p(T*,T) for p(T5",T;*,T1,T2).
Proof. For each t = (t1,t) € R? there is a unitary operator U, such that
eJy =UNU, and €™, = U LU,
It follows that

gle ™75, e M Jf e Iy e ) = (L@ Uy q(J5, 07, J1,02) (1@ Up) = 0.
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Hence,
) 1 2n /2w . ) ) )
qs(J;’JT’Jl’Jz) = WA A q(e*lfz‘];’eflll‘]ik’eltljl,eztz‘]z) dt t 0.
To prove the second assertion, let p € &) and compute
<P(T2*,Tl*,fl,f2)Wh, Wf>
=<P(T2*,fl*,fl,fz)h® L, f® 1>
— Z <p)/,oc,ﬁ,3T1ﬁ T25h®eit26€itlﬁ, TlaT2Yf®eit2yeit1a>
v.e.B.8
=2 Ppaaply TTTy h, f
= <plY(T2*7T1*7T17T2)h7 f> .

Applying this result entry-wise, we get the result for P. [l

LEMMA 3. Suppose Ty, T, are invertible commuting operators on a Hilbert space
H and J\ and J, are invertible operators on a Hilbert space K. If J| and J, are pair-
wise rotationally symmetric and the mapping p : 7;(J1,J2) — (11, T>) determined
by p(J5 *Jf‘*Jf‘Jé3 )= Tzl3 *Tl‘x*Tf‘Tzﬁ is (well defined and) completely positive, then the
mapping p : A (J1,J2) — A (T1,T,) determined by

« % Ok ~ Yk O By S
p(.]g th J?Jg) = sz Tla TlﬁTg
is also (well defined and) completely positive.

Proof. Fix a positive integer n and a p € &, and suppose p(J*,J) = 0. We are
to show p(7*,T) > 0. Given a pair of integers (M,N) let P denote the (2M + 1) x
(2M + 1) matrix whose entries are the (2N + 1) x (2N + 1) matrices whose entries are
n X n matrices,

pP= (((Ine@yéz) <In®y{1>p(x,y) (In®x’;'> <I"®x§2>>:7k1=_N)M -

J2ko=—M

Thus P(T*,T) is an operator on ((C"® H)® C*N*1) @ C**! and the entries of
P(T*,T) are operators of (C" ® H) ® C>N*! given by

((In ® T;h) (In ® Tf‘f'l) p(T*,T) (1,, ® le1> (In ® T2k2>>N (13)

jtki=—N"
Note that P(J*,J) > 0 and thus, by Lemma 2, P*(J*,J) > 0. Thus, by the hypotheses of
this lemma, P*(T*,T) = 0. Let {ey,...,e,} denote the standard basis for C". Reusing
notation, let {f_n,...,fo,---,fn} and {f-p,..., fo,--., fu} denote the standard bases
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for C?V*1 and C*M+! respectively. A generic vectorin C" @ H @ C?N 1 @ C?M+! | the
space that P(T*,T) acts upon, has the representation

h=hjea®e;® fa® fa-

v

Let p;(T*,T) denote the j,k-th entry of p(T*,T). Compute, using Lemma 2,
0 < (P(T3, T}, T, To)h, h)
(P(T5, T, T, h)h® 1, ho 1)
Z Z<T2*I3T1*bpj,k(f*, v) Tlaj“za Rjao®1, hypp® 1>.

ab.op jk

= Z ijkT )T Tlhjab®zlz27TﬁT1hkaﬁ®Zb ﬁ> (14)
ab,o.p j.k

:Z pjk T Z Tl jab®2122 ZT Ty hkhﬁ®ZIZg]>
jik a,0 b,B

where

Since T; and T are invertible, given vectors g; 4o € H , there exists vectors 4}, such
that

n N M
g=2 X Y giaa®HB e
j=la

=—Noa=—M
Finally, since vectors of the form g are dense in H ® L?(T?) ® C¥, it follows that
p(T*,T) = 0;i.e., that map p is completely positive. [
LEMMA 4. Suppose Ty and T, are invertible operators in B(H) and p € 2. If
p(fz*,fl*,fl,fz) >0, then p(*,T1*,T1,T») = 0. In particular the mapping
tip(B TV D) = p(B T T T)

is well defined.

Proof. Let

1 1 N oMo
D — eljtl elktz c L2 TZ .
M ANT1V2M + 1 J»;N,E'M ™)
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If f,h € H, then for o, f,y,6 € Z,

<T2*YT1 I}T T2 h®DNM, f@DNM>
= <T1067¥,2 h®DN,M7 7\!‘l 7\—/‘2)/JC(®D1\/71\4>

= <T1°‘T25h, Tlﬁ T'f > <Z?Z§DN7M7 z{i ZJQ/DN,M>
oo By 1
<T1 L 1 T2f> ((2M+1)(2N+1)>

N+la=B|  M+[y-6] N M
< 2 2 ez/tlezktz’ 2 2 ezjtletkt2>

j==N-+la—Blk=—M+y-5] =N k=M

OIN+1—|a—B|\ (2M+1—|y—§]
[
B <T1aT2 h, TlﬁT2yf> ( 2N +1 2M +1 '

Thus if p € 2,

hm lim (p(T5, 17", 11, [,)h @ Dy m, f@Dym) = (p(T5, T{, T, T2)h, f).

N—soo M—s00

Hence if p(75,7},T1,T5) = 0, then p(Ty,T{",Ti,T>) = 0 as well. The case for square
matrices is easily established. [J

PROPOSITION 1. Suppose Ty and T, are invertible commuting operators on a
Hilbert space H, and J| and J, are invertible commuting operators on a Hilbert space
K. If J1 and J, are pairwise rotationally symmetric and the mapping p : ;(J1,J2) —
(T, Tn) determined by p(]f]i“"]f‘]ﬁ) *ﬁ Tl*aTlaTzﬁ is well defined and com-
pletely positive, then there is a Hilbert space % , a representation T :B(K) — B(¥),
and a isometry V such that VI'T{' = n(J1)"n(J2)"V for m,n € Z.

Proof. The mapping 7 : ¢ (T1,1T5) — #(T},T;) as described in Lemma 4, is
well defined and completely positive. The mapping p : 7 (J1,J2) — (1>, T5) as
described in 3 is also well defined and completely positive. Their composition

~

p=7top

is well defined and completely positive. The proposition now follows from Theorem
5. 0

Fix ¢,d > 0 and define, for 0 <i+ j < 2 (here 7, j are non-negative integers), the
3 x 3 matrices B;; by

o 1 oc Bd
I+ Y BB/ =|acl+a*? afcd |, (15)
0<itj<2 Bd aBcd 1+B2d*
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and B()7() =1- 6%327() — d%B()g. Deﬁne,

Uy cU; O U 0 dU,
A=louv o] m=0owv, 0|, (16)
0 0 U1 00 U2

where U} = Z; and U, = Z,, the pairwise rotationally symmetric operators in Example
1. We note _¢#; and _#, are pairwise rotationally symmetric via Lemma 1. It is clear
that from the calculation done in Equation (4) that ¢ = (_#, #>) € J.q and

slaB)y=I+ Y Bijap/)ol (17)

0<i+j<2

In particular B; j(_#) = B; ;®1I and we define By (_7) = Boo®1.

LEMMA 5. If T = (T, T») is in the class §¢q4, and

Or(@.B) = 01(e.B) ~ ~5B20(T) ~ 15Boa(T) =0
factors in the form,
Or(a,B) = (Vo+ aVi+ BVa)* (Vo + Vi + BV3), (18)

then the map p( /;ﬁ BAa A /f )= Tz*ﬁ Tl*O‘Tl‘"Tzﬁ is well defined and completely
positive.

Proof. Suppose the 2-tuple T = (T1,7») is in the class §.4 and for notational
convenience let

1 1

1 * 1 *
Boo(T) =1—5B20(T) = 5 Bo2(T) =1 = 5 Bo(Ti", Th) = 3 Bo(D2, Ta).-

Note that

Boo(T) =0
since Qr(et,B) = 0 for o = B = 0. The spaces J(_#1, #>) and J(Th,T>) are
spanned by

{Boo(2): Bro( ), Boa(7), Bii(F), B2o(F), Boa(F)}

and
{Boo(T), B1o(T), Boi(T), B11(T), B2o(T), Bo2(T)}

respectively. For positive integers n, let M, denote the n x n matrices. The elements
X eM, ® IG( 71, #») have the form

X= > X;@Bi,(f)

0<i+j<2
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Equivalently,
Xoo cXi0 dXo.
X2 | X1 *Xoo cdXyy | @I
dXo 1 cdXy d2X072

If X = 0, then each X; ; is self-adjoint. Further X = 0 if and only if
X0,0 X1,0 Xo,1
Y=1X10X20Xi1
Xo1 X111 X0

is as well. In this case, there exists 3n x n matrices Yy, Y1,Y> such that

X0,0 X1,0 Xo,1 Yy
XioXo0 X1 | =Y | (o1 ).
Xo,1 Xi1,1 Xo2 Y,

Using the factorization (18),

Li®p(X) =3 Xi;®Bi;(T)
=X00®@VoVo+X10® (VoVi +ViVo) +Xo1@ (Vg V2 + V3 W)
+X,1® (VI*VQ +V2*V1) +X20® (Vl*Vl) +X02® (V;Vz)
=YH3V+heoVi+HLeoWn) e+ hoVi+Hhe,).

19)

Since the right hand side is evidently positive, the map p is completely positive. [l

By Proposition 1 and Lemma 5 since _#; and _#> are pairwise rotationally sym-
metric, we have shown a factorization (18) implies there is a representation 7 such that
the 2-tuple 7' lifts to the 2-tuple 7(_#). It remains to show that any representation
appliedto 7 = (_#1,_#») produces a 2-tuple of the same form.

LEMMA 6. Let E be the Hilbert space that 71 and _#> act upon. If E is also
a Hilbert space and m : B(E) — B(E) is a unital *-representation, then J; = nt(_71)
and J, = 1t(_#>) have, up to unitary equivalence, the same form as _#\ and 7> given
by Equation (3) and in particular are in the class J¢ 4.

Proof. The proof proceeds much in the same way as it does in [8] but with some
minor differences. The following relations are evident.

i) 7 = Wi+ where # is unitary, 4;> =0 for i=1,2 .
i) WiNi= NW; fori=1,2.

i) M= SN

V) MM ANIMA NN =1.

v) HAN;=0fori,j=1,2.
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vi) Jﬁﬁ/ﬁ?* =0forij=1,2.

From these relations,

MM,
Ny M,

are pairwise orthogonal projections. Let J; = nt(_#;), N; = m(.4;), and W; = (%) for
i =1,2. These must satisfy the same algebraic relations, i.e.

i) J=W;+N; where W; is unitary, N; 2-0 fori=1,2.
i) WiN;=N;W,; fori=1,2.

iii) NN = NNj.

iv) NN+ N[Ny +N;N, = 1.

v) NiNj =0 for i,j=1,2.

vi) NiNj =0 for i, j=1,2.

From these relations,
NiNy,

N5 Ny,
NiIN{ =N;N;
are pairwise orthogonal projections on E . For instance,
NNy = N; (N{Ni + N3 N>+ NN} )Ny = (NjNy)*.

Now decompose the space H as H = ran(N;N;) & ran(N{N; ) & ran(N;N») .The map-
pings N; are unitary maps Q; from the range of Nj* to the range of N;. Hence,
with respect to the orthogonal decomposition of H as H = ran(N|N;) & ran(N INi)@
ran(N;N2),

00,0
N=1000
000
and likewise,
000,
Np,=1000
000

Thus, up to unitary equivalence, it may be assumed that Q; = I (and each of the sum-
mands in the direct sum decomposition is the same Hilbert space). Write

Ay By €
Wi=|D E F
G H Ji
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forsome Ay, By, Cy, Dy, Ei, Fi, Gy, Hy, and J; operators. Since W|N; = N, W,

Ay By C; 070 0A; 0
W\N, = | D, E| Fy 000)=10D;0],
G, H J; 000 0G; 0
and
070 A131C1 DlElFl
NW;=1[000 DiE.FF|=]1000],
000 G Hy J; 0 0O
we conclude
A1:E1

and
D =F =G, =0.

Similarly, since W1N2 = N2W1 5

A=
and
H, =0.
Hence
Ay B G
Wi=10A4,0
0 0 A
Since W is a unitary operator,
Ay B G A7 0 0O 100
Wiw =10 A; 0 B{AT 0 ) =(010],
0 0 A4 Cy 0 Aj 0017

where [ is the identity operator. Hence,

A\A}+ BB +CCf =1,

AAL =1,
A\B =0,
ACl =0.

Note that the first two relations above show that B; = C; = 0 and A] is an isometry.

Hence W is diagonal with A; down the diagonal. Since W is unitary, A; is unitary. It
follows that

U 0

W=\ 01U

00

T oo

1
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where U] is a unitary operator. A similar argument shows that

U, 0 0
w,=[0w, 0],
0 0 U,

where Uy is a unitary operator. Since [W;,W,] =0, it follows that [Uy,U,] = 0. Hence,
up to unitary equivalence, the J; have the form claimed. [

The forward direction of the main theorem has been established. We now need
only to prove that lifting implies factorization of the associated operator pencil. How-
ever, this is readily established. If T = (T3, T3) lifts to J = (J1J2), then

V(Qs(eB) ~ 3Baol) — 23Boa(1)V = Qr(0,B) ~ =3 Bao(T) — = Bua(T).
Hence any factorization of
Oy(a,B) = (Ko + oK + BK>)* (Ko + 0Ky + BK)
gives the factorization of Q7 as
Or(a,B) =V*(Ko+ oK + BK>)* (Ko + Ky + BK3)V.

Since Q; factors as

*

1
Qj(a,B) = oc (1 oc ﬁd) ®I,
Bd

the conclusion follows.

3. The counter-example

This section has three parts. Let Q(c,3) be an arbitrary two variable quadractic
pencil
Qo) =1+ 3 o/B'Bj; (20)
0<j+k<2
with coefficients B;; operators on a separable Hilbert space H such that

B2 0 @
for all (o, ) € R%. In the first part we show by construction there exists a com-
muting 2-tuple of 3-isometries 7 € §.; such that Or factors if and only if O fac-
tors. In the second part we show that given a positive integer n and positive map
¢ : Sym;(C) — M, if the canonical quadratic pencil it determines factors, then ¢ is
completely positive. Hence, an example of Choi [5] of a positive ¢ : Syms — M,, which
is not completely positive produces a quadratic two variable pencil which does not fac-
tor which in turn produces a counter-example to a natural generalization of the main
lifting result of [8]. This counter-example is strengthened in the last part.

0(a.B) = 0(a1.B) ~ 20
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3.1. Constructing three isometries

Let F be a vector space with basis {f;: j € Z}. In particular, the set {f; ® f :
J.k € Z} is abasis for the tensor product F @ F . Define, on the algebraic tensor product
H® (F ® F) the sesquilinear form

[h® f;® fi i ® f7 © fi] = { <Q((J)',k)h, W)y if j=j and k=K

otherwise ’
and the linear maps
T(h®fj®fk)=h®f,'+1®fk (22)
and
S(h@fj@fk)=h®fj®fk+1. (23)

Note that this sesquilinear form is positive semi-definite since Q takes, by hypothesis,
positive semi-definite values. Let .7 be the Hilbert space obtained from H @ F ® F
by modding out by the null vectors and forming the completion. We continue to denote
the inner product on JZ by [-,-] and let 7 ® f; ® fi denote the equivalence class it
represents in the quotient. We use freely the fact that 7, the linear span of {h® f; ® fi :
J,k€Z, he H}, is dense in 7.

PROPOSITION 2. Given a 2-variable pencil in the form defined by (20), if there
exists ¢,d € R such that ¢ >0, d > 0 and

1
dzB()z >0

for all (a,B) € R?, then the operators S and T defined in (22) and (23) are well
defined and extend to invertible bounded operators 7. Moreover S and T are 3-
isometries and

<QT,S(avﬁ)(h®fj®fk)v g®fa®fb> = 5(j,k),(a,b) <Q(a+]7ﬁ +k)h7 h>H7

where § is the Kronecker delta function. In particular, (S,T) is in the class Fcq.

1
O(a,B)— 0—23270

Proof. Let h=h® f 7 @ fx be an elementary tensor and compute,
2(1+¢*)[h,h] — [Th,Th]

(20(j,k) +2c2Q(j.k) = Q(j + 1,k)h, h)

(Q(j,k)+2c*0(j,k) — Bo1 — kB 1 —2jBao— Bao)h, h)

(0(j,k) +2¢*Q(ji, k) — Bo,i — kBi,1 —2jBao+ Boo — 2Bao)h, h)

(Q(j = 1,k) +2¢*Q(j,k) = 2Bao)h, ).

o o~~~

Since Q(o, ) — CLZBQ.’O - d%Bog >0 forall (o, B) € R?, certainly Q — C%B;o >0 and
Q =0 forall (o, ) € R%. Hence, [2(14c?)[h,h] — [Th,Th] > 0. Using orthogonality
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of the subspaces {h® f; @ fi : h € H} for j,k € Z, it follows that for each h € H®
FQF,
2(1+c*)[h,h] = [Th,Th].

Thus T is bounded on the algebraic tensor product and thus extends to a bounded
operator, still denoted by 7', on J# by continuity. A similar computation shows that S
is also bounded.

It is straightforward to verify that

79373 - 37272 4 37°T — 1 =0,

a condition well known to be equivalent to 7 being a 3-isometry [2, 8]. Likewise
S is a 3-isometry. Since S and T are 3-isometries there exist By (T*,T), B1(S*,S),
By(T*,T) and B,(S*,S) such that for all natural numbers m and n,

S*MS™ = I +mB,(S*,S) + m*By(S*,S)

T*"T" = [+ nB,(T*,T) +n*By(T*,T).
Deﬁne, EI,O = Bl(T*,T), B()’l = Bl (S*,S), Ez’o = BQ(T*,T), B’O.’z = BQ(S*,S), and

Bi1=B,1®IxI. (24)

Direct computation shows

BT, T)(h® f; @ fi),(h® fa® fp)]

= O(j ), (ab) ((Bro+kB11+2jB2o)h, by, 25)
[B1(S™,8)(h& [ @ fi), 8 © fa @ fo] 26)
= 8 k), (ap) ((Bo,1 + jB1,1+2kBo2)h, &)y,
[BoAT*,T)(h @ fi ® f2),8 D fa® fo] = 8} k), (ap) (B2.0Ms &)y (27
[B2(S*,8)(h® i @ fi), 8 @ fa @ fo] = 8(j k), (ap) (Bo2lts &)y - (28)
By the definition of By i,
Bi1(h® fi® fi):8 D fa® fo] = 8j k) (ap) (BL1E, &) (29)
From the above equations it follows that
[(S™By(T*, T)S"h @ f; @ fi,8 @ fu® fp) (30)

=0 x),(ap) ((Bro+ (k+m)B11+2jBao)h, g)y -

Likewise,

[S™Ba(T*,T)S" (h® f; @ fi),8 @ fa @ fo] = O 1), (ap) (B2.0h, &) - (3
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Hence, by equations (25),(26),(27), (28), (29), (30), and (31),
(ST T"S™)(h @ f; @ fi),8 @ fa @ f)]
= [S""(1+nB1(T) +n*By(T))S" (h® f; ® fr), 8 @ fa @ f5]
= [I+mB\(S) +m’By(S) +nS™B1(T)S" + n*Bo(T)(h® f; ® fi), 8 © fu® f]
— [([+m§0’1 +n§170 —|—mnB‘171 —|—m2§0’2 —|—n2§2,0)(h ®fj ®fk>7 (g®fa ®fb)] :
We conclude,
Ors(a,B) =1+ aBio+BBoi+aBBii+a’Bro+BBos

The above equations give the following relationship

<QT,S(OCvB)(h®fj®fk)a g®fa®fh> = 6(j,k),(u,h) <Q(a+.]7ﬁ +k)h7 g>H

and
(Ors(a.BY(h @ fi® fi), 8@ fa® fp) = 8 1) (a) (Ol + j, B+ k)N, g),, . O

PROPOSITION 3. Let Q(ot, ) be a quadratic pencil of the form (20) satisfying the
positivity condition (21) and let Qrs(a,B) be the quadratic pencil for the 3-isometric
2-tuple (T,S) € Feq constructed in Proposition (2). The modified pencil Q(a.,B) fac-
tors if and only if the modified pencil Qns(m B) factors.

Proof. By the conclusion of Proposition (2),
(Ors5(. B)(h® f;@ fi)s (W fa® fy)) = &) (a) (OOt + . B+ KA, ),
Suppose Ors(a,B) factors as
Ors(a,B) = (Vo+ aVi + BVa)* (Vo + aVi + BV2)

where V; are bounded operators from . into some auxiliary Hilbert space. Define
U:H— ¢ by
Uh=(h® fo® fo). (32)

To verify that U is an isometry, note

1
[UR]| = [lh® fo® foll = [[Q(0,0)2 | = ||A|.
Now forall g,h € H

(U*(Vo+oVi+BVa)* aV1+ﬁV2)Uh g)

s(o,B)Uh, g>
QT,S (e, B)UR, Ug)
Ors(a,B)(h® fo@ fo), (2 fo® fo))
0

(o, B)h, g).

(Vo
(v
(
(
(
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Thus, Q factors as
O(a, B) = [(Vo+ aVi+ BVa)UT* [(Vo+ Vi + BV2)U.
Conversely, suppose that O(o, B) factors as
O(a, B) = (Vo + aVi +BV2)* (Vo + Vi + BV2)

where the V; are bounded operators from H into an auxiliary Hilbert space, which
we label K for convenience. Let £> denote the Hilbert space ¢*>(Z) with the standard
orthonormal basis {e;: j € Z} and let .#" denote the Hilbert space tensor product
K ® (1> ®£?). Define, on the dense set Z, equal to the span of elementary tensors
h® f;® fi,of 7 into J¢ the linear maps,

Wo(Thjx® f;® fi) = 3, (Vo+ Vi +kVa)hjx @ (e @ ex)
WD hjx @ fi@ fi) =D Vihja @ (e @ e),
for £ =1,2. Since,
Wo(Xhjx® £ fi)s Wo( Zgab®fu®fh)>
=Z hjks 8ap)
J.k

= Zh]7k®fj®fk7 Zha,b ®fa ®fb},

Wy is an isometry on & and thus extends to an isometry, still denoted Wy, from .77
into J# . Similarly,

W hik@ i@ fi), Wi (D hap @ fa® i)
2 Vihj i, Vihji)

ok
2 32 S* jk7 hj7k>
ik
<CQZ /k7 ,k>
= zh.f,k®fj®fk, N hap @ fa® fo)-

Thus W, is bounded on ¥ and thus extends to a bounded linear operator, still denoted
Wi, from 27 to J# . Of course a similar statement holds for W,.
Finally,

(Wo + aW + BW2)" (Wo + oW + BWa) (hjx @ f; @ fi), (8ap @ fa @ [p))
=((Wo+aW; +BWa)(hjx® fi @ fr), (Wo+ Wi+ BW2)(hap ® fu® f3))
=((Vo+ (o +)HVi+(B+K)Va)hjx, (Vo+ (o4 j)Vi+ (B+K)Va)has)
=8j.1).(ap) (Q(0+ j, B+ K)hjs, i)
=(0rs(hjx @ fi @ fi), (hap® fa® f3)).

Hence Q75 has the factorization (Wo + aW; + BWa)* (Wo + oW, + BW,). O
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3.2. A positive but not completely positive map

In this section an example of Choi is used to produce a two-variable quadratic
pencil which takes positive semidefinite values on R?, but does not factor. In turn this
pencil is used, in Proposition 5, to give a counter-example to a natural generalization of
the main result of [8].

DEFINITION 8. An operator system S is a unital selfadjoint (vector) subspace of
the bounded operators on a Hilbert space. Let E; ; denote the matrix units for M,,. The
matrix

Co = (9(Eij))ij EMa®S

is the Choi matrix of the linear map ¢ : M, — S.

The following lemma can be found in [9, p. 35]

LEMMA 7. Let S be an operator system. A map ¢ : M, — S is completely positive
if and only if Cy is positive semidefinite.

Recall the definitions of the 3 x 3 matrices B; ; from equation (15). They form a
basis for Sym;(C), the symmetric 3 x 3 complex matrices.

LEMMA 8. Suppose S is an operator system and ¢ : Sym;(C) — S is a unital
positive linear map. If the canonical pencil

) . 1 1
Op(oB) = |1+ 3, o'B'9(Bij)| = 59(Bo2) = —59(B2o)
0<itj<2
= > aBloBy)
0<jTh<2

associated to ¢ factors as
Os(a,B) = (Vo + aVi+ BV2)* (Vo + aVi + BVa),

where the V; are operators into an auxiliary space, then the map ¢ is completely
positive.
Conversely, if the map ¢ is completely positive, then Qg factors.

Proof. Suppose that the canonical pencil factors as
Qs (0, B) = (Vo+ aVy + BVa)* (Vo + Vi + BVa).
An element X € M, ® Sym;(C) has the following form

Xo,0 X1,0 Xo,1
X=|X10X00X11
Xo,1 X1,1 Xo2
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If X =0, then each X; ; is self-adjoint and

*

Xo,0 X1,0 Xo,1 Yy
XioXo0X11 | =11 (Yo T Yz) ;
Xo,1 X1,1 X022 ¢)

where the Y; are 3n x n matrices. Thus,

(1, ®)(X) = 2. Xi;© 9(Bi))
ZXO,O ®V0 VW+X10® (VJVl +V1*V0) +X01® (VJVQ —|—V2*V0)
+X11@(ViVa+ Vo Vi) + X0 0@ (ViVi) +X02® (V3 Va)
=TV +1heVi+hoW) HeVo+1@Vi+HheV,) = 0.

(33)

Hence ¢ is completely positive.

We pause at this point to note some differences between the finite and infinite
dimensional cases. There is a Hilbert space & such that § C B(¢") and the V; map into
an auxiliary Hilbert space K. In fact,

2
Vi:&— \/ranVi.
i=0

Thus, replacing K by \/l-zzo ranV;, it can be assumed that V; map into &3. Thus, if &
is finite dimensional, say S C M} (in which case there is no harm in assuming S = M),
then it can be assumed that V; map into an auxiliary space of dimension of at most 3k.
If & is an infinite d1mens1ona1 space, then &> can be identified with & .

Now suppose that the map ¢ : Sym; C — S is completely positive and S C B(&).
By Lemma 7, the Choi matrix Cy is positive semidefinite and hence factors,

*

¢ (Eoo) ¢(Eo1) ¢(Eo2) Vo
Co= | ¢(Ew) 0(En) 9(Ez) | = Vi | (Vo1 Va)
O (Ex) ¢(E21) ¢(Ex) Vs

where V; map & into an auxiliary Hilbert space. To complete the proof, observe that
O (a,B) = (Vo+aVi+BVa)* (Vo+aVi+BVa). O
We now present a map on Syms(C) that is positive but not completely positive.

By Lemma 8 this map produces a pencil that does not factor. The following theorem
can be found in [5].

THEOREM 6. (Choi) There exists a positive linear map ® : Sym;(R) — Sym; (R)
that does not admit an expression as ®(A) = Y. V. AV; with 3 x 3 matrices Vi. The map

o1+ 09 0 0
(p—2| 0  omtosz 0 = (o) jx
0 0 033 + 041

is such an example.
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Choi’s map is not unital, since it sends the / to 3/. We correct this defect by

multiplying by a positive scalar.
We will show that a variation of this map is not completely positive.

PROPOSITION 4. The unital positve map ® : Sym;(C) — Sym,(C) given by

9 oq1 + 02 0 0 1
(o) jx — 3 0 02+ 033 0 - g(ajk)jk o eC (34)
0 0 033+ 01

is not completely positive.

Proof. For a matrix A, let A denote the matrix whose entries are the conjugates
of the entries of A. The notation A* and A" will denote the conjugate transpose and
transpose of A respectively. Now suppose that @ is completely positive and thus ex-
tends, via Arveson’s extention theorem [9], to a completely positive map also denoted
by @ from M3(C) to M3(C). Thus, Cg, the Choi matrix of ®, is positive semidefi-

. . .~ CptCy ~ . . .
nite. Consider the matrix C = % . We note that C is the Choi matrix for some map

¥ : M3(C) — M3(C). From this point onward we will denote C as Cy. Since trans-
position is a positive map, Cy 1is also a positive matrix and hence ¥ is a completely
positive map. Hence by Choi’s Theorem [4], there exist finitely many matrices (of the
appropriate size) such that, for A € M3(C),

P(A) =Y VAV, (35)

To be clear, writing Cp = (C jk);.kzl where the C;; 3 x 3 are matrices, and using Cj; =
Ci; (since C=C") ’

Ci1 Ci2 Ci3 Cly (Ch)T (Ci) T
Co+Cqy 1 [} 112 13
Cy = Tq) =52 ls|+5 C, Cp (Gy)'
CT3 C>2k3 Cs3 C1T3 C2T3 C3T3
In particular,
Co+Co
Cy = $. (36)

We first show that the map ¥ when restricted to Sym;(R) is the same map as @
restricted to Sym;(R). Let Ej be the standard matrix basis elements and note the

following basis for the symmetric complex matrices, {w 11 < j<k<3}. For
i,j =123, ®(Ej+Ej) =Cp +C}‘k € Symy(R) by definition as seen from (34).
Hence

Cit+Cj = (Ci+Cjp) "
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Thus,
Cix+(Cy)T  Ci+Cj,
PY(Eji+ Exj) =— 5 1 7 !
_Cjk+C;k+ (ka+C;k)T
2 2
=Cj; + C;kk = q)(Ejk +Ekj)-
Hence,

¥lsym; (R) = Plsym, (®)-
By (36) Cy is a real symmetric matrix. Since Cy is positive it has a factorization
into two real matrices. This is equivalent to the fact‘tha‘lt Cq> = ZiwiTw,- where each w;
is a 1 x 9 matrix with real entries. Write w; = (x,x5,x3) where each x; isa 1 x3
matrix. For 1 < i< 3, form the 3 x 3 matrices W; whose j-th row is x‘j. Note that
Y(Ejx) = X:W; E; W; and by linearity W(A) = 3, W," AW,
Hence, the matrices V; in the representation of ¥ in (35) can be replaced by real

matrices W; and
P(A) =Y W, AW;.

1
Since
¥lsym,(®) = Plsym;(r)>
this is a contradiction of Theorem 6. [
PROPOSITION 5. For each c,d > 0 there exists a 3-isometric 2-tuple of invert-
ible operators (T,S) in the a class §.q such that the pencil Qrs does not factor. In
particular, the 2-tuple (T,S) does not lift to a 2-tuple (J1,.J2) in the class 4.

Proof. Given c¢,d > 0, consider the following basis for Sym;(C),

0cO 00d 00 0
BO71: c00 ;BI,OZ 000 ;31712 00 cd 5
000 d0o0 0cd O
(37)
100 000 000
Boo=[000]: Boa={0c20|; Bap=1000
000 000 00d?

We note By =1— C%Bog — d_lsz’O' By Proposition 4 there exists a unital positive but
not completely positive linear map @ : Sym;(C) — M3(C). Thus,

I oc PBd o
0=<®| | ac o?c* aBcd :(I)< D Oﬂlﬁ’&,j)

Bd ofcd B*d* 0<i+j<2 (38)

= Y dBioB;;) = Onla,B).

0<itj<2



420 B. RUSSO

Here we have used the notation in Lemma 8. By Lemma 8 the canonical pencil
Oo (0, B) does not factor since @ is not a completely positive map. Let

0=I+ Y B
0<i+j<2
where N
B j=®(Bi ).
Note

1~ 1~ . ~
(e, B) — 0—230,2 - ﬁBz,o = Y dpreB:)) = 0o(a,p).

0<itj<2

By Proposition 2, since O(ct,8) = 0 we can construct a 2-tuple (7,S) in the class
Se.a such that Ors(a, ) does not factor. By Theorem 3, the 2-tuple (7,S) does not
lift. O

3.3. Strengthening the counter-example

While the counter-example of Propostion 5 answers the natural question of whether
2-tuples T in §. 4 always lift to a 2-tuple J in the class J. 4, we will actually construct
a stronger counter-example. Given a quadratic pencil which does not factor we will
construct a 2-tuple of commuting 3-isometries that does not lift to a 2-tuple J in any of
the classes J. 4. Let

O(a,B)= Y 'B/Bij=0forall (a,p) € R (39)
0<i+j<2

be a not necessarily monic quadratic pencil with B;; € B(H) which does not factor.

The existence of such objects is given by Proposition 4. We begin with the following
lemma.

LEMMA 9. If O(a, B) does not factor in the form
O(a,B) = (Vo+aVi+pVa)* (Vo + aVi+ BV2)
and if T € B(H) is positive semidefinite, then Q(cot, 3) — T does not factor in the form

Q(a,B) —I'= (W()-l— oW, +ﬁW2)*(W0 + oW, +ﬁW2).

Proof. We prove the contrapositive. Accordingly, suppose
O(a,B)—T=(Wy+aW, + ﬁWz)*(W() +aW; + W,),
in which case

Q(a,ﬁ) = (Wo + oW, +ﬂW2)*(W0 + oW, —|—[3W2) +T.
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Since, " > 0, there exists A € B(H) such that I' = A*A. Hence,
o) =((3)+a()+o(5)) (%) +e(3) (%)) o

We now show there exists a monic pencil Q(e,f3) such that Q(o,3) — 0%3270 —
d%Bog does not factor for all ¢,d for which

1 1
0— C_232’0 — EB()Q =0 forall (a,p) € R?.

THEOREM 7. For each cy,dy > 0 there exists a monic quadratic pencil

Q(a,B)=I1+ Y, o'p’B;
0<i+j<2
such that
(i) . .
(o, B) — %3072 - d_ng’O =0
forall (a,B) € R?

(ii) if c¢,d > 0, then there does not exist an auxiliary Hilbert space K and operators
Vo,V1,Vo € B(H,K) such that

1 %
Byop= (Vo + oV + ﬂVz) (V() + oV —|—[3V2).

1
(o, B) — C—zBog -7

Proof. Let Q(c,3) be the non-monic matrix valued pencil that does not factor,
ie.

0(a,B) = Qa(a, f) = @ ( > aiﬁ‘f3i7,f>
0<itj<2
where ® is the map from Proposition 4 and Qg (ct, B) is the pencil defined by Equation

(38) in the proof of Proposition 5. The first step is to show that we can assume that Q
is monic and that there exists a 6 > 0 such that

O(a,B) = 61

for all o, € R. For an operator A € B(H) the notation A > 0 will mean that for all
xeH
(Ax,x) > 0.

We start by considering the following pencil

Oc¢(a,B) =Q(ct,B)+el - 0.
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Here we need to choose € > 0 so that the Q(ct, )+ €I still does not factor. By Lemma
8 O(a, B) will factor if and only if the map @ is completely positive. The map @ is
completely positive if and only if its Choi matrix Cg is positive semidefinite by Lemma
7. Since @ is a unital map, and by definition of Q(c, ), we will have that Q(a, B) + €l
will not factor if Ce + €I is not positive. Since Cg is not positive in the first place, we
simply need to pick an € > 0 small enough so that Cg + €1 is not positive. We note

that
1 oo ﬁ do

O(a,B)=@ | | aco o*c§ aBcodo
Bdo oBcody B3d3

where cg and dy come from the choice of basis as in (37). Since @ is a unital map

l+€e oco Bdy
O:(a,B) = oy 062C(2)+£ afcody
Bdy oBcody ﬁ2dg +€
Let o
Qe(a,B)= D, o'Bf’Bij.

0<i+j<2

In particular
QE(O,O) :BOO =e>0.

L
Let A= B, ; = 0 and note that

Oc(a,B) := A*[O(a, B) +el]A = 0

and is monic. Now choose a 8 > 0 such that eéA*A = 8I. Hence Q¢ (ct,3) is monic
and Q¢ (at, B) = 81.

With our assumptions validated from this point on we will assume we have a monic
matrix pencil Q(c, ) such that

O(a,B) = 61
forall (o, ) € R?. Let
Q((X,ﬁ) =1+ Z (Xiﬁij'.

0<i+j<2

For all (c,d) € R? such that

1 1
ol - 6—230,2 + EBLO
the pencil Q is monic,

1
By =0,

1
O(a,B)— 0—230,2 -7

and does not factor by Lemma 9. [

We summarize in the following proposition.
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PROPOSITION 6. There exists co,dy > 0 and a 3-isometric 2-tuple of invertible
operators (T,S) in the class F, 4, such that (T,S) does not lift to any 2-tuple J in any
class Jea.

Proof. The proof follows from an application of Propositions 2 and 3 and Theorem
7. O

4. Spectral considerations and 3-symmetric operator tuples

Given a 2-tuple of 3-isometries in a class § 4 that lifts to a 2-tuple of commuting
Jordan operators we will first show some control over the joint spectrum of the Jordan
2-tuple. Secondly, we will establish, by a holomorphic functional calculus argument, a
lifting theorem analogous to Theorem 3 holds for 3-symmetric 2-tuples.

4.1. Spectral considerations
Let oray(T) denote the Taylor spectrum of the tuple 7' of operators on a Hilbert

space. For an inviting exposition of the Taylor joint spectrum see [6].

PROPOSITION 7. Suppose T is a 2-tuple of invertible operators and c,d > 0. If
T lifts to a 2-tuple J € J¢ 4, then Oray(T) C Oray(J). Moreover, in this case there exists
a2-tuple J € 3.4 such that T lifts to J and Oray(T) = Oray(J).

Let U = (U,,U;) be the unitary commuting tuple appearing in J = (J;,J2). By
the form of J it is easy to see,
G(Ui) = G(J,‘).

However a result involving the Taylor spectrum of U and J can be achieved.
PROPOSITION 8. For Jordan 2-tuple of the form (3)
Oray(U) = Oy (/)
where U = (Uy,U,) is the 2-tuple of unitary operators appearing in J = (J1,J2).

Proof. By Proposition 7, Oray(U) C Oray(J). On the other hand, as seen in [6],
for operators A, B and C on Hilbert space,

Oray ((g g)) C O1ay (A) U Gy (B).

In our case this shows that Oray (/) C Oray(U) and the proof is complete. [J

The proof of Propostion 7 occupies the remainder of this subsection and is broken
down into a series of subresults.

For a compact set K, let co(K) denote the convex hull of K. If K C C" is com-
pact, then, by Caratheodory’s Theorem, co(K) is also compact (and hence closed). For
a closed convex set K, let Ext(K) denote the set of extreme points of the K.
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LEMMA 10. The set of extreme points of co(T?) is T?.

Proof. The convex hull of a cartesian product is the cartesian product of the convex
hulls. The set of extreme points of a cartesian product is the cartesian product of the
extreme points. Since the extreme points of co(T) =T the result follows. [

LEMMA 11. If K is a compact subset of T> C C?, then
Ext(co(K)) =K.
Proof. Since K C T?, if z € K, then z is an extreme point of co(T?) by Lemma 10

and therefore of co(K). Hence K C Ext(co(K)). On the other hand, Ext(co(K)) C K
for any compact subset K of C". [

DEFINITION 9. The joint approximate point spectrum for a 2-tuple 7 is defined
to be the set of points A € C2 such that there exist unit vectors {x;} such that

[(Ti = Ai)xe[| — O for i =1,2.
We denote joint approximate point spectrum as (7).

The following two lemmas are well known. Among the many references, see
[6, 5]. The theorem following these lemmas can be found in a paper of Wrobel [10].

LEMMA 12. The approximate point spectrum of a commuting tuple T of opera-
tors on Hilbert space lies in the Taylor spectrum of T .

LEMMA 13. The Taylor spectrum of a commuting tuple T of operators on Hilbert
space is nonempty and compact.

THEOREM 8. If T is a commuting tuple of operators on Hilbert space, then
Ext(co(omay(T))) = Ext(co(0up(T))).

The following lemma is a first step in applying these results to the study of com-
muting 3 -isometries.

LEMMA 14. Suppose T is a commuting 2-tuple of invertible operators on a Hilbert
space H and c,d >0 and T lifts to a 2-tuple J € J. 4 acting on the Hilbert space K,
i.e. there is an isometry V : H — K such that

VT* =J%V

for every multi-index ot. If & € 04p(T), then A € 04p(J); i.e., Oup(T) C Oup(J).



LIFTING 3-ISOMETRIC TUPLES 425

Proof. Fori=1,2,
V(T — X&) = (Ji — M)V

If [[(T; — Ai)xi|| — O as k — oo, then ||V(T; — A;)xx|]| — O as k — oo since V is an
isometry. Hence for the unit vectors y, = Vi,

H (Ji — 7L,-)ka|| —0

as k —oo. [

We are now in position to show Oray(7T) C Omay(J). Since T; and J; are invertible
for i = 1,2, both Oray(T) and oy (J) are subsets of T2, since for instance oy (T) C
o(Ty) x 6(T>) C T?. In particular, by Theorem 8 and Lemma 12,

Oray(A) = Ext(co(0my(4))) = Ext(co(04p(A))) = 0ap(A),

where A is either 7' or J. An application of Lemma 14 now gives Oray(7) C Oray(J),
completing the proof of the first part of Proposition 7.

We will now complete the proof of Proposition 7 by showing that we can alter
the 2-tuple J so that oy (J) € Oray(T). We will state this as a proposition whose
proof will require several lemmas and occupy the remainder of this section. Suppose
T = (T1,T») is a commuting tuple of invertible operators which lift to a commuting
tuple of invertible operators J = (J1,J2) € Jeq of the form (3) i.e. there exists an
isometry V such that

VLT, =J1J,V.

Let U = (U;,U;) be the tuple of unitary operators appearing in J. As in [8] we will
show that each U; can be replaced with W; = (I — P)U;(I — P), where P is the joint
spectral projection for the complement of Oy (7).

PROPOSITION 9. If a commuting tuple of invertible operators T lifts to a com-
muting tuple of operators J € J.q, then there exists a tuple of commuting invertible
operators J = (J1,J2) € Jeq such that T lifts to J and Oray(T) = Oray(J).

Since the inclusion Oy (T') C Oray(J) has already been established, it remains to
prove that J can be chosen in such a way that the reverse inclusion holds.

Assuming 77 and T are both invertible, by Theorem 3 there is a commuting 2-
tuple of unitary operators U; and U, acting on a Hilbert space F' and an isometry
V:H — F®F®F such that

VIV = J1J3V

for all m,n € N where the J; have U; as entries for i = 1,2. If oy (T) = T2, then
there is not much to prove since Oy (J) C Oray(U) C T? and the proof is complete. So
from this point onward we assume otherwise.

As shown in [8] given an arc A in the complement of the spectrum of a 3 -isometry
T (o(T) CT), there is a holomorphic function f such that |f] > 1 on the arc A and
|f] <1 onandinside ', where T is a curve containing the spectrum.

Let D denote the closed unit disk, {z€ C:|z] <1}, in the complex plane C.
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LEMMA 15. Let p= (eiel ,ei92) be a point of T2 in the complement of the Taylor
spectrum of T. If Q;, for i= 1,2, are open sets containing D and 2¢'% ¢ Q;, then there
exists an open set O, C T? (open in the topology of T?) such that OpNory(T)=0
and a holomorphic function f, : Qi x Qo — C such that |f,| > 1 on O, and |f,| < 1
on oray(T). Moreover there exist holomorphic functions f, : Q; — C such that

fo(z1,22) = fp (1) - [ (22)-
Proof. Given p = (€% ¢%2) € T? consider the functions

hi: Qi — C, hi(z) = fori=1,2

(2—ei0iz)
and define h: Q) x Qp — C by

1
(2—e017))(2 — e i02zy)

We note that h(p) =1 and |h(z)| < 1 whenever z # p and z in the bidisk. Let K be a
compact subset of T2 not containing p and note |#"| — 0 uniformly on K as n — oo.
Hence, |hV(z)| < % for some N large enough and all z € o1,y (7). Let C be a positive
number such that 1 < C <2 and let O, be an open set disjoint from the Taylor spectrum
containing p such that C|h¥| > 1 on O, . Such an open set exists by continuity. Now
define f,(z) = ChV(z) and note f, and O, satisfy the conditions of the lemma. It is
clear there exists a fp, for i = 1,2 such that f,(z1,22) = fp,(21)  fp,(22). O

h(z1,22) = hi(z1) -ha(z2) =

We now choose Q| = Q, = %ID. Since each Uj; is unitary we can define f;(U;)
through the holomorphic functional calculus or by the power series functional calculus.
Of course both will give the same operator value for f;(U;). At the same time we may
define each f),(J;) via the power series calculus. It is straight forward to verify

fpi(U1) cULfy, (Ur) 0

fPl(Jl): 0 fpl(Ul) 0 y
0 0 Jpi (U1)
fpn(U2) 0 dULf},(Ua)
fpz(-]2) = 0 fpz(U2) 0
0 0 Ip(U2)

Define f,(J) by
fp(']) :fm (Jl) 'fpz(JZ)'
Similarly we may define f,(7;) and hence f(T') by the power series functional calcu-
lus as well. We note that any other functional calculus used to define f(J) and f(T)
must agree with the values given by the power series calculus.
Now write with respect to the decomposition F & F & F

%)

V={(V
Vo
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LEMMA 16. Let p € T? be in the complement of oray(T) with f, and O, C T2
as described in Lemma 15, then E(0,)V; =0 for £ =0,1,2 where E is the joint
spectral measure for U.

Proof. We will surpress the p in the notation for the functions f,, fp,, and f,,
writing f, f1, f2 instead. By the holomorphic functional calculus we know f7*(T;) con-
verges to zero in the operator norm since each f;' converges to 0 uniformly on the
Taylor spectrum for 7. Since

VT = 1)V fori=1,2,

Sf1(J;)V also tends to 0 in operator norm. Hence f"(J)V also tends to 0 in the operator
norm. Let E be the unique joint spectral measure for the 2-tuple U such that

E(Ax B) = Ey(A)Ex(B)

where E; is the spectral measure for U;, i = 1,2. Let P be the spectral projection for
U corresponding to O,

P= | dE=E(0,).
017

Consider, with respect to the decomposition K =F & F G F

000
060&P=(000],
00P

000
0ePe0=|0PO
000

and

Po0@0=1000
000

PO O)
Since f"(J)V converges to zero so do
V() (0D0eP)O0@0dP)f(J)V,
Vr(I) (0eP®0)(0ePH0)f"(J)V,

and
VD) (Pe080)(PH0®0) 1 (J)V.
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By calculation

FHI)( O@O@P O0®0DP)f'(J

f 000\ /f"(U) % =
= 000 0 fU) 0
00P 0o 0 U

00f" *Pf"( )

It follows that Pf"(U)V, tends to O in operator norm. However, Pf™(U)f"(U)P =
SU)PF™(U), since P is the spectral projection associated with U. Consequently,

Vi Plf"2PVy = Vi £ (U) P (U)o L 0

But P|f"|>P > P since |f"| > 1 on the support O, of P. Thus PV, = 0. Similarly,

VI 0@ P®0)0@PE0) ()W AL o

and
Vi PLIRPYV = Vi fU) POV - 0

Hence by a similar argument PV; = 0. Lastly since

ViU (PBO@0)(PB0@0) () L o,

by using the fact that PV| = PV, = 0 and arguing similarly to the previous cases we
have that PV, =0. [

LEMMA 17. If A is a compact subset of T such that AN Oy (T) = 0, then
E(AWV, =0 for £=0,1,2.

Proof. Since A is covered by finitely many O, , indexed by a finite set /' we have
Vg-<E<U 0 >V5-< Y E(O
pi€F pi€F

hence E(A)V;=0for¢=1,2. O

Since the proof of the following lemma carries over from [8] with only superficial
modifications, we simply state the result here.

LEMMA 18. Suppose A1 C Ay C ... is an increasing sequence of Borel subsets of
T? andlet A=U;A;. If E(A;)V, =0 forall j and £=0,1,2, then E(A)V; = 0.
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The complement of Or,y(T) can be written as an increasing sequence of closed
(compact) sets. By an application of Lemmas 18 and 17

E(Oray(T))V; =0, forl=0,1,2.

Let P = E(01ay(T)¢). Each W; = (I — P)U;(I — P) is unitary and

Wi cW; 0 Wy 0 dW,
Ji=10 W 0|, Jh=]0W,O0
0 O W1 00 W2

have the appropriate form. Finally, by Proposition 8, o1ay(J) = Oray(W) C Oray(T).

4.2. 3-symmetric operators tuples

We will now go more in depth into using the holomorphic functional calculus for
T and J. For i = 1,2 let Q; be a simply connected open subset of the plane. While the
power series functional calculus was sufficient previously, in the forth coming section
we will need to consider logarithms and a power-series approach is not viable. Given a
2-tuple of commuting operators T = (71, T>) with each 6(T;) C Q;, let g;, for i = 1,2,
be analytic functions. By use of the holomorphic functional calculus we can define the
operators g;(7;). By Runge’s Theorem there is a sequence of polynomials (s;,) which
converge uniformly on compact subsets of Q; to g; for both i = 1,2. The sequences
of operators s; ,(7;) converge in norm to g;(7;) for i = 1,2, by the standard properties
of the holomorphic functional calculus. Consider a 2-tuple of operators J = (J;,J») of
the forms (3) with o (U;) C Q; for i = 1,2, where each €; is an open simply connected
subset of C. For the analytic functions g; defined on Q; for i = 1,2, with polynomials
(sin) converging uniformly,

g1(Uh) cUigi(Ur) 0
gl(Jl)zlimsLn(Jl): 0 gl(Ul) 0 ,
0 0 gl(Ul)

2(U2) 0 dUgh(Us)
g2() =limsy ,(f2) = 0 g(Us) 0
0 0 g2(U2)

For a normal operator T the operator g;(T) is normal as well. Moreover, the spectrum
of g;(T) is given by the spectral mapping theorem as g;(c(7)). Hence, given a tuple
J = (J1,J2) and holomorphic functions g; and g, we have a formula for g;(J;) and
g2(J2) as well as their respective spectra.

To get some information about the individual spectra, we will use the projection
property for the Taylor joint spectrum. As seen in Curto [0], let A and B be a n-tuple
and k-tuple respectively i.e. A= (Ay,...,A,) and B= (By,...,By). Let (A,B) denote
the tuple (Cy,...,C,x) Where

Ci=Ajfori=1,...n
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and
Ci=B; ,fori=n~+1,....n+k.
The projection property for the Taylor joint spectrum is as follows,
nl,...,nGTay (A7 B) = GTay (A)

and
77:n+17...,n+kGTay(A»B) = GTay(B)

where we define 7, : C" x CK — C", (21,120, 2040y - 1 Zntk) = (21,--24) and
similarly for 7, . ,+x. For us this projection property implies

Ti01ay(T1, T2) = Oray(Ti) = 0(Ti)

for i =1,2. In the context of Proposition 9, if T = (77,75) lifts to a tuple J € J. 4,
then there exists a Jordan tuple J € J. 4 such that

OTay(J) = omay(T).
Since Oray(J1,J2) = Omay(T1,T2), by the projection property,
0(J;) = MmOy (J1,J2) = Moy (11, T2) = o (T),

for j =1,2. Let U = (U,U,) be the unitary commuting tuple appearing in J =
(J1,J2). Since it will be of relevance in the exposition to follow we recall for the
reader the equality

DEFINITION 10. A tuple of commuting operators .7 = (.77, %) will be called a
commuting 3-symmetric tuple if there exist bounded operators B such that,

exp(isa 75)" exp(is1 T1) " explisi 1) explisnp) = [+ Y. s)skBjy
0<j+k<2

for all (s1,s2) € R2.

It is clear that if .7 = (91, %) is a commuting 3-symmetric tuple, then 7 =
(¢'71,¢72) is a 3-isometric tuple.

THEOREM 9. Tuples of 3-symmetric operators (J1,75) will lift to a 2-tuple

(71, #2) of the forms

Ay —ic O Ay 0 —id
Ji=10 A O HJr=(0A4 0
0 0 A 0 0 A

where the A; are self-adjoint commuting operators, if and only if the polynomial

~ 1 1
Oz (a,B)=1+aBio+ BBo1+aBBi i+ a’Byo+BBos— c—sz,o — d—zBo,z =0
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factors in the form,
07 (a,B) = (Vo+ aVi+ BV2)* (Vo+ aVi + BV2)

Sfor some operators Vyy, Vi and V, in B(H).

Proof. Consider commuting 2-tuples of 3-symmetric operators (.7],.%5) whose
spectra lie in [a1,b1] and [a;,b;] respectively. We note that the Taylor joint spectrum
for (71,%) must be contained in [ay,b1] X [az,b3]. Let G(z) = exp(iz) and let S; =
G([ai,bi]). Suppose the length of each [a;,b;] is strictly less than 27. In this case S; is
a proper subset of the unit circle T. For each i there exists Q; D [a;, 5] and Q.; D S;,
open simply connected subsets of C such that

G1=Glg, : Q1 —Qy

Gy =Glg, : 0 — Qp

are bi-analytic. For the operator 2-tuple of commuting 3-symmetric operators .7 =
(A, %) with 6(7;) C |a;,b;] the operators G;(T;) are defined by the holomorphic
functional calculus and ¢(G;(T;)) CS; C T. Let T; = G;(Z;) and suppose the com-
muting 3-isometric 2-tuple T = (7, T») lifts, i.e. there exists an isometry V and a
Jordan tuple J such that

VT = JLT3W.

By Proposition 9 and the projection property there exist unitary operators W; and W,
and an isometry V such that

W1 CW1 0
V=0 W, 0 |V=sV
0 0 W

W, 0 dW,
Vh=[0W 0 |V=hrV
00 W

where ¢(W;) = o(T;). Again each G; is bi-analytic in the neighborhood of the spec-
trum of each J; hence
VI =VG ' (Th) ()V

_ G—l
- Y1
1 1 (40)
V% =VG, () =G, ().

Let A; = G;'(W;) and note (G;')'(W;) = —iW; . Hence,
Al —ic 0

Va=|(0 A4 0|V
0 0 A
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Ay 0 —id
V%B=104, 0 |V,
00 A

with the A; i = 1,2 being commuting self-adjoint operators.

If the spectrum of each Z; does not have length less than 27 we can do the same
analysis on the operators 9 = 1,7 where each t; is chosen so that G(%) is of length
less than 27. As shown in [8] these are also 3-symmetric operators. The Taylor spec-

trum of the 3-symmetric tuple .7 = (91, %) is contained in some [al,bz} [a2,D7]
where each [a;,b;] is of length less than 27r. Again T = (GXP(L%) exp(l%)) is a 3-
isometric tuple and suppose they lift by Theorem 3, i.e. there exists an isometry V' and
Jordan tuple J such that o o
VLT =J' RV
and moreover L
VT; =JV.
By applying the same argument as in (40) we have
VI= fiV
and thus |

Note that .7 and T = exp(i.7) share the same operator pencil. We now need
only prove one additional statement, that with T} = exp(i.7]) and T, = exp(i.Z2) that
T =(T\,T») € §cq forsome c,d > 0. However, this is rather simple. For (s1,s52) € R2,
let

O(s1,8) =1+ 2 s{s’ﬁBjﬁk = exp(isaZ5) " exp(is1 71) " exp(isi 71 ) exp(is2F2).
0<j+k<2

By definition,
exp(inn %)" exp(it; 1) O(s1,s2) exp(it; 71 ) explita 7o) = O(s1 + 11,82+ 12).
Hence by term comparison
exp(ity 75)" exp(it1 71)*Bo 2 exp(ity 71 ) exp(it 75) = By »

and
exp(ita Z5)" exp(it; 71) "By gexplity T1) exp(it2 75) = By p.
If ¢ and d are large enough such that

1

1
I——232.0 BOQ>‘O
c ;

d2
then

. " . N 1 1
exp(it, )" exp(it; 1) <I— c_23270 d2BO 2) exp(ity 71)exp(ity ) =
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The existence of such ¢ and d is easy enough to show, and thus T = (¢/71,¢/%2) =
(T,) €. O

In the context of Helton and Ball’s conjecture 1 we have established a necessary

and sufficient condition in the case {7} has cardinality two. Hence, any attempt to
solve this conjecture will be met with our factoring condition.
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