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Abstract. We consider the operator A = U +K , where U is a unitary operator and K is a com-
pact one. An eigenvalue λ of A is said to be a non-unitary one, if |λ | �= 1 . We derive inequalities
for sums of absolute values of the non-unitary eigenvalues. Applications of these inequalities to
operator functions, spectrum perturbations and operator equations are also discussed.

1. Introduction

Denote by H a separable Hilbert space with a scalar product (., .) , the norm
‖.‖ =

√
(., .) , and the unit operator I . By [H ] we denote the set of all bounded linear

operators in H . For a linear operator A , A∗ is the adjoint operator; σ(A) is the
spectrum, rs(A) is the spectral radius. SNp = SNp(H ) (1 � p < ∞) is the Schatten-
von Neumann ideal of operators K0 in H with the finite norm

Np(K0) := [trace
(
(K∗

0K0)p/2
)
]1/p.

Let B ∈ [H ] and its Hermitian component ℑB = (B−B∗)/2i be compact. Recall the
Weyl inequality [11, Lemma II.6.1]:

j

∑
k=1

|ℑμk| �
j

∑
k=1

sk(ℑB) ( j = 1,2, . . .),

where μk are the nonreal eigenvalues of B with their (algebraic) multiplicities enumer-
ated in nonincreasing order, sk(ℑB) are the singular values of ℑB with their multiplic-
ities enumerated in nonincreasing order. Note that B is a sum of a selfadjoint operator
and a compact one. The aim of this paper is to derive a similar result for the operator
A =U +K , where U is a unitary operator and K is a compact one. Note that although
the literature on the inequalities eigenvalues of linear operators is very rich, but mainly
compact operators have been investigated, cf. [1, 2, 15, 16, 18, 19, 9, 10] and references
given therein.
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Section 2 contains the preliminary results.
The main result and some of its corollaries are presented in Section 3.
In Section 4 we suggest norm estimates for operator functions under the condition

K ∈ SN1 . Besides, we considerably refine the corresponding result from [7].
Section 5 is devoted to spectrum perturbations of A under the condition K ∈ SN1 .

Although the theory of operator perturbations is very well developed [14, 4, 5, 6, 12, 13]
etc, the norm estimates for resolvents from Section 4 enable us to obtain a new result.

In Section 6, applications of our results to the Sylvester operator equations are
discussed. These equations play an essential role in the theory of differential and dif-
ference equations, control theory and other applications, cf. [3, 17].

2. Preliminary results

Recall that we consider the operator A = U + K , where U is a unitary operator
and K is compact. So the operator

A∗A− I = (U +K)∗(U +K)− I = U∗K +K∗U +K∗K is compact .

An isolated eigenvalue of A having a finite algebraic multiplicity and satisfying |λ | �= 1
will be called a non-unitary eigenvalue. In the sequel it is assumed that the set of all
non-unitary eigenvalues is non-empty.

For example, due to Theorem I.5.3 [11], under condition (2.1), if A has a regular
point in the disc {z ∈ C : |z| < 1} , then any point λ , such that |λ | �= 1 is either regular
or a non-unitary eigenvalue of A . About other similar results see [14, p. 244].

Everywhere below the eigenvalues and singular values are enumerated with the
algebraic multiplicities taken into account.

Denote by sk(A∗A− I) (k = 1,2, . . .) the singular values of A∗A− I enumerated
in the non-increasing order.

2.1. Eigenvalues outside the unit circle

In this subsection it is supposed that all the non-unitary eigenvalues of A lie
outside the unit circle. Denote by λk(A) these eigenvalues enumerated in the non-
increasing order of their modulus: |λk(A)| � |λk+1(A)| (k = 1,2, . . .) . So

|λk(A)| � 1 (k = 1,2, . . .). (2.1)

Here and below without loss of the generality it is assumed that the total multiplicity of
all non-unitary eigenvalues is infinity. If the total multiplicity equals m0 < ∞ , we put
|λk(A)|2−1 = 0 for k > m0 . Condition (2.1) is provided by the inequality

A∗A � I. (2.2)

LEMMA 2.1. Let condition (2.1) hold. Then

j

∑
k=1

(|λk(A)|2 −1) �
j

∑
k=1

sk(A∗A− I) ( j = 1,2, . . .). (2.3)
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Proof. Denote by E the linear closed convex hull of all the root vectors of A
corresponding to non-unitary eigenvalues. That is, φ ∈ E means that (A−λ j(A)I)nφ =
0 for some finite positive integer n . The set L j ( j = 1,2, . . .) of all root vectors
corresponding to some and the same eigenvalue is called the root subspace. Choose in
each root subspace a Jordan basis. Then we obtain vectors φk for each of which either
Aφk = λk(A)φk , or Aφk = λk(A)φk +φk+1 . Orthogonalizing the system {φk} , we obtain
an (orthonormal) Schur basis {ek} . That is,

Aek = a1ke1 +a2ke2 + . . .+akkek. (2.4)

Besides, akk = λk(A) (k = 1,2, . . .) . We have

((A∗A− I)ek,ek) = (A∗Aek,ek)− (ek,ek) = (Aek,Aek)−1.

Due to (2.4) this gives

((A∗A− I)ek,ek) = |a1k|2 + |a2k|2 + . . .+ |akk|2 −1 � |λk(A)|2−1. (2.5)

Applying the well-known Lemma II.4.1 from [11] we can write

j

∑
k=1

|((A∗A− I)ek,ek)| �
j

∑
k=1

sk(A∗A− I). (2.6)

This and (2.5) prove the result. �
From (2.3) it follows

j

∑
k=1

h(|λk(A)|2−1) �
j

∑
k=1

h(sk(A∗A− I)) ( j = 1,2, . . .) (2.7)

for any convex continuous function h(x) (x � 0) satisfying h(0) = 0, cf. [11, Lemma
II.3.4]. In particular,

j

∑
k=1

(|λk(A)|2−1)p �
j

∑
k=1

sp
k (A∗A− I) ( j = 1,2, . . .) (2.8)

for any p � 1. If, in addition, A∗A− I ∈ SNp (p � 1) , then

∞

∑
k=1

(|λk(A)|2−1)p � Np
p (A∗A− I). (2.9)

2.2. Eigenvalues inside the unit circle

Throughout this subsection it is supposed that A is invertible and all the non-
unitary eigenvalues of A lie inside the unit circle |z| < 1. By λ̂k(A) we denote these
eigenvalues enumerated in the non-decreasing order: |λ̂k(A)|� |λ̂k+1(A)| (k = 1,2, . . .) .

Note that
A−1(A∗)−1− I = A−1(A∗)−1(I−A∗A)
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is compact. Then λk(A−1) = 1/λ̂k(A) and therefore |λk(A−1)| = 1/|λ̂k(A)| > 1. Here
λk(A−1) are the non-unitary eigenvalues of A−1 enumerated in the non-increasing or-
der. Due to Lemma 2.1,

j

∑
k=1

(|λk(A−1)|2 −1) �
j

∑
k=1

sk(A−1(A−1)∗ − I).

Here sk(A−1(A−1)∗ − I) are the singular values of A−1(A−1)∗ − I , respectively, enu-
merated in the non-increasing order. Since

sk(A−1(A∗)−1− I) = sk(A−1(A∗)−1(I−A∗A) � ‖A−1‖2sk(AA∗ − I),

we obtain

j

∑
k=1

(
1

|λ̂k(A)|2 −1

)
=

j

∑
k=1

1−|λ̂k(A)|2
|λ̂k(A)|2 � ‖A−1‖2

j

∑
k=1

sk(A∗A− I).

Hence for all integer j � 1 we obtain

j

∑
k=1

(1−|λ̂k(A)|2) � |λ̂ j(A)|2‖A−1‖2
j

∑
k=1

sk(AA∗ − I) � r2
s (A)‖A−1‖2

j

∑
k=1

sk(A∗A− I).

(2.10)
We thus arrive at

LEMMA 2.2. Let all the non-unitary eigenvalues be inside the unit circle and A
be invertible. Then inequality (2.10) is valid. If, in addition, A∗A− I ∈ SNp (p � 1) ,
then

∞

∑
k=1

(1−|λ̂k(A)|2)p � r2p
s (A)‖A−1‖2pNp

p (AA∗ − I).

3. The main result

In the sequel operator A can have the eigenvalues inside and outside the unit circle.
Besides, λ̃k(A) (k = 1,2, . . .) are the non-unitary eigenvalues of A are enumerated as

||λ̃k(A)|2 −1|� ||λ̃k+1(A)|2 −1| (k = 1,2, . . .).

So
||λ̃k(A)|2 −1|= 1−|λ̂k(A)|2 if |λ̃k(A)| < 1

and
||λ̃k(A)|2−1|= |λk(A)|2 −1 if |λ̃k(A)| > 1.

Here λk(A) ( λ̂k(A)) are the non-unitary eigenvalues of A outside (inside) the unit circle
enumerated in the non-increasing (non-decreasing) order of their absolute values.

Now we are in a position to formulate and prove our main result.
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THEOREM 3.1. Let A be invertible and A∗A− I ∈ SNp for an integer p � 1 . Then

∞

∑
k=1

|1−|λ̃k(A)|2|p � r2p
s (A)‖A−1‖2pNp

p (AA∗ − I). (3.1)

If, in addition, condition (2.2) holds, then inequalities (2.1) and (2.9) are valid (due to
Lemma 2.1).

Proof. Let P and P be the invariant projections of A , corresponding to the eigen-
values inside and outside the unit circle, such that |λ̃k(AP)| < 1 and |λ̃k(AP)| > 1
(k = 1,2, . . .) , and P � I −P . So the eigenvalues of PA are ordered in the decreas-
ing way and the eigenvalues of AP are ordered in the increasing way of their absolute
values. In addition,

∞

∑
k=1

|1−|λ̃k(A)|2|p =
∞

∑
j=1

(|λ j(AP)|2−1)p +
∞

∑
j=1

(1−|λ j(AP)|2)p. (3.2)

Operators A∗A and AA∗ are unitarily equivalent. Hence, A∗A− I and AA∗− I are uni-
tarily equivalent, and therefore, Np(A∗A− I) = Np(AA∗− I) . Similarly, for the operator
PA = PAP considered in PH we have Np(A∗PA−P) = Np(PAA∗P−P) . Operator AP
satisfies the conditions of Lemma 2.1, which implies

j

∑
k=1

(|λk(AP)|2−1) �
j

∑
k=1

sk(A∗PA−P) ( j = 1,2, . . .).

Hence, according to the classical Lemma II.3.4 [11] we can write

∞

∑
j=1

(|λ̃ j(AP)|2−1)p � Np
p (A∗PA−P) = Np

p (PAA∗P−P).

We thus have

∞

∑
j=1

(|λ̃ j(AP)|2−1)p � Np
p (P(AA∗ − I)P) � Np(A∗A− I). (3.3)

Moreover, Lemma 2.2 implies

∞

∑
k=1

(1−|λ̃k(AP)|2)p � r2p
s (AP)‖(AP)−1‖2pNp

p (PA∗AP−P). (3.4)

Here (AP)−1 is understood as the inverse of the restriction of AP in PH . Since A is
Fredholm, we can write

‖(AP)−1‖ =
1

‖AP‖low

where
‖AP‖low = inf

x∈PH
‖APx|/‖x‖ � inf

y∈H
‖Ay|/‖y‖.
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So

‖(AP)−1‖ � ‖y‖
infy∈H ‖Ay‖ = ‖A−1‖.

Take into account that rs(AP) � rs(A) and

Np(PA∗AP−P) = Np(P(A∗A− I)P) � Np(A∗A− I).

Then from (3.4) it follows

∞

∑
j=1

(1−|λ j(AP)|2)p � r2p
s (A)‖A−1‖2pNp

p (P(A∗A− I)P).

Now (3.2) and (3.3) imply the required result since P+P � I . �

4. Functions of compactly perturbed unitary operators

In this subsection we consider operator functions under the condition

AA∗ − I ∈ SN1. (4.1)

Put

ϑ(A) := [trace (A∗A− I)−
∞

∑
k=1

(|λk(A)|2−1)]1/2.

It can be checked that ϑ(A) � 0; if A is a normal operator, then ϑ(A) = 0, cf. [7,
Section 7.15].

THEOREM 4.1. Under condition (4.1), let A have a regular point on the unit
circle. Then

‖Rλ (A)‖ �
∞

∑
k=0

ϑ k(A)√
k!ρk+1(A,λ )

(4.2)

and

‖Rλ (A)‖ � e1/2

ρ(A,λ )
exp

[ ϑ 2(A)
2ρ2(A,λ )

]
(λ �∈ σ(A)). (4.3)

For the proof see [7, Theorem 7.15.2]. Inequality (4.2) is sharper than (4.3), but
(4.3) is more compact. This theorem is sharp: (4.2) becomes the equality if A is normal.

The calculations of ϑ(A) is a not easy task, in general. We are going to apply our
above results to estimate ϑ(A) .

Let A have a purely unitary spectrum. That is, σ(A) lies on the unit circle. Then

ϑ(A) = [Tr (A∗A− I)]1/2. (4.4)

Note that
N1(A∗A− I) � 2N1(K)+N2

2 (K) � 2N1(K)+N2
1 (K)

and rs(A)‖A−1‖ � rs(A)rs(A−1) � 1.
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LEMMA 4.2. Under condition (4.1), let A be invertible. Then ϑ(A) � ζ (A) ,
where

ζ (A) :=
√

N1(A∗A− I)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if A∗A � I,

(r2
s (A)‖A−1‖2−1)1/2 if A∗A < I,

(r2
s (A)‖A−1‖2 +1)1/2 otherwise.

(4.5)

Proof. If condition (3.1) hold, then |λk(A)| � 1. and

∞

∑
k=1

(|λk(A)|2 −1) � 0

and therefore,

ϑ(A) � [trace (A∗A− I)]1/2 = N1/2
1 (A∗A− I).

So in the case (3.1) the lemma is proved.
If A∗A < I , then |λk(A)|< 1 and trace (A∗A− I)=−N1(A∗A− I) . Due to Lemma

2.2

ϑ 2(A) = −N1(A∗A− I)+
∞

∑
k=1

(1−|λ̂k(A)|2) � (r2
s (A)‖A−1‖2−1)N1(AA∗ − I).

So in the case A∗A < I the lemma is also proved.
In the general, case due to Theorem 3.1,

ϑ 2(A) � N1(A∗A− I)+
∞

∑
k=1

|1−|λ̃k(A)|2| � (1+ r2
s (A)‖A−1‖2)N1(AA∗ − I).

This finishes the proof. �

Note that in the case A∗A � I , A is automatically invertible, since it is a Fredholm
operator.

Theorem 4.1 and Lemma 4.2 imply

COROLLARY 4.3. Under the hypothesis of Theorem 4.1 let A be invertible. Then

‖Rλ (A)‖ �
∞

∑
k=0

ζ k(A)√
k!ρk+1(A,λ )

(4.6)

and

‖Rλ (A)‖ � e1/2

ρ(A,λ )
exp

[ ζ 2(A)
2ρ2(A,λ )

]
(λ �∈ σ(A)). (4.7)

The following theorem is proved in [7, Theorem 17.5.4].
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THEOREM 4.4. Let A satisfy condition (4.1) and have a regular point on the unit
circle. If, in addition, f is a holomorphic function on a neighborhood of closed convex
hull co(A) of σ(A) , then

‖ f (A)‖ �
∞

∑
k=0

sup
λ∈co(A)

| f (k)(λ )| ϑ k(A)
(k!)3/2

. (4.8)

This theorem is sharp: inequality (4.8) becomes equality if A is a unitary operator
and

sup
λ∈co(A)

| f (λ )| = sup
λ∈σ(A)

| f (λ )|,

because ϑ(A) = 0 in this case. The latter theorem and Lemma 4.2 imply

COROLLARY 4.5. Under the hypothesis of Theorem 4.4 let A be invertible. Then

‖ f (A)‖ �
∞

∑
k=0

sup
λ∈co(A)

| f (k)(λ )| ζ k(A)
(k!)3/2

.

EXAMPLE 4.6. Let A satisfy the hypothesis of Theorem 4.4 and be invertible.
Then

‖Am‖ �
m

∑
k=0

m!rm−k
s (A)ζ k(A)

(m− k)!(k!)3/2
(4.10)

for any integer m � 1. In addition,

‖eAt‖ � eα(A)t
∞

∑
k=0

tkζ k(A)
(k!)3/2

for all t � 0, (4.11)

where α(A) = supRe σ(A) .

5. Spectral variations

DEFINITION 5.1. Let A and B be linear operators in H . Then the quantity

svA(B) := sup
μ∈σ(B)

inf
λ∈σ(A)

|μ −λ |

is called the spectral variation of a B with respect to A .

We need the following technical lemma

LEMMA 5.2. Let A,B ∈ H and q := ‖A−B‖ . In addition, let

‖Rλ (A)‖ � F

(
1

ρ(A,λ )

)
(λ �∈ σ(A)),

where F(x) is a monotonically increasing non-negative function of a non-negative vari-
able x , such that F(0) = 0 and F(∞) = ∞ . Then svA(B) � z(A,q) , where z(A,q) is
the unique positive root of the equation qF(1/z) = 1 .
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For the proof see [7, Lemma 8.4.2, p. 129]. The previous lemma and (4.7) imply

COROLLARY 5.3. Let A satisfy the hypothesis of Theorem 4.1. Then for any
B ∈ H one has svA(B) � z2(q,A) , where z2(q,A) is the unique positive root of the
equation

q
z

exp
[1
2

+
ζ 2(A)
2z2

]
= 1. (5.1)

We need also the following

LEMMA 5.4. The unique positive root za of the equation

p−1

∑
j=0

1
y j+1 exp

[1
2
(1+

1
y2p )

]
= a (p = 1,2, . . . ; a ≡ const > 0) (5.2)

satisfies the inequality za � δp(a) , where

δp(a) :=
{

pe/a if a � pe,
[ln (a/p)]−1/2p if a > pe

.

Furthermore, substitute into (5.1) the equality z = xζ (A) and apply the previous
lemma. Then we can assert that z2(q,A) � δ1(A,q) , where

δ1(A,q) =
{

eq if ζ (A) � eq,

ζ (A) [ln (ζ (A)/q)]−1/2 if ζ (A) > eq
.

Hence, Corollary 5.3 yield the inequality svA(B) � δ1(q,A) .

6. The Sylvester operator equation

Consider the Sylvester equation

AX −XB = C, (6.1)

where A,B and C are given bounded linear operators in H and X should be found.
The Lyapunov equation

AX +XA∗ = C. (6.2)

is an example of (6.1). It plays an important role in the theory of differential equations.

LEMMA 6.1. Let ∫ ∞

0
‖e−At‖‖eBt‖dt < ∞.

Then (6.1) has a unique solution X , which is representable as

X =
∫ ∞

0
e−AtCeBtdt. (6.3)
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Proof. It is well-known that ‖A‖ � rs(A) . Hence due to the Spectral Mapping
theorem ‖ f (A)‖ � sups∈σ(A) | f (s)| for any function f regular on the spectrum of A .

In particular, ‖eBt‖ � eα(B)t and ‖e−At‖ � e−β (A)t (t � 0) , where

β (A) := infℜ σ(A).

Thus, ∫ ∞

0
e(−β (A)+α(B))tdt �

∫ ∞

0
‖e−At‖‖eBt‖dt < ∞.

Hence α(B) < β (A) . Now the existence and uniqueness of solutions to (6.1) is due
Theorem I.3.2 [3]. From (6.3) it follows

AX −XB =
∫ ∞

0
(Ae−AtCeBt − e−AtCBeBt)dt =

∫ ∞

0

(
− de−At

dt
CeBt − e−AtC

deBt

dt

)
dt

= −
∫ ∞

0

d
dt

(e−AtCeBt)dt = −e−AtCeBt |t=∞
t=0 = C.

This proves the result. �

THEOREM 6.2. Let A and B satisfy the hypothesis of Theorem 4.3. In addition,
let the condition β (A) > α(B) hold. Then the unique solution X to equation (6.1) is
subject to the inequality

‖X‖ � ‖C‖
∞

∑
j,k=0

(k+ j)!ζ k(A)ζ j(B)
(β (A)−α(B))k+ j+1(k! j!)3/2

.

Proof. Due to (4.11) we have

‖e−As‖ � e−β (A)s
∞

∑
k=0

skζ k(A)
(k!)3/2

and ‖eBs‖ � eα(B)s
∞

∑
j=0

s jζ j(B)
( j!)3/2

for all s � 0. So

‖e−As‖‖eBs‖ � e−(β (A)−α(B))s
∞

∑
j=0

∞

∑
k=0

sk+ jζ k(A)ζ j(B)
(k! j!)3/2

.

But ∫ ∞

0
sk+ je−(β (A)−α(B))sds =

(k+ j)!
(β (A)−α(B))k+ j+1.

.

This and the previous lemma proves the theorem. �
Similarly one can consider equation (6.1) with A = a1 +a2Ã , B = b1+b2B̃ , where

a1,a2,b1,b2 are constants, Ã, B̃ satisfy the hypothesis of Corollary 4.4.

Acknowledgement. I am very grateful to the referee of this paper for his (her) really
helpful remarks.
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