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THE SPECTRAL EQUALITY FOR UPPER TRIANGULAR

OPERATOR MATRICES WITH UNBOUNDED ENTRIES
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Abstract. Let

MC =
[
A C
0 B

]
: D(MC) ⊂ X ×X → X ×X

be a 2×2 unbounded upper triangular operator matrix on the complex Hilbert space X×X . We
investigate the conditions under which σ(MC) = σ(A)∪σ(B) holds in the diagonally dominant
(D(MC) = D(A)×D(B) ) and upper dominant case (D(MC) = D(A)×D(C) ). Some necessary
and sufficient conditions are obtained. The results generalize some results of Han, Du, and
Barraa in the bounded case.
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