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Abstract. We define a convex-polynomial to be one that is a convex combination of the mono-
mials {1,z,z2 , . . .} . This paper explores the intimate connection between peaking convex-
polynomials, interpolating convex-polynomials, invariant convex sets, and the dynamics of ma-
trices. In particular, we use these intertwined relations to both prove which matrices are convex-
cyclic while at the same time proving that we can prescribe the values and a finite number of the
derivatives of a convex-polynomial subject to certain natural constraints. These properties are
also equivalent to determining those matrices whose nonempty invariant closed convex sets are
all invariant subspaces.

Our characterization of the convex-cyclic matrices gives a new and correct proof of a
similar result by Rezaei that was stated and proven incorrectly.

1. Introduction

If E is a subset of a vector space X , then the convex hull of E , denoted by co(E) ,
is the set of all convex combinations of elements of E ; that is, all finite linear com-
binations of the elements of E where the coefficients are non-negative and sum to
one. We will let C P denote the convex hull of the set of monomials {1,z,z2,z3, . . .}
within the vector space of all polynomials in z . Thus, CP = co({1,z,z2,z3, . . .}) ={

∑n
k=0 akzk : ak � 0 for all 0 � k � n and ∑n

k=0 ak = 1
}

. Following Rezaei [12], we will
call the elements of CP convex-polynomials.

If T is a continuous linear operator on a locally convex space X and x ∈ X , then
the orbit of x under T is Orb(x,T ) = {Tnx}∞

n=0 = {x,Tx,T 2x, . . .} . A continuous
linear operator T on X is said to be cyclic if there is a vector x ∈ X such that the linear
span of the orbit of x under T is dense in X ; that is if {p(T )x : p is a polynomial}
is dense in X . Following Rezaei [12], we define an operator T to be convex-cyclic if
there is a vector x∈ X such that the convex hull of the orbit of x under T is dense in X ;
that is if {p(T )x : p ∈ CP} is dense in X . Convex-cyclic operators were introduced
by Rezaei [12] and have been studied in [3] and [11]. More generally the dynamics of
matrices have been studied in [1], [5], [6] and in their references.

While the problem of determining which matrices are convex-cyclicwas addressed
in Rezaei [12], an unfortunate oversight was made resulting in an incorrect statement
and proof of the result. While we deduce similar results without the oversight, our focus
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remains on the development of a framework for working with convex polynomials and
matrices and, as a consequence, our proofs and approach are markedly different from
those in Rezaei [12]. Furthermore our techniques can be applied in infinite dimensional
settings as well.

We will prove three main theorems. The first theorem describes which matrices
are convex-cyclic. The characterization is natural and simple: A matrix is convex-cyclic
exactly when it is cyclic and satisfies some necessary conditions on its eigenvalues.

Recall that a matrix T is cyclic precisely when all of its eigenvalues have geomet-
ric multiplicity one; meaning that each of the eigenspaces have dimension one.

The second theorem says that under natural necessary conditions we can prescribe
the values and a finite number of derivatives of a convex-polynomial at certain points.

The third theorem gives a simple condition on the eigenvalues of a matrix so that
each of its nonempty invariant closed convex sets is actually an invariant subspace.
This condition has been given by Elsner [7]. However we use fundamentally different
techniques in our approach, which may also be applied in infinite dimensions. For
proofs of the following three main results see theorems 8.10, 8.11 and 9.2 respectively.

THEOREM 1.1. (Convex-cyclicity of matrices)
The real case: If T is a real n× n matrix, then T is convex-cyclic on Rn if and

only if T is cyclic and its real and complex eigenvalues are contained in C\ (D∪R+) .
If T is convex-cyclic, then the convex-cyclic vectors for T are the same as the cyclic
vectors for T and they form a dense set in Rn .

The complex case: If T is an n×n matrix, then T is convex-cyclic on C
n if and

only if T is cyclic and its eigenvalues {λk}n
k=1 are all contained in C \ (D∪R) and

satisfy λ j �= λ k for all 1 � j,k � n. If T is convex-cyclic, then the convex-cyclic vectors
for T are the same as the cyclic vectors for T and they form a dense set in Cn .

THEOREM 1.2. (Convex-polynomial interpolation) If S = {xk}m
k=1∪{zk}n

k=1 ⊆C

where {xk}m
k=1 ⊆ R and {zk}n

k=1 ⊆ C\R , then the following are equivalent:
(a) for any finite set {y j,k : 0 � j � N,1 � k � m} of real numbers and for any finite

set {wj,k : 0 � j � N,1 � k � n} of complex numbers there exists a convex-polynomial
p such that p( j)(xk) = y j,k for all 0 � j � N and 1 � k � m and p( j)(zk) = wj,k for
all 0 � j � N and 1 � k � n.

(b) The real numbers {xk}m
k=1 are distinct and satisfy {xk}m

k=1 ⊆ (−∞,−1) and the
numbers {zk}n

k=1 are distinct, {zk}n
k=1 ⊆ C\ (D∪R) and z j �= zk for all 1 � j,k � n.

THEOREM 1.3. (Invariant convex sets for matrices)
The complex case: A matrix T acting on Cn has the property that all of its

nonempty invariant closed convex sets are invariant subspaces if and only if the eigen-
values {λk}n

k=1 of T are all contained in C \ (D∪R) and satisfy λ j �= λ k for all
1 � j,k � n.

The real case: A matrix T acting on Rn has the property that all of its nonempty
invariant closed convex sets are invariant subspaces if and only if all of its (real and
complex) eigenvalues are contained in C\ (D∪R

+) .
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These three theorems above are actually all equivalent and we will begin by prov-
ing the first two of them simultaneously in a series of intertwined steps. First we will
construct some convex-polynomialswhich “peak” at a prescribed point in a given finite
set of points. This will then allow us to easily determine which diagonal matrices are
convex-cyclic, from which we will be able to prove an interpolation theorem for the
values (but no derivatives) of a convex-polynomial. That interpolation theorem will
then be used to prove that certain non-diagonalizable matrices are convex-cyclic, which
will give a stronger interpolation theorem. This will, in turn, lead to a larger class of
convex-cyclic matrices, and so forth. This continues until we arrive at the above three
theorems.

2. Convex-polynomials & necessary conditions

If f has a power series that converges near zero, say f (z) = ∑∞
k=0 akzk , then the

coefficients of the series are related to the derivatives of f by ak = f (k)(0)/k! for k �
0. This fact can be used to easily characterize the convex-polynomials and determine
some basic properties of them, as stated in the following proposition. Recall that CP
denotes the set of convex-polynomials.

PROPOSITION 2.1. The following hold:

(1) A polynomial p(z) is a convex-polynomial if and only if p(k)(0) � 0 for all k � 0
and p(1) = 1 .

(2) The set CP is closed under composition and multiplication.

(3) If p is a convex-polynomial, then p(R) ⊆ R , p(D)⊆ D , and p(z) = p(z) for all
z ∈ C . In particular, |p(z)| � 1 whenever |z| � 1 and p ∈ CP .

Throughout the paper we will let R denote the set of real numbers, C the set of
complex numbers, and D the set of complex numbers with absolute value less than one.
Also F will denote either R or C .

2.1. Necessary conditions

Before proceeding, it is useful to provide three simple but illustrative examples
highlighting some necessary conditions.

EXAMPLE 2.2. Let T =
[

λ1 0
0 λ2

]
be a matrix on F2 where F equals R or C .

(1) If T is convex-cyclic, then λ1 �= λ2 .

(2) If T is convex-cyclic, then |λi| > 1 for i = 1,2.

(3) If F = C and T is convex-cyclic, then λ2 �= λ1 .
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Proof. If v =
[
v1

v2

]
and p is a polynomial, then p(T )v =

[
p(λ1)v1

p(λ2)v2

]
.

(1) If λ1 = λ2 = λ , then for any vector v , we have p(T )v = p(λ )v . Thus {p(T )v :
p is a polynomial} is contained in a one-dimensional subspace and is therefore not
dense in F2 . It follows that T is not cyclic, so T is not convex-cyclic either.

(2) If |λi| � 1 for some i , then by Proposition 2.1 for any p ∈ CP we have
|p(λi)| � 1 so |p(λi)vi| � |vi| . Thus, {p(T )v : p ∈ CP} is not dense in F2 for any
vector �v . Thus T is not convex-cyclic.

(3) If F = C and λ2 = λ1 and p∈ CP , then by Proposition 2.1 we have p(λ2) =

p(λ1) = p(λ1) . Thus, p(T )v =
[
p(λ1)v1

p(λ2)v2

]
=
[
p(λ1)v1

p(λ1)v2

]
. In particular, the vector

[
1
0

]
is not in the closure of {p(T )v : p ∈ CP} . So, T is not convex cyclic. �

We will show, in Theorem 5.1, that excluding the above three simple situations,
all other diagonal matrices are convex cyclic. In the paper by H. Rezaei [12], the third
condition above was overlooked.

We next give some necessary conditions that apply not only to matrices, but to
operators on locally convex spaces. Items (1) and (2) below in Proposition 2.3 are more
general versions of items (2) and (3) from Example 2.2 above.

Let σp(T ) denote the point spectrum of the operator T , that is, the set of all
eigenvalues of T .

PROPOSITION 2.3. (Necessary conditions on eigenvalues of T ∗ ) If T is a convex-
cyclic continuous linear operator on a complex locally convex vector space X , then the
following hold:

(1) σp(T ∗)∩ (D∪R) = /0 .

(2) If λ1,λ2 ∈ σp(T ∗) , then λ2 �= λ1 .

If X is a real locally convex space, then σp(T ∗)∩D = /0 .

Proof. Let x be a convex-cyclic vector for T , thus {p(T )x : p ∈ C P} is dense
in X . Also let λ be an eigenvalue for T ∗ with eigenvector v ∈ X∗ . So T ∗v = λv . It
follows that for any polynomial p , p(T ∗)v = p(λ )v . If p is a convex-polynomial, then
p has real coefficients so p(T )∗ = p(T ∗) . So when p ∈ C P we have

〈p(T )x,v〉 = 〈x, p(T )∗v〉 = 〈x, p(T ∗)v〉 = 〈x, p(λ )v〉 = p(λ ) · 〈x,v〉. (∗)

Since {p(T )x : p ∈ CP} is dense in X , it follows that {p(λ )〈x,v〉 : p ∈ CP}
must be dense in C . However, for any convex-polynomial p we have that p(R) ⊆ R

and p(D) ⊆ D , so it follows that if λ ∈ (D∪R) , then {p(λ )〈x,v〉 : p ∈ C P} is not
dense in C . Thus (1) holds.

To see that (2) holds suppose, by way of contradiction, that λ1,λ2 ∈ σp(T ∗) and
that λ2 = λ1 . Let λ := λ2 = λ1 . Then both λ and λ are eigenvalues for T ∗ . Let
v1 and v2 be eigenvectors for T ∗ with eigenvalues λ and λ respectively. By (1) we
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know that λ /∈R , thus λ �= λ . It follows that v1 and v2 are linearly independent. From
(∗) above we know that for every p ∈ CP we have

[〈p(T )x,v1〉
〈p(T )x,v2〉

]
=

[
p(λ ) · 〈x,v1〉
p(λ ) · 〈x,v2〉

]
=
[
p(λ ) · 〈x,v1〉
p(λ ) · 〈x,v2〉

]
(∗∗)

where p(λ ) = p(λ ) since p has real coefficients. Now since {p(T )x : p ∈ CP} is
dense in X and v1 and v2 are linearly independent it follows that as p varies over
all convex-polynomials that the left hand side of (∗∗) is dense in C2 . However, as p
varies over all convex-polynomials the right hand side of (∗∗) is not dense in C2 (if
one coordinate is small in absolute value the other coordinate will also be small). This
is a contradiction. It follows that (2) holds. In the case of a real locally convex space,
the proofs are similar. �

Next we sketch a proof of a theorem that describes which matrices are cyclic. The
reader will see similarities and differences in the proof techniques used in the following
theorem and in the proof techniques used throughout this paper. We will prove the
following result for complex matrices, the real version is similar and could be handled
through complexification (see section 8).

THEOREM 2.4. (Characterizing cyclic matrices) An n×n matrix T acting on C
n

is cyclic if and only if each eigenvalue of T has geometric multiplicity one.

Sketch of proof. Let J be the Jordan form for T (see section 7 for some basic
properties and notation on Jordan forms). Since cyclicity is a similarity invariant, T
is cyclic if and only if J is cyclic. Suppose that every eigenvalue of T has geo-
metric multiplicity one, then the same is true for J and thus distinct Jordan blocks
in J have distinct eigenvalues (since the geometric multiplicity of an eigenvalue of
J is equal to the number of Jordan blocks in which that eigenvalue appears). Thus
J =

⊕N
k=1 Jmk(λk) where λk �= λ j when k �= j . Now let v = (em1,1,em2,1, . . . ,emN ,1)

where em,k = (0,0, . . . ,1,0, . . . ,0) is the unit basis vector of length m with a 1 in the
kth position. Now from Proposition 7.1 we see that

p(J)v = (p(λ1), . . . , p(m1)(λ1), p(λ2), . . . , p(m2)(λ2), . . . , p(λN), . . . , p(mN )(λN)).

In order to show that J is cyclic with cyclic vector v , we must show that {p(J)v : p =
a polynomial} is dense in CM , where M = ∑N

k=1 mk . This will be true (in fact not
only will the above set be dense in C

M it will actually be equal to C
M ) if we can find

polynomials p with prescribed values and prescribed derivatives at the points {λk}N
k=1 .

It’s well known that one can find (Hermite) polynomials with prescribed values and
prescribed derivatives at a finite number of points. It follows that J is cyclic with cyclic
vector v . Hence T is also cyclic, as it is similar to J . We leave the converse to the
reader. �

In the above proof we used the well known fact that there exists polynomials that
have prescribed values and prescribed derivatives at a given finite set of points. As we
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proceed to characterize the convex-cyclic matrices, we do not have access to interpolat-
ing convex-polynomials, as such we will prove the existence of interpolating convex-
polynomials simultaenously as we characterize the convex-cyclic matrices. When we
finish we will know when interpolating convex-polynomials exist and which matrices
are convex-cyclic.

3. Dense convex sets & the Hahn-Banach theorem

The following result is a fundamental tool for studying convex-cyclic operators.

THEOREM 3.1. (A criterion for a convex set to be dense) If C is a convex set in a
locally convex linear space X , then C is dense in X if and only if for every non-zero
continuous linear functional f on X we have that supx∈C Re( f (x)) = ∞ . Furthermore
if S ⊆C and the convex hull of S is dense in C, then

sup
x∈C

Re( f (x)) = sup
x∈S

Re( f (x)).

The previous result is a simple consequence of the geometric form of the Hahn-
Banach Theorem which says that whenever a point does not belong to a closed convex
set, then the point and the convex set can be strictly separated by a real hyperplane. See
[4, Theorem 3.13, p. 111].

A vector x ∈ X is a convex-cyclic vector for T if co(Orb(x,T )) is dense in X .
The following result was obtained by Bermúdez, Bonilla, and Feldman in [3].

COROLLARY 3.2. (Hahn-Banach characterization of convex-cyclicity) Let X be
a locally convex space over the real or complex numbers, T : X → X a continuous
linear operator, and x ∈ X . Then the following are equivalent:

(1) The vector x is a convex-cyclic vector for T .

(2) For every non-zero continuous linear functional f on X we have

sup
n�0

Re[ f (Tnx)] = ∞.

(3) For every non-zero continuous linear functional f on X we have

sup{Re[ f (p(T )x)] : p ∈ C P} = ∞.

Proof. Apply Theorem 3.1 where C is the convex hull of the orbit of x . �

Next we use the above Hahn-Banach characterization to establish a condition for
the direct sum of two convex-cyclic operators to be convex-cyclic.

A set E is bounded in a locally convex space X if for every neighborhood U of
zero there is a c > 0 such that E ⊆ cU . This is equivalent to being weakly bounded
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which says that f (E) is a bounded set of scalars for every continuous linear functional
f on X .

We will say that a continuous linear operator T on a locally convex space is power
bounded if all of the orbits of T are bounded sets. This is consistent with the notion of
power boundedness on a Banach space.

Let F denote either R or C .

PROPOSITION 3.3. (Direct sums of convex-cyclic operators) Let T1 and T2 be con-
vex-cyclic continuous linear operators on locally convex spaces X1 and X2 over F . If
there exists a convex-polynomial p0 such that p0(T1) is convex-cyclic and p0(T2) is
power bounded, then T1⊕T2 is convex-cyclic on X1 ⊕X2 .

Furthermore, if u1 is a convex-cyclic vector for p0(T1) and u2 is a convex-cyclic
vector for T2 , then �u = (u1,u2) ∈ X1⊕X2 is a convex-cyclic vector for T1⊕T2 .

NOTATION. If x ∈ X and f ∈ X∗ we will use both 〈x, f 〉 and f (x) to denote the
value of f acting on the vector x .

Proof. Let T = T1 ⊕ T2 , X = X1 ⊕X2 , and let p0 be a convex-polynomial such
that p0(T1) is convex-cyclic and p0(T2) is power bounded. Also let �f = ( f1, f2) ∈
X∗ \{0}= (X∗

1 ⊕X∗
2 )\{0} and let �u = (u1,u2) ∈ X be a vector where u1 is a convex-

cyclic vector for p0(T1) and u2 is a convex-cyclic vector for T2 . We must show that
sup

p∈CP
Re〈p(T )�u, �f 〉 = ∞ .

Case 1: f1 = 0.
In this case, note that f2 �= 0 since �f �=�0, and thus we have

sup
p∈CP

Re〈p(T )�u, �f 〉 = sup
p∈CP

Re [〈p(T1)u1, f1〉+ 〈p(T2)u2, f2〉] (1)

= sup
p∈CP

Re〈p(T2)u2, f2〉 = ∞.

The last supremum above is infinite by Corollary 3.2, since T2 is convex-cyclic, u2 is
a convex-cyclic vector for T2 and f2 �= 0.

Case 2: f1 �= 0.
Again we must show that sup

p∈CP
Re〈p(T )�u, �f 〉 = ∞ . Using the fact that u1 is a

convex-cyclic vector for p0(T1) and that p0(T2) is power bounded we have

sup
p∈CP

Re〈p(T )�u, �f 〉 � sup
n�1

Re〈p0(T )n�u, �f 〉

= sup
n�1

[Re〈p0(T1)nu1, f1〉+Re〈p0(T2)nu2, f2〉] = ∞.

The last equality above holds by Corollary 3.2 since u1 is a convex-cyclic vector
for p0(T1) and p0(T2) is power bounded. The last condition implies that the quantity
supn�1 |〈p0(T2)nx, �f 〉| < ∞ . Also since u1 is a convex-cyclic vector for p0(T1) and
f1 �= 0 then by Corollary 3.2 we have that the quantity supn�1 Re〈p0(T1)nu1, f1〉 = ∞.
The theorem now follows. �

The previous theorem will be useful in showing that block diagonal matrices are
convex-cyclic when each block is convex-cyclic.
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4. Peaking convex-polynomials

If T ⊆ C and f : T → C is a bounded function defined on T , then we say that f
peaks on T if | f | attains it supremum on T at a unique point in T . That is, f peaks
on T if there exists an x0 ∈ T such that | f (x0)|> | f (x)| for all x ∈ T \{x0} . If S ⊆ T ,
then we will say that f : T → C peaks on T at a point in S if there exists an x0 ∈ S
such that | f (x0)| > | f (x)| for all x ∈ T \ {x0} .

For a bounded function f : T → C let ‖ f‖T := sup{| f (x)| : x ∈ T} .
For 0 � α � 1, let

pα(z) = αz+(1−α)

and notice that pα is a convex polynomial. Also, given a non-negative integer m and
0 � α � 1 define the polynomials

pm,α(z) = zmpα(z) = zm(αz+(1−α)) = αzm+1 +(1−α)zm.

Note that pm,α is a convex-polynomial since it is a product of two convex-polyno-
mials, also because it is simply a convex combination of zm and zm+1 .

THEOREM 4.1. (Peaking convex-polynomials) If S = {zk}N
k=1 is a finite set of

complex numbers satisfying:

(1) the points in S are distinct;

(2) R = max{|z| : z ∈ S} > 1 ; and

(3) z j �= zk whenever |z j| = |zk| = R and j �= k ,

then the following holds: for every α ∈ (0,1) , except possibly one, there exists a K > 0
such that for all m � K the convex-polynomial pm,α(z) = zm(αz+1−α) peaks on S at
some point zk0 ∈ S satisfying |zk0 | = R and ‖pm,α‖S = cαRm where cα = max{|αzk +
(1−α)| : |zk| = R} . Moreover if S∩R = /0 and m � 0 , then for all but finitely many
α ∈ (0,1) we have pm,α(S)∩R = /0 .

Proof. Let S = {zk}N
k=1 , R = ‖z‖S = max{|z| : z ∈ S} , T1 = {zk : |zk| = R} , and

T2 = S \T1 = {zk : |zk| < R} . Note that by (2) in our hypothesis we have that R > 1.
Let 0 < α < 1 and pα(z) = αz+(1−α) and note that |pα(z)| = α · ∣∣z− α−1

α
∣∣ is

α times the distance from z to α−1
α and α−1

α < 0. Consider ‖pα‖T1 and ‖pα‖T2 . In
both cases |pα | attains its absolute maximum on the given set at a point of that set that
is the greatest distance away from α−1

α . If zk ∈ T1 and zk = Reiθk , then

|pα(zk)|2 = |αzk +(1−α)|2 = |αReiθk +1−α|2

=
(

αRcos(θk)+1−α
)2

+ α2R2 sin2(θk)

= α2R2 cos2(θk)+2αRcos(θk)(1−α)+ (1−α)2 + α2R2 sin2(θk)

= α2R2 +(1−α)2 +2α(1−α)Rcos(θk).
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Recall z j �= zk for all 1 � j,k � N with j �= k and |z j| = |zk| = R . Thus, for
any z j,zk ∈ T1 with j �= k we must have Re(z j) �= Re(zk) , thus Rcos(θk) = Re(zk) �=
Re(z j) = Rcos(θ j) . Hence there is a unique zk0 ∈ T1 , independent of α , for which
2α(1−α)Rcos(θk) is a maximum and therefore pα peaks on T1 at zk0 , that is, ‖pα‖T1

= |pα(zk0)| > |pα(z)| for all z ∈ T1 \ {zk0} .
If ‖pα‖T2 < ‖pα‖T1 , then we are done since then pα , and hence also every pm,α ,

peaks on S = T1 ∪T2 at zk0 . If ‖pα‖T2 � ‖pα‖T1 , then let M = max{|z j| : j ∈ T2} and
note that 0 � M < R by the definition of T2 . Thus, since R > 1 and ‖pα‖T1 > 0, for
all α ∈ (0,1) with α−1

α �= zk0 , there exists a K ∈ N such that for all m � K ,

Mm‖pα‖T2 < Rm‖pα‖T1 .

Clearly pm,α(z)= zmpα(z)= zm(αz+1−α) is a convex polynomial and since |pm,α(z)|
= Rm|pα(z)| for z ∈ T1 and pα peaks on T1 at zk0 ,

Rm‖pα‖T1 = Rm|pα(zk0)| = |pm,α(zk0)|.

For z ∈ T2 , we have

|pm,α(z)| � Mm‖pα‖T2 < Rm‖pα‖T1 = |pm,α(zk0)|.

Thus pm,α peaks on S = T1∪T2 at zk0 . It follows that

‖pm,α‖S = |pm,α(zk0)| = |zk0 |m|pα(zk0)| = Rm max
|zk|=R

|αzk +(1−α)|.

Finally, notice that if zk ∈ S \R , then pm,α(zk) = αzm+1
k +(1−α)zm

k , thus pm,α (zk) is
a convex combination of zm

k and zm+1
k and since zk /∈ R , at most one of zm

k and zm+1
k

is a real number. It follows that at most one point on the line segment between zm
k and

zm+1
k can be real. Thus there is at most one αk ∈ (0,1) such that pm,αk (zk) is a real

number. Thus if α ∈ (0,1)\ {α1, . . . ,αN} , then pm,α(zk) /∈ R for all k . �

LEMMA 4.2. (A one variable Growth lemma) Let {Mn} be a sequence of real num-
bers with limMn = +∞ , {εn} a sequence of complex numbers with lim |εn| = 0 , and
w a nonzero complex number. If θ is not an integer multiple of π , then there exists a
subsequence {nk} of positive integers such that

lim
k→∞

MnkRe
(

εnk + einkθ w
)

= +∞.

Proof. Writing w as |w|eiα , we see that einθw = |w|ei(nθ+α) . Since θ is not an
integer multiple of π , either θ is an irrational multiple of π or θ is a non-integer ratio-
nal multiple of π . In the first instance, Kronecker’s theorem implies that {ei(nθ+α)} is
dense in the unit circle. Thus there is a subsequence {nk} such that Re(ei(nkθ+α)) > 1

2 .

If θ is a non-integer rational multiple p
q of π , then the points ei(n p

q π+α) for n =
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1,2, · · · ,2q are evenly distributed about the unit circle. Hence there is an integer n0 � 2q

such that 0 < Re
(
ei(n0

p
q π+α)

)
� 1. Letting nk = n0 +2qk we see that, for all k ,

0 < Re(ei(nk
p
q π+α)) = Re(ei(n0

p
q π+α)) � 1.

Hence in all cases, we can assert that there exists a subsequence {nk} and a fixed δ > 0
such that Re(|w|ei(nkθ+α)) > δ . Since lim |εn| = 0 and limMn = +∞ , for a given
R > 0, there exists an N ∈ N such that for all k > N we have |εnk |< δ/2 and Mnk > R .
Thus,

MnkRe
(

εnk + einkθ w
)

> R(−δ/2+ δ ) > Rδ/2.

The lemma is now immediate as we may choose R to be arbitrarily large. �

5. Convex-cyclic diagonal matrices

THEOREM 5.1. (Diagonal matrices)
The complex case: If T = diag(λ1,λ2, . . . ,λN) is a diagonal matrix on CN , then

T is convex-cyclic if and only if the following hold:

(1) the diagonal entries {λk}N
k=1 are distinct;

(2) {λk}N
k=1 ⊆ C\ (D∪R)

(3) λ j �= λk for all 1 � j,k � N .

The real case: If T = diag(λ1,λ2, . . . ,λN) is a diagonal matrix on RN , then T is
convex-cyclic if and only if the following hold:

(1) the diagonal entries {λk}N
k=1 are distinct;

(2) λk < −1 for all 1 � k � N ;

Furthermore, in both cases, the convex-cyclic vectors for T are precisely those
vectors �v for which every coordinate of �v is non-zero; and such vectors are dense in
CN or RN .

Notice that condition (3) above says that the eigenvalues of T cannot come in
conjugate pairs and that none of them can be real numbers.

Proof. The complex case: Let �v = (1,1, . . . ,1) ∈ CN . We begin by showing that �v
is a convex-cyclic vector for T under the stated assumptions. According to the Hahn-
Banach Criterion we must show that

sup
p∈CP

Re
〈
p(T )�v, �f

〉
= ∞
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for every nonzero �f = ( f1, f2, . . . , fN) ∈ CN . Notice that

Re
〈
p(T )�v, �f

〉
= Re

(
p(λ1) f1 + p(λ2) f2 + · · ·+ p(λN) fN

)
(1)

= Re
N

∑
k=1

p(λk) fk = Re ∑
k∈A

p(λk) fk

where A = {k : fk �= 0} . Now by our hypotheses we see that the subset {λk : k ∈
A} of the eigenvalues satisfies the hypothesis of Theorem 4.1, thus there is a convex-
polynomial p such that p peaks on the set {λk : k ∈ A} at a point λ j where j ∈ A , and
p satisfies m := |p(λ j)| > 1, and p(λ j) is not a real number.

Now consider the sequence of convex-polynomials {p(z)n}∞
n=1 . Referring to (1)

and writing
p(λ j)
|p(λ j | = eiθ where θ is not an integer multiple of π , we have

Re〈p(T )n�v, �f 〉 = Re ∑
k∈A

p(λk)n · fk = mn ·Re

[
∑
k∈A

(
p(λk)

m

)n

· fk

]

= mn ·Re

[
einθ f j + ∑

k∈A,k �= j

(
p(λk)

m

)n

· fk

]
= mnRe[einθ f j + εn]

where εn → 0 (as n→∞) since
∣∣∣ p(λk)

m

∣∣∣< 1 for all k∈A , k �= j . Since m > 1, mn →∞ .

Since θ is not a multiple of π , Lemma 4.2 implies that supn�1 mnRe[einθ f j + εn] = ∞
and thus supn�1 Re〈p(T )n�v, �f 〉 = ∞ as desired. It now follows that T is convex-cyclic
with convex-cyclic vector �v = (1,1, . . . ,1) .

The real case: The proof is essentially the same as the complex case but with
the simplification that Theorem 4.1 and Lemma 4.2 are not needed. Clearly C is ev-
erywhere replaced with R . With A = {k : fk �= 0} , the subset {|λk| : k ∈ A} of the
eigenvalues has a unique maximum at some λ j . Thus the convex polynomial p(x) = x
peaks at λ j and m := |p(λ j)| = |λ j| > 1. Hence

〈Tn�v, �f 〉 = ∑
k∈A

λ n
k · fk = mn · ∑

k∈A

(
λk

m

)n

· fk = mn(−1)n f j + ∑
k∈A,k �= j

(
λk

m

)n

· fk.

Choosing nk , all even or all odd, such that (−1)nk f j > 0 for all k and noting that each

of the terms
(

λk
m

)n · fk goes to zero as n → ∞ , we see that supn�1〈Tn�v, �f 〉 = ∞ which

implies that T is convex-cyclic. The remainder of the proof is identical.
The convex-cyclic vectors: To describe the convex-cyclic vectors for T , in both

the real and complex cases, it is clear that every component of a convex-cyclic vector
must be non-zero. For the converse, let D be any diagonal invertible matrix. Then D
commutes with T and has dense range (in fact it’s onto), from this it follows that since
�v = (1,1, . . . ,1) is a convex-cyclic vector for T , then Dv is also a convex-cyclic vector
for T . Since D can be any invertible diagonal matrix, it follows that Dv can be any
vector all of whose coordinates are non-zero. Thus all such vectors are convex-cyclic
vectors for T .
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To see that the stated conditions are necessary see Example 2.2 and Proposi-
tion 2.3. �

The following corollary is the case where all the diagonal entries in the diagonal
matrix T in Theorem 5.1 have absolute value equal to r , but they cannot be real or
complex conjugates of one another. This is the difficult case in proving Theorem 5.1
which we were able to avoid by making use of peaking convex-polynomials. The N = 2
case of the next lemma is related to the One-Variable Growth Lemma (see Lemma 4.2)
which uses Kronecker’s Theorem.

COROLLARY 5.2. (A multivariable Growth lemma) If { fk}N
k=1 are complex num-

bers, not all zero, r > 1 , {θk}N
k=1 are real numbers satisfying θi �=±θ j (mod 2π) when

i �= j and satisfying θ j �= nπ for n ∈ Z and all 1 � j � N , then

sup
n�1

rn ·Re

(
N

∑
k=1

einθk fk

)
= ∞.

Proof. Let T be the diagonal matrix with λk = reiθk as its kth diagonal entry.
Our hypothesis tells us that the {λk}N

k=1 are distinct, have absolute value greater than
one, and no two of them are complex conjugates of each other and none of them are
real. Thus Theorem 5.1 implies that T is convex-cyclic with convex-cyclic vector �v =
(1,1, . . . ,1) , thus with �f = ( f1, . . . , fN) �=�0 we must have supn�1 Re〈Tn�v, �f 〉= ∞ . �

6. Interpolating convex-polynomials

LEMMA 6.1. (Dense convex sets) If C is a dense convex set in a finite dimen-
sional real or complex Hausdorff topological vector space X , then C = X .

Proof. Here is the idea of the proof in Rn . Let �v = (v1,v2, . . . ,vn) ∈ Rn . Clearly,
�v lies in the interior of an n -cell (a product of intervals) in R

n . Now since C is dense
in Rn we may approximate each of the 2n vertices of this n -cell sufficiently close
by vectors {�xk : 1 � k � 2n} in C so that �v lies in the interior of the convex hull of
{�xk : 1 � k � 2n} . However since C is convex we have that �v ∈ co({�xk}) ⊆C . Since �v
was arbitrary in Rn we have that C = Rn . A similar proof works in Cn and every real
or complex finite dimensional vector space is isomorphic to Rn or Cn , so the Lemma
follows. �

THEOREM 6.2. (Interpolating prescribed values)
The complex case: If {zk}n

k=1 are distinct complex numbers satisfying

(1) {zk}n
k=1 ⊆ C\ (D∪R)

(2) zk �= z j for all 1 � j,k � n,
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then for any finite set of complex numbers {wk}n
k=1 , there exists a convex-polynomial

p such that p(zk) = wk for all 1 � k � n.
The real case: If {xk}n

k=1 are distinct real numbers satisfying xk <−1 for all 1 �
k � n and {yk}n

k=1 is a finite set of real numbers, then there exists a convex-polynomial
p such that p(xk) = yk for all 1 � k � n.

Proof. The complex case: Let C be the set of all vectors (w1,w2, . . . ,wn) ∈ Cn

such that there exists a convex-polynomial p satisfying p(zk) = wk for all 1 � k � n .
Then C is a convex subset of Cn . We want to show that C = Cn . Let T be the
diagonal matrix with diagonal entries (z1,z2, . . . ,zn) . Then conditions (1) and (2) in
our hypothesis together with Theorem 5.1 imply that the matrix T is convex-cyclic and
the vector �v = (1,1, . . . ,1) is a convex cyclic vector for T . It follows that {p(T )�v : p ∈
CP} is dense in Cn . Since p(T )�v =

(
p(z1), p(z2), . . . , p(zn)

)
we see that the set C

of values which can be interpolated is a dense subset of C
n . However, by Lemma 6.1

a dense convex subset C of Cn is equal to Cn , as desired. The proof of the real case is
similar. �

7. Convex-cyclic Jordan matrices

Recall that the k× k lower Jordan block with eigenvalue λ , denoted by Jk(λ ) , is
a k× k matrix with λ along the main diagonal and ones along the subdiagonal, and
zeros elsewhere. Below is J4(λ ) .

J4(λ ) =

⎡
⎢⎢⎣

λ 0 0 0
1 λ 0 0
0 1 λ 0
0 0 1 λ

⎤
⎥⎥⎦ .

Powers of the matrix Jk(λ ) follow a simple pattern:

J4(λ )n =

⎡
⎢⎢⎣

λ n 0 0 0
nλ n−1 λ n 0 0

n(n−1)
2 λ n−2 nλ n−1 λ n 0

n(n−1)(n−2)
3! λ n−3 n(n−1)

2 λ n−2 nλ n−1 λ n

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

λ n 0 0 0(n
1

)
λ n−1 λ n 0 0(n

2

)
λ n−2

(n
1

)
λ n−1 λ n 0(n

3

)
λ n−3

(n
2

)
λ n−2

(n
1

)
λ n−1 λ n

⎤
⎥⎥⎦

The terms down the first column are simply 1
k! p

(k)(λ ) where p(z) = zn and the matrix
is a lower-triangular Toeplitz matrix (constant along the diagonals). Note also that the
coefficient of λ n− j is

(n
j

)
. In fact if p is any polynomial (or entire function), then the

same pattern applies
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PROPOSITION 7.1. If n � 1 and p is a polynomial, then p(Jn(λ )) is a lower
triangular Toeplitz matrix of the following form:

p(Jn(λ )) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(λ ) 0 . . . 0 0 0
p′(λ ) p(λ ) 0 . . . 0 0
p(2)(λ )

2! p′(λ ) p(λ ) 0 . . . 0
...

... p′(λ )
. . . 0 0

p(n−2)(λ )
(n−2)!

p(n−3)(λ )
(n−3)! . . . p′(λ ) p(λ ) 0

p(n−1)(λ )
(n−1)!

p(n−2)(λ )
(n−2)! . . . p(2)(λ )

2! p′(λ ) p(λ )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

In particular, p(Jn(λ )) = 0 if and only if p( j)(λ ) = 0 for all 0 � j � n− 1 ; in
other words, if and only if p has a zero of order n at λ .

Every complex n×n matrix T is similar to a Jordan matrix which is a direct sum
of Jordan blocks Jk(λ ) of various sizes. Given a positive integer N , let eN,k be the unit
basis vector of length N with a one in the kth position.

PROPOSITION 7.2. (Convex-cyclic Jordan blocks)
The complex case: For λ ∈ C the Jordan block Jm(λ ) is convex-cyclic on Cm

if and only if λ ∈ C \ (D∪R) . Furthermore, a vector �v = (v1,v2, . . . ,vm) ∈ Cm is a
convex-cyclic vector for Jm(λ ) if and only if �v is a cyclic vector for Jm(λ ) , which
holds, if and only if v1 �= 0 .

The real case: For λ ∈ R the Jordan block Jm(λ ) is convex-cyclic on Rm if and
only if λ < −1 . Furthermore, a vector �v = (v1,v2, . . . ,vm) ∈ R

m is a convex-cyclic
vector for Jm(λ ) if and only if �v is a cyclic vector for Jm(λ ) , which holds if and only
if v1 �= 0 .

Proof. The complex case: If Jm(λ ) is convex-cyclic, then by Proposition 2.3 we
know that |λ |> 1 and λ /∈ R . Now suppose that |λ |> 1 and λ /∈ R and we will show
that Jm(λ ) is convex-cyclic. Let �e1 = (1,0,0, . . . ,0) ∈ Cm . We’ll begin by showing
that �e1 is a convex-cyclic vector for Jm(λ ) and then afterwards show that other vectors
are also convex-cyclic vectors. First write λ = reiθ where r > 1 and θ is not an integer
multiple of π . Let �f = ( f1, f2, . . . , fm) ∈ Cm \ {�0} . We must show that

sup
n�1

Re
〈
Jm(λ )n�e1, �f

〉
= ∞.

Let j be the largest integer such that f j �= 0 and we will factor out
( n

j−1

)
rn−( j−1) in the

expression below.

Re
〈
Jm(λ )n�e1, �f

〉
= Re

j−1

∑
k=0

(
n
k

)
λ n−k · f k+1

=Re

[(
n
0

)
λ n · f 1+

(
n
1

)
λ n−1 · f 2+ · · ·+

(
n

j−2

)
λ n−( j−2) · f j−1+

(
n

j−1

)
λ n−( j−1) · f j

]
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=
(

n
j−1

)
rn−( j−1) ·Re

[(
j−2

∑
k=0

(n
k

)( n
j−1

) r j−k−1ei(n−k)θ · f k+1

)
+ ei(n−( j−1))θ · f j

]

Note that for n � 2m the sequence
{(n

k

)}m
k=0 is increasing (since the rows of

Pascal’s triangle first increase, then decrease), thus for large n (n � 2 j) we have that
(n

k)
( n

j−1)
→ 0 as n→∞ in the sum above since 0� k < j−1< n/2. Also,

( n
j−1

)
rn−( j−1) →

∞ as n→∞ since r > 1, thus Lemma 4.2 implies that there is a subsequence {nk} such
that

lim
k→∞

Re
〈
Jm(λ )nk�e1, �f

〉
= ∞.

It follows that Jm(λ ) is convex-cyclicwith convex-cyclic vector �e1 = (1,0,0, . . . ,0) .
In order to prove the last claim of the theorem, let �v = (v1,v2, . . . ,vm) ∈ C

m with
v1 �= 0 and we will show that �v is a convex-cyclic vector for Jm(λ ) . Let p be the
polynomial p(z) = ∑m−1

k=0 vk+1zk and consider the finite Toeplitz matrices T and S given
below:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 0 0 · · · 0

v2 v1 0
. . .

...

v3 v2
. . .

. . . 0
...

. . .
. . .

. . . 0

vm
. . . v3 v2 v1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

1 0 0
. . .

...

0 1
. . .

. . . 0
...

. . .
. . .

. . . 0

0
. . . 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note the finite Toeplitz matrices T and Jm(λ ) are both polynomials in S , so they
commute. Also, T is invertible since v1 �= 0.

We showed above that �e1 = (1,0,0, . . . ,0) ∈ Cm is a convex-cyclic vector for
Jm(λ ) . Hence T�e1 = (v1,v2, . . . ,vm) is also a convex-cyclic vector for Jm(λ ) since
p(Jm(λ ))T�e1 = T p(Jm(λ ))�e1 for any convex-polynomial p and T being invertible
means that T maps a dense set to a dense set.

Conversely, if �v = (0,v2, . . . ,vm) ∈ Cm , then from (1) we see that for any polyno-
mial p , p(Jm(λ ))�v = (0,w2,w3, . . . ,wm) for some scalars {wk}m

k=2 . Thus {p(Jm(λ ))�v :
p is a polynomial} cannot be dense in Cm , thus �v is not a cyclic vector for Jm(λ ) .

The real case: This is entirely similar to the complex case with C replaced by R

throughout and λ = −r where r > 1. Lemma 4.2 is not required as

〈
Jm(λ )n�e1, �f

〉
=

j−1

∑
k=0

(
n
k

)
(−r)n−k · fk+1

=
(

n
j−1

)
rn−( j−1) ·

[(
j−2

∑
k=0

(n
k

)( n
j−1

) r j−k−1(−1)(n−k) · fk+1

)
+(−1)(n−( j−1)) · f j

]
.

As above
(n

k)
( n

j−1)
→ 0 as n → ∞ since 0 � k < j−1 < n/2. So

〈
Jm(λ )n�e1, �f

〉
→ ∞ for

a subsequence of {n}∞
n=1 chosen so that (−1)(n−( j−1)) · f j = | f j| > 0. The remainder

of the proof is exactly the same as the complex case. �
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Now we consider the direct sum of a diagonal matrix and an m×m Jordan block.

THEOREM 7.3. (Diagonal matrix direct sum a Jordan block)
The complex case: Suppose T = D⊕J where D = diag(λ1,λ2, . . . ,λN) is a diago-

nal matrix on C
N and J = Jm(λN+1) is an m×m Jordan block, m � 1 , with eigenvalue

λN+1 , then T is convex-cyclic if and only if the following hold:

(1) the eigenvalues {λk}N+1
k=1 are distinct;

(2) {λk}N+1
k=1 ⊆ C\ (D∪R);

(3) λ j �= λk for all 1 � j,k � N +1 .

The real case: Suppose T = D⊕ J where D = diag(λ1,λ2, . . . ,λN) is a diagonal
matrix on RN and J = Jm(λN+1) is an m×m Jordan block, m � 1 , with eigenvalue
λN+1 , then T is convex-cyclic if and only if the following hold:

(1) the eigenvalues {λk}N+1
k=1 are distinct;

(2) λk < −1 for all 1 � k � N +1 .

Furthermore, in both the real and complex cases the convex-cyclic vectors for T
are precisely those vectors �w = (u1,u2, . . . ,uN ,v1,v2, . . . ,vm) = (�u,�v) for which uk �= 0
for all 1 � k � N and v1 �= 0 . That is, �w is convex-cyclic for T if and only if �u is a
cyclic vector for D and �v is a cyclic vector for J .

Proof. The complex case: First note that J is convex-cyclic by Proposition 7.2 and
D is convex cyclic by Theorem 5.1. We will apply Proposition 3.3, for which it suffices
to find a convex-polynomial p0 such that p0(D) is convex-cyclic and p0(J) = 0. By

Theorem 6.2, there is a convex-polynomial q such that q(λk) = 2kei
√

2·π for 1 � k � N
and q(λN+1) = 0. Let p0(z) = q(z)m . Then |p0(λk)| = 2mkm > 1 for all 1 � k �
N , p0(λk) = 2mkmeim

√
2·π is not a real number, and clearly p0(λ j) is not equal to

p0(λk) for 1 � j,k � N since they have different absolute values. It then follows from
Theorem 5.1 that p0(D) is convex-cyclic. Since q(z) has a zero at λN+1 , p0(z) = q(z)m

has a zero of order m at λN+1 . Thus p( j)
0 (λN+1) = 0 for all 0 � j � m− 1. Since

J = Jm(λN+1) is an m×m Jordan block, Proposition 7.1 implies p0(J) = 0. It now
follows from Proposition 3.3 that T = D⊕ J is convex-cyclic.

It also follows from Proposition 3.3 that if �u is a convex-cyclic vector for p0(D)
and �v is a convex-cyclic vector for J , then (�u,�v) is a convex-cyclic vector for T .
From Theorem 5.1 we see that any vector �u all of whose coordinates are non-zero is
a convex-cyclic vector for p0(D) . Also by Proposition 7.2 we see that any vector �v
whose first coordinate is non-zero is a convex-cyclic vector for J . Thus such vectors
(�u,�v) are convex-cyclic for T . These conditions are also clearly necessary for a vector
to be convex-cyclic for T .

The real case: The proof is similar to the complex case, except now choose q so
that q(λk) = −2k for 1 � k � N and q(λN+1) = 0. Then choose an odd integer r � m
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and let p0(x) = q(x)r . Then {p0(λk)}N
k=1 are distinct and p0(λk) = (−2k)r < −1 for

all 1 � k � N , which implies that p0(D) is convex-cyclic (see Theorem 5.1). Also p0

has a zero of order at least r (� m) at λN+1 so p0(J) = 0 by Proposition 7.1 . It now
follows from Proposition 3.3 that T is convex-cyclic. The rest of the proof is the same
as in the complex case. For necessity see Example 2.2 and Proposition 2.3. �

THEOREM 7.4. (Interpolating values & derivatives at one point)
The complex case: If {zk}n+1

k=1 are distinct complex numbers satisfying

(1) {zk}n+1
k=1 ⊆ C\ (D∪R); and

(2) z j �= zk for all 1 � j,k � n+1 ,

then for any finite set of complex numbers {w0,k}n+1
k=1 ∪ {wj,n+1}m

j=1 there exists a

convex-polynomial p such that p(zk) = p(0)(zk) = w0,k for all 1 � k � n + 1 and
p( j)(zn+1) = wj,n+1 for 1 � j � m.

The real case: If {xk}n+1
k=1 are distinct real numbers satisfying xk < −1 for all 1 �

k � n+ 1 and {y0,k}n+1
k=1 ∪{y j,n+1}m

j=1 is a finite set of real numbers, then there exists

a convex-polynomial p such that p(xk) = y0,k for all 1 � k � n+1 and p( j)(xn+1) =
y j,n+1 for 1 � j � m.

Proof. Let C1 be the set of all vectors in Cn+1+m of the form

(w0,1,w0,2, . . . ,w0,n+1,w1,n+1,w2,n+1, . . . ,wm,n+1)

such that there exists a convex-polynomial p satisfying p(zk) = w0,k for 1 � k � n+1
and such that p( j)(zn+1) = wj,n+1 for 1 � j � m . Then C1 is a convex subset of
C

n+1+m . We want to show that C1 = C
n+1+m . Let D1 be the n× n diagonal matrix

with diagonal entries (z1,z2, . . . ,zn) and let Jm(zn+1) be the m×m Jordan block with
eigenvalue zn+1 . Since conditions (1) and (2) hold, then by Theorem 7.3 the matrix
T = D1⊕Jm(zn+1) is convex-cyclic and the vector �v = (�v1,�v2) = (1,1, . . . ,1,0,0, . . . ,0)
where �v1 = (1, . . . ,1) ∈ Cn+1 and �v2 = (1,0,0, . . . ,0) ∈ Cm is a convex cyclic vector
for T . It follows that C2 := {p(T )�v : p∈C P} is dense in Cn+1+m . By Proposition 7.1
we know that

p(T )�v =

(
p(z1), p(z2), . . . , p(zn),

p(zn+1)
0!

,
p′(zn+1)

1!
, . . . ,

p(m)(zn+1)
m!

)
.

If we let D2 be the diagonalmatrix with diagonal entries (1,1, . . . ,1,0!,1!,2!,3!, . . . ,m!)
(where there are n 1’s before the 0!), then

D2p(T )�v = (p(z1), p(z2), . . . , p(zn), p(zn+1), p′(zn+1), . . . , p(m)(zn+1)).

Since C2 is dense and D2 is invertible, then see that D2C2 is also dense. Furthermore,
D2C2 =C1 the set of vectors that can be interpolated. Since C1 is a dense convex subset
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of Cn+1+m we know from Lemma 6.1 that C1 = Cn+1+m , as desired. The proof of the
real case is similar. �

With the above interpolation result, we are now prepared to prove exactly which
Jordan matrices are convex-cyclic.

THEOREM 7.5. (A Jordan matrix)
The complex case: If J =

⊕N
k=1 Jnk(λk) is a Jordan matrix on Cp where p =

∑N
k=1 nk , then J is convex-cyclic on Cp if and only if the following hold:

(1) the eigenvalues {λk}N
k=1 are distinct;

(2) {λk}N
k=1 ⊆ C\ (D∪R);

(3) λ j �= λk for all 1 � j,k � N .

The real case: If J =
⊕N

k=1 Jnk(λk) is a Jordan matrix on Rp where p = ∑N
k=1 nk ,

then J is convex-cyclic on Rp if and only if the eigenvalues {λk}N
k=1 are distinct and

λk < −1 for all 1 � k � N .
Furthermore, in both the real and the complex cases, the convex-cyclic vectors for

J are the same as the cyclic vectors for J which are precisely those vectors of the form
�v = (�v1,�v2, . . . ,�vN) where for all 1 � k � N , �vk is a convex-cyclic vector for Jnk(λk);
that is, �vk ∈ Fnk and the first coordinate �vk(1) of �vk must be non-zero; where F equals
R or C .

Proof. The complex case: We shall use Proposition 3.3 and induction to prove this
theorem. We shall do induction on the number N of Jordan blocks that appear in J .
If N = 1, then Proposition 7.2 applies and says that J is convex-cyclic and any vector
whose first coordinate is non-zero is a convex-cyclic vector.

Now suppose that the theorem holds for any N Jordan blocks and let {Jnk(λnk) :
1 � k � N + 1} be a collection of (N + 1) Jordan blocks and suppose that {λnk}N+1

k=1
satisfies the conditions (1),(2) , and (3) of our hypothesis. Let J = Jn1(λ1)⊕Jn2(λ2)⊕
·· · ⊕ JnN+1(λN+1) . We will show that J is convex-cyclic and that it has the stated
convex-cyclic vectors.

Let T1 = JnN+1(λN+1) and T2 = Jn1(λ1)⊕Jn2(λ2)⊕·· ·⊕JnN (λN) and we’ll apply
Proposition 3.3. Since (1) , (2) and (3) hold, by Theorem 7.4, there is a convex-
polynomial p0 such that p0(λk) = 0 for all 1 � k � N and p0(λN+1) = 2i , p′0(λN+1) =
1 and p(k)

0 (λN+1) = 0 for 2 � k � nN+1 . It then follows from Proposition 7.1 that
p0(T1) = JnN+1(2i) and p0(T2) has zero as its only eigenvalue. Thus by Proposition 7.2
we know that p0(T1) is convex-cyclic. Also since p0(T2) has zero as its only eigenvalue
it is nilpotent, hence certainly power bounded. Thus Proposition 3.3 applies to say that
J = T2⊕T1 is convex-cyclic, as desired.

Also, if �v = (�v1,�v2, . . . ,�vN+1) is a vector as stated in our hypothesis, then �w =
(�v1,�v2, . . . ,�vN) is a convex-cyclic vector for T2 by our induction hypothesis and �vN+1

is a convex-cyclic vector for T1 by Proposition 7.2, thus by Proposition 3.3 we have
that (�w,�vN+1) is a convex-cyclic vector for J . Conversely if �v = (�v1,�v2, . . . ,�vN+1) is
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a convex-cyclic vector for J , then each �vk is a convex-cyclic vector for Jnk and by
Proposition 7.2 we must have that the first coordinate of �vk must be nonzero. Thus J
has the stated set of convex-cyclic vectors.

Finally, simply apply Proposition 2.3 in order to see that conditions (1),(2) and
(3) are necessary.

The real case: This case is naturally similar to the complex case. Use the real
case of Theorem 7.4 to choose a convex-polynomial p0 that satisfies p0(λk) = 0 for

all 1 � k � N , p0(λN+1) = −2, p′0(λN+1) = 1 and p(k)
0 (λN+1) = 0 for 2 � k � nN+1 .

Then the only eigenvalue for p0(T2) is 0 and thus p0(T2) is nilpotent. Also, p0(T1) =
JnN+1(−2) which is convex-cyclic by Proposition 7.2. Thus Proposition 3.3 implies that
J = T2⊕T1 is convex-cyclic. The rest of the proof is the same. �

Since the previous result gives a larger class of matrices that are convex-cyclic we
get a stronger interpolation theorem.

THEOREM 7.6. (Convex-polynomial interpolation)
The complex case: Let {zk}n

k=1 be a finite set of complex numbers. Then the
following are equivalent:

(a) for any finite set {wj,k : 0 � j � N,1 � k � n} of complex numbers there exists
a convex-polynomial p such that p( j)(zk) = wj,k for all 0 � j � N and 1 � k � n.

(b) The complex numbers {zk}n
k=1 are distinct, {zk}n

k=1 ⊆C\ (D∪R) and z j �= zk

for all 1 � j,k � n.
The real case: If {xk}n

k=1 is a finite set of real numbers, then the following are
equivalent:

(i) for any finite set {y j,k : 0 � j � N,1 � k � n} of real numbers, there exists a
convex-polynomial p such that p( j)(xk) = y j,k for all 0 � j � N and 1 � k � n.

(ii) The real numbers {xk}n
k=1 are distinct and satisfy {xk}n

k=1 ⊆ (−∞,−1) .

Proof. Let’s begin with the complex case and show that (b) implies (a) . Let C1

be the set of all (N +1)×n matrices (wj,k)0� j�N,1�k�n with complex entries such that
there exists a convex-polynomial p satisfying p( j)(zk) = wj,k for all 0 � j � N and
1 � k � n . In other words C1 consists of all matrices of the form (p( j)(zk))0� j�N,1�k�n

where p is a convex-polynomial. Thus C1 is a convex subset of MN+1,n(C) , the vector
space of all complex matrices of size (N + 1)× n and we want to show that C1 =
MN+1,n(C) . Also let C2 consist of all matrices of the form ( 1

j! p
( j)(zk))0� j�N,1�k�n

where p is a convex-polynomial.
Let J =

⊕n
k=1 JN+1(zk) be the direct sum of n Jordan blocks each having (the

same) size (N + 1)× (N + 1) and the kth block having eigenvalue zk . It follows
that J is an n(N + 1)× n(N + 1) matrix. Since (b) holds, we know from Theo-
rem 7.5 that J is convex-cyclic and that �v = (�e1,�e1, . . . ,�e1)∈Cn(N+1) is a convex-cyclic
vector for J where �e1 = (1,0,0, . . . ,0) ∈ CN+1 . It follows that {p(J)�v : p ∈ CP}
is dense in Cn(N+1) ∼= MN+1,n(C) . Here the isomorphism ∼= is given by mapping
the first (N + 1) entries of a vector to the first column of a matrix and the second
(N + 1) entries of the vector to the second column of the matrix and so forth. Since
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p(J)�v �→
(

p( j)(zk)
j!

)
0� j�N,1�k�n

, it follows that the set C2 is dense in MN+1,n(C) . Since

C2 is both convex and dense in MN+1,n(C) it follows from Lemma 6.1 that C2 must be
equal to MN+1,n(C) . It then easily follows that C1 must also be equal to MN+1,n(C) .
The fact that (b) implies (a) now follows. The fact that (a) implies (b) follows from
part (3) of Proposition 2.1. The real case is similar. �

By using the fact that every matrix is similar to its Jordan Canonical Form we get
the following result from Theorem 7.5.

THEOREM 7.7. (Convex-cyclicity of complex matrices) If A is an n× n matrix,
then A is convex-cyclic on Cn if and only if A is cyclic and its eigenvalues {λk}n

k=1

satisfy {λk}n
k=1 ⊆ C\ (D∪R) and λ j �= λ k for all 1 � j,k � n.

Proof. If A is convex-cyclic on Cn , then certainly A is cyclic and Proposition 2.3
implies that the eigenvalues must have absolute value strictly larger than one, they can-
not be real, and none of them can come in conjugate pairs. For the converse, assume
the stated conditions hold and consider the Jordan form J for A . Since A is cyclic,
then by Theorem 2.4, each eigenvalue has a geometric multiplicity of one, so that each
eigenvalue appears in exactly one of the Jordan blocks in J . Thus the conditions of
Theorem 7.5 are satisfied, so it follows that J is convex-cyclic and since A is similar to
J , we must have that A is also convex-cyclic. �

8. Real convex-cyclic matrices

Our previous results on real matrices have all been about matrices on Rn with
real eigenvalues. In this section we consider the case of matrices on Rn with real
and complex eigenvalues. This case is actually the most general case of all the cases
considered in this paper. This case uses the previous results proven about real matrices
and complex matrices via the complexification map.

8.1. Brief review of Jordan canonical forms

If T is a real matrix, its eigenvalues may be complex and in that case the real
Jordan form for T is useful. The real Jordan form uses the Jordan blocks Jk(λ ) when
λ is real and some additional real blocks with complex eigenvalues. Let

C1(r,θ ) =
[
rcos(θ ) −r sin(θ )
r sin(θ ) rcos(θ )

]
= r

[
cos(θ ) −sin(θ )
sin(θ ) cos(θ )

]
= rR(θ ).

The matrix C1(r,θ ) has complex eigenvalues a± ib = rcos(θ )± ir sin(θ ) = re±iθ and
R(θ ) is the matrix that rotates by an angle of θ .

The 2k× 2k real Jordan block Ck(r,θ ) is the block lower-triangular matrix with
k copies of C1(r,θ ) down the main diagonal and with 2× 2 identity matrices on the
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block-subdiagonal. Below is an example:

C3(r,θ ) =

⎡
⎢⎢⎣

rcos(θ) −r sin(θ)
r sin(θ) rcos(θ)

1 0 rcos(θ) −r sin(θ)
0 1 r sin(θ) rcos(θ)

1 0 rcos(θ) −r sin(θ)
0 1 r sin(θ) rcos(θ)

⎤
⎥⎥⎦=

[
rR(θ) 0 0

I rR(θ) 0
0 I rR(θ)

]

Powers of these matrices follow the same pattern as for the Jk(λ ) blocks (see
Proposition 7.1 and the remarks preceding it) but with the observation that R(θ )n =
R(nθ ) . Thus, we have

C3(r,θ )n =

⎡
⎣ rnR(nθ ) 0 0

nrn−1R((n−1)θ ) rnR(nθ ) 0
n(n−1)

2 rn−2R((n−2)θ ) nrn−1R((n−1)θ ) rnR(nθ )

⎤
⎦

It is known that Ck(r,θ ) on C2k is similar to Jk(λ )⊕ Jk(λ ) on C2k where λ =
reiθ , see [10, p. 150]. Also, every real n× n matrix T is similar to its real Jordan
Form which is a direct sum of blocks of the form Jk(λ ) where λ is a real eigenvalue
for T and a direct sum of blocks of the form Ck(r,θ ) where [rcos(θ )± ir sin(θ )] is a
conjugate pair of complex eigenvalues for T . A Jordan matrix is any matrix that is a
direct sum of Jordan blocks. For more information on the real Jordan form see [9, p.
359] or [10, p. 150].

DEFINITION 8.1. Let Cn
R

denote the set Cn considered as a vector space over
the field R of real numbers. Then Cn

R
is a 2n dimensional (real) vector space. In fact,

{�ek}n
k=1∪{i�ek}n

k=1 is an orthonormal basis for Cn
R

where {�ek}n
k=1 is the standard unit

vector basis for Rn . Also, let Uc : R2n → Cn
R

be the complexification map given by

Uc(x1,x2, . . . ,x2n−1,x2n) = (x1 + ix2,x3 + ix4, . . . ,x2n−1 + ix2n).

PROPOSITION 8.2. (The complexification map & Jordan blocks) If Uc : R2n →Cn
R

is the complexification map, then the following hold:

(1) Uc is a (real) linear isometry mapping R2n onto Cn
R

.

(2) UcCn(r,θ ) = Jn(λ )Uc where λ = reiθ .

(3) If A is a (2n)× (2n) real matrix and B is an n×n complex matrix and if UcA =
BUc , then A is convex-cyclic on R2n if and only if B is convex-cyclic on Cn

R
if

and only if B is convex-cyclic on Cn . Furthermore, a vector v is a convex-cyclic
vector for A if and only if Ucv is a convex-cyclic vector for B.

Proof. Property (1) is elementary. For (2) one may easily verify that UcCn(r,θ )=
Jn(λ )Uc by checking that UcCn(r,θ )�ek = Jn(λ )Uc�ek for 1 � k � 2n where {�ek} is the
standard unit vector basis for R2n . For (3) , A is convex-cyclic on R2n if and only if
B is convex-cyclic on C

n
R

since UcA = BUc holds and convex-cyclicity only involves
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polynomials with real coefficients. Lastly, a set X is dense in Cn if and only if X is
dense in Cn

R
since the two sets Cn and Cn

R
are the same and have the same metric, thus

the same topologies. Thus the convex hull (which only involves real scalars) of an orbit
produces the same set in both Cn and Cn

R
and density in Cn is equivalent to density in

Cn
R

. �

THEOREM 8.3. (Real Jordan matrices with complex eigenvalues) (1) If r � 0 ,
θ ∈ R , and λ = reiθ , then the real Jordan block Cn(r,θ ) is convex-cyclic on
R2n if and only if the Jordan block Jn(λ ) is convex-cyclic on Cn if and only if
λ ∈ C\ (D∪R) .

(2) If C =
⊕N

k=1Cnk(rk,θk) acts on R2p where p = ∑N
k=1 nk , rk � 0 , and θk ∈ R ,

then C is convex-cyclic on R2p if and only if J =
⊕N

k=1 Jnk(λk) is convex-cyclic
on Cp where λk = rkeiθk for 1 � k � N if and only if the following hold:

(a) the eigenvalues {λk}N
k=1 are distinct;

(b) {λk}N
k=1 ⊆ C\ (D∪R);

(c) for any 1 � j,k � N , λ j �= λk .

Furthermore, the convex-cyclic vectors for C are precisely those vectors

�v = (�v1,�v2, . . . ,�vp−1,�vp)

where �vk = (vk,1,vk,2, . . . ,vk,2nk)∈R2nk satisfies that for every 1 � k � p, (vk,1,vk,2)
�= (0,0) .

Proof. (1) This follows directly from Proposition 7.2 and Proposition 8.2.
(2) If C =

⊕N
k=1Cnk(rk,θk) and J =

⊕N
k=1 Jnk(rkeiθk) , then UcC = JUc where Uc

is the complexification map. Thus by Proposition 8.2, C is convex-cyclic on R2p if and
only if J is convex-cyclic on Cp . The theorem now follows from Theorem 7.5. �

THEOREM 8.4. (Real matrices with diagonal complexification) If D = diag(x1,
x2, . . . ,xM) is a diagonal matrix on R

M and C =
⊕N

k=1C1(rk,θk) acts on R
2N , then

T = D⊕C is convex-cyclic on RM ⊕R2N if and only if the following hold, where
λk = rkeiθk for 1 � k � N :

(1) the complex eigenvalues {λk}N
k=1 are distinct;

(2) {λk}N
k=1 ⊆ C\ (D∪R);

(3) for any 1 � j,k � N , λ j �= λk ;

(4) The {xk}M
k=1 are distinct and xk < −1 for all 1 � k � M.

Furthermore, the convex-cyclic vectors for T are precisely those vectors �v =
(v1,v2, . . . ,vM,�u1,�u2, . . . ,�uN) where v j �= 0 for all 1 � j � M and �uk ∈ R2 \ {(0,0)}
for all 1 � k � N .
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Proof. Let V = I ⊕Uc be the mapping RM ⊕R2N → RM ⊕CM
R

. Then V is a
real linear onto isometry and VTV−1 = diag(x1,x2, . . . ,xM,λ1, . . . ,λN) is a diagonal
matrix. Since (1) - (4) hold, Theorem 4.1 produces peaking convex-polynomials for
arbitrary subsets of {x1, . . . ,xM,λ1, . . . ,λN} and thus we may apply the same proof
from Theorem 5.1 to the case at hand and conclude that VTV−1 is convex-cyclic and
its convex-cyclic vectors are all vectors with all nonzero coordinates. It follows then
that T is convex-cyclic and has the stated set of convex-cyclic vectors. For necessity
see Example 2.2 and Proposition 2.3. �

COROLLARY 8.5. (Interpolating prescribed values) Suppose that {xk}M
k=1 ⊆R and

{zk}N
k=1 ⊆C and zk = rkeiθk where rk � 0 and θk ∈ R for all 1 � k � N . Suppose also

that the following hold:

(1) the numbers {zk}N
k=1 are distinct and not real;

(2) {zk}N
k=1 ⊆ C\ (D∪R);

(3) for any 1 � j,k � N , z j �= zk .

(4) The numbers {xk}M
k=1 are distinct and xk < −1 for all 1 � k � M.

Then given any {yk}M
k=1 ⊆ R and {wk}N

k=1 ⊆ C , there exists a convex-polynomial p
such that p(xk) = yk for 1 � k � M and p(zk) = wk for 1 � k � N .

Proof. This proof is similar to that of Theorem 6.2, but uses Theorem 8.4 instead
of Theorem 5.1 together with the complexification map. �

Notice that in Theorem 8.4 the matrix C was a direct sum of 2×2 blocks. In the
theorem below the matrix C is a direct sum of blocks with size 2nk ×2nk .

THEOREM 8.6. (Convex-cyclicity of D⊕C ) If D = diag(x1,x2, . . . ,xM) is a di-
agonal matrix on RM and C =

⊕N
k=1Cnk(rk,θk) on R2p where p = ∑N

k=1 nk and we let
T = D⊕C on RM+2p , then T is convex-cyclic on RM+2p if and only if the following
hold, where λk = rkeiθk for 1 � k � N ,

(1) the complex eigenvalues {λk}N
k=1 are distinct;

(2) {λk}N
k=1 ⊆ C\ (D∪R);

(3) for any 1 � j,k � N , λ j �= λk .

(4) The {xk}M
k=1 are distinct and xk < −1 for all 1 � k � M.

Furthermore, the convex-cyclic vectors for T are precisely those vectors �v = (�v1,�v2)
where �v1 ∈ RM is any convex-cyclic vector for D and �v2 ∈ R2p is any convex-cyclic
vector for C.
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Proof. We shall use Proposition 3.3 about direct sums of convex-cyclic operators.
Given our hypothesis, we know from Theorem 5.1 that D is convex-cyclic and from
Theorem 8.3 that C is convex-cyclic. Also, by Corollary 8.5, there exists a convex-
polynomial p such that p(xk) = −2k for 1 � k � M and so that p(λk) = 0 for 1 �
k � N . Using Proposition 7.1 and property (2) of Proposition 8.2 we see that p(C) is
a nilpotent matrix and thus is power bounded. Also, p(D) is a diagonal matrix with
diagonal entries −2k for 1 � k � M , which is convex-cyclic on RM , by Theorem 5.1.
So, Proposition 3.3 implies that p(T ) is convex-cyclic and the convex-cyclic vectors for
T are direct sums of convex-cyclic vectors as described in the theorem. For necessity
see Example 2.2 and Proposition 2.3. �

COROLLARY 8.7. (Interpolating real values & complex derivatives) Suppose that
{xk}M

k=1 ⊆ R and {zk}N
k=1 ⊆ C and that the following hold:

(1) the numbers {xk}M
k=1 are distinct and xk < −1 for all 1 � k � M;

(2) the numbers {zk}N
k=1 are distinct;

(3) {zk}N
k=1 ⊆ C\ (D∪R);

(4) for any 1 � j,k � N , z j �= zk .

Then given any set {yk}M
k=1 ⊆ R and any set {wj,k : 0 � j � n,1 � k � N} of complex

numbers, there exists a convex-polynomial p such that p(xk) = yk for all 1 � k � M
and p( j)(zk) = wj,k for all 0 � j � n and 1 � k � N .

Proof. The proof uses Theorem 8.6 and is similar to the proof of Theorem7.6. �

We are now prepared to show when a real Jordan matrix with real and complex
eigenvalues is convex-cyclic.

THEOREM 8.8. (Convex-cyclicity of real Jordan matrices) Let C=
⊕N

k=1Cnk(rk,θk)
on R2p where p = ∑N

k=1 nk and J =
⊕M

k=1 Jmk (xk) on Rq where q = ∑M
k=1 mk and let

T = C⊕ J . Then T is convex-cyclic on R2p+q if and only if the following hold, where
λk = rkeiθk for 1 � k � N ,

(1) the complex eigenvalues {λk}N
k=1 are distinct;

(2) {λk}N
k=1 ⊆ C\ (D∪R);

(3) for any 1 � j,k � N , λ j �= λk .

(4) The {xk}M
k=1 are distinct and xk < −1 for all 1 � k � M.

Furthermore, the convex-cyclic vectors for T are precisely those vectors �v =
(�v1,�v2) where �v1 ∈ R2p is any convex-cyclic vector for C and �v2 ∈ Rq is any convex-
cyclic vector for J .
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Proof. We shall use Proposition 3.3 about direct sums of convex-cyclic operators.
Given our hypothesis, we know from Theorem 7.5 that J is convex-cyclic and from
Theorem 8.3 that C is convex-cyclic. Also by Corollary 8.7, there exists a convex-
polynomial p such that p(xk) = 0 for all 1 � k � M and such that p(λk) = 2ki and
p′(λk) = 1 and p( j)(λk) = 0 for 1 � k � N and 2 � j � q . It then follows from
Theorem 7.1 that p(J) is nilpotent and thus p(J) is power bounded. Also, p(C) is
convex-cyclic. To see this, note that C is similar to the (complex) Jordan matrix B =⊕N

k=1 Jk(λk) (via the complexification map) and by Proposition 7.1 and the properties
of p we see that p(B) =

⊕n
k=1 Jk(2ki) . By Theorem 7.5 we know that p(B) is convex-

cyclic. It follows that p(C) is convex-cyclic. It now follows from Proposition 3.3 that
T =C⊕J is convex-cyclic and has the stated set of convex-cyclic vectors. For necessity
see Example 2.2 and Proposition 2.3. �

The following interpolation theorem now follows from Theorem 8.8 in a similar
manner as the previous interpolation theorems did.

REMARK 8.9. It is interesting that the strongest form of the interpolation theorem
comes from understanding the convex-cyclicity of real matrices, not just complex ones.
This is because convex-cyclic real matrices can have both real and complex eigenvalues.
A complex matrix that is convex-cyclic cannot have real eigenvalues.

THEOREM 8.10. (Convex-polynomial interpolation) If S = {xk}m
k=1 ∪{zk}n

k=1 ⊆
C where {xk}m

k=1 ⊆ R and {zk}n
k=1 ⊆ C\R , then following are equivalent:

(a) for any finite set {y j,k : 0 � j � N,1 � k � m} of real numbers and for any finite
set {wj,k : 0 � j � N,1 � k � n} of complex numbers there exists a convex-polynomial
p such that p( j)(xk) = y j,k for all 0 � j � N and 1 � k � m and p( j)(zk) = wj,k for
all 0 � j � N and 1 � k � n.

(b) The real numbers {xk}m
k=1 are distinct and satisfy {xk}m

k=1 ⊆ (−∞,−1) and the
numbers {zk}n

k=1 are distinct, {zk}n
k=1 ⊆ C\ (D∪R) and z j �= zk for all 1 � j,k � n.

THEOREM 8.11. (Convex-cyclicity of matrices)
The real case: If T is a real n× n matrix, then T is convex-cyclic on R

n if and
only if T is cyclic and its real and complex eigenvalues are contained in C\ (D∪R+) .
If T is convex-cyclic, then the convex-cyclic vectors for T are the same as the cyclic
vectors for T and they form a dense set in R

n .
The complex case: If T is an n×n matrix, then T is convex-cyclic on Cn if and

only if T is cyclic and its eigenvalues {λk}n
k=1 are all contained in C \ (D∪R) and

satisfy λ j �= λ k for all 1 � j,k � n. If T is convex-cyclic, then the convex-cyclic vectors
for T are the same as the cyclic vectors for T and they form a dense set in Cn .

Since every matrix is similar to its Jordan Canonical form, the above theorem
follows immediately from Theorem 7.5 and Theorem 8.8. From Theorem 2.4 we know
that a real or complex matrix is cyclic if and only if each eigenvalue appears in exactly
one Jordan block in its (real or complex) Jordan form; which means each eigenvalue
has geometric multiplicity one (where the geometric multiplicity is the dimension of
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the eigenspace and in the case of a complex eigenvalue λ for a real matrix is defined
as the complex dimension of the complex eigenspace corresponding to that eigenvalue.

9. Invariant convex sets

If T is a continuous linear operator on a locally convex space X and E is a subset
of X , then E is invariant for T if T (E) ⊆ E . In this section we determine when the
nonempty invariant closed convex sets for a matrix are the same as the invariant closed
subspaces for the matrix. This happens exactly when each cyclic part of the matrix
is convex-cyclic and the convex-cyclic vectors for each part are the same as the cyclic
vectors for that part. A part of an operator T is an operator of the form T |M where
M is a closed invariant subspace for T . So the parts of T are all the operators obtained
by restricting T to one of its invariant subspaces.

PROPOSITION 9.1. If T is a continuous linear operator on a locally convex space
X , then the following are equivalent:

(1) For every x ∈ X , the closed convex hull of the orbit of x is a subspace.

(2) Each nonempty closed invariant convex set for T is an invariant subspace for T .

(3) Every cyclic part of T is convex-cyclic and its convex-cyclic vectors are the same
as its cyclic vectors. In other words, if M is a closed invariant subspace for T
and T |M is cyclic, then T |M is convex-cyclic and the convex-cyclic vectors for
T |M are the same as the cyclic vectors for T |M .

Proof. First notice that a convex set is a subspace if and only if it is closed under
scalar multiplication.

(1) =⇒ (2) . Suppose that (1) holds and let C be a closed invariant convex
set for T . To show that C is closed under scalar multiplication, let x ∈ C and let
K = cl[co({Tnx : n � 0}] . Then K is a closed invariant convex set for T and by (1) K
is a subspace, hence closed under scalar multiplication, thus F · x ⊆ F ·K ⊆ K ⊆C . It
follows that C is closed under scalar multiplication and hence is a subspace.

(2) =⇒ (3) . Suppose that (2) holds and let M be a closed invariant subspace
for T and assume that T |M is cyclic and we will show that T |M is convex-cyclic
and has the appropriate set of convex-cyclic vectors. Let x ∈ M be a cyclic vector
for T |M . Then the smallest closed invariant subspace for T that contains x is M .
Now let C be the closed convex hull of the orbit of x under T |M . Then C is a closed
invariant convex set for T and thus by assumption (2) it follows that C is a subspace.
Thus C is a closed invariant subspace for T that contains x and hence must be equal to
M . Thus C = M which implies that x is a convex-cyclic vector for T |M .

(3) =⇒ (1) . Assume that (3) holds and let x ∈ X and let C be the closed convex
hull of the orbit of x under T . We must show that C is a subspace. Let M be the
closed invariant subspace generated by x ; that is, the closure of the linear span of the
orbit of x under T . Then x is a cyclic vector for T |M and thus by property (3) T |M
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is convex-cyclic and x is a convex-cyclic vector for T |M . It follows immediately from
the definition of a convex-cyclic vector that C = M , hence C is a subspace. �

THEOREM 9.2. (Invariant convex sets for matrices)
The complex case: A matrix T acting on Cn has the property that all of its

nonempty invariant closed convex sets are invariant subspaces if and only if the eigen-
values {λk}n

k=1 of T are contained in C \ (D∪R) and satisfy λ j �= λ k for all 1 �
j,k � n.

The real case: A matrix T acting on Rn has the property that all of its nonempty
invariant closed convex sets are invariant subspaces if and only if all of its (real and
complex) eigenvalues are contained in C\ (D∪R

+) .

Proof. Since items (2) and (3) in Proposition 9.1 are equivalent it suffices to verify
that condition (3) in Proposition 9.1 is equivalent to the condition on the eigenvalues
stated in this theorem; and that is exactly what Theorem 8.11 says. �

10. Questions

1. Is there a way to explicitly construct interpolating convex-polynomials?

2. If an Abelian semigroup of matrices is convex-cyclic, must it contain a convex-
cyclic matrix?
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