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Abstract. This paper will initiate a study on the class of complex symmetric operators acting
between two different Hilbert space. Among other things, we compute the closure of CSOu and
CSOb with respect to the several topologies.

1. Introduction

In linear algebra, a symmetric matrix is a square matrix that is equal to its trans-
pose. But, in operator theory, a symmetric operator on a complex Hilbert space H is an
operator that is its own adjoint. So, if H is finite-dimensional with a given orthonormal
basis, this is equivalent to the condition that the matrix of A is Hermitian, i.e., equal to
its conjugate transpose A∗ .

But, the study of complex symmetric operators has been flourished near the inter-
section of operator theory and complex analysis. The term complex symmetric stems
from the fact that T is a complex symmetric operator on a Hilbert space H if and only
if there is an orthonormal basis of H with respect to which T has a symmetric matrix
representation with complex entries.

About half a century ago, Glazman laid the foundations for the theory of un-
bounded complex symmetric operators [10, 11]. Since then, his fundamental ideas
have been successfully tested on several classes of differential operators [1, 16, 19].
The general study of complex symmetric operators was undertaken by S.R. Garcia in
[4, 5, 6].

One of his work, that is of interest in this paper, is on the norm closure problem
for bounded complex symmetric operators. He proves that the set of all bounded com-
plex symmetric operators on a separable, infinite-dimensional Hilbert space is not norm
closed [7, 8]. Recently many other researchers have obtained some results for the set of
all complex symmetric operators. For example, it is shown that this set is transitive and
2-hyperreflexive with constant 1 [9].

In this article, we look at this from a different point of view. At first, we define
a suitable metric d on C(H,K) , the set of all closed densely-defined linear operators
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from Hilbert space H to finite dimensional Hilbert space K . Already, metric geometric
properties, such as compactness of the class of admissible sets, metric convexity, and
normal structure are examined [18]. Then, we introduce the notion of complex sym-
metric operator (not necessarily bounded) acting between two different Hilbert spaces
and study the closure CSO of the set CSO of all densely-defined complex symmetric
operators from Hilbert space H to finite dimensional Hilbert space K , with respect to
this new effective metric.

2. Preliminary notes

Let X be a complex Banach space and let B be the open unit ball in X . Let the
Poincaré metric ω on Δ , the open unit disc in the complex plane C , be given by

ω(a,b) = tanh−1 |a−b|
|1− ab| |a|, |b| < 1.

Let x,y be two points of B . An analytic chain joining x and y in B consists of 2n
points z′1,z

′′
1 , ...,z

′
n,z

′′
n in Δ , and of n holomorphic functions fk : Δ → B , such that

f1(z′1) = x, . . . , fk(z′′k ) = fk+1(z′k+1) for k = 1, . . . ,n−1, fn(z′′n) = y.

Since B is connected, given x and y , an analytic chain joining x and y in B always
exists, provided that n is sufficiently large. Let

KB(x,y) = inf{ω(z′1,z
′′
1)+ ω(z′2,z

′′
2)+ . . .+ ω(z′n,z

′′
n)},

where the infimum is taken over all choices of analytic chains joining x and y in B . It
is called the Kobayashi pseudo-metric on B .

The next theorems from [3] will be used later on.

THEOREM 2.1. Let B be the open unit ball of the complex Banach space X . If
F : B → B is a bi-holomorphic map, then

KB(F(x),F(y)) = KB(x,y), f or all x,y ∈ B.

THEOREM 2.2. Let B be the open unit ball of a complex Banach space X . Then

KB(0,x) = ω(0,‖x‖).

Let H , K be complex Hilbert spaces. We denote the open unit ball of B(K,H) ,
the space of all bounded linear operators from K to H , by B . For each A ∈ B , we
define a transformation η on B setting

η(Z) = (I−AA∗)−
1
2 (Z +A)(I +A∗Z)−1(I−A∗A)

1
2 . (1)

We collect the facts about this transformation that we need in the following lemma.
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LEMMA 2.3. If η is as in (1), then η has the following properties:

(i) η is invertible and its inverse is given by

η−1(Z) = (I−AA∗)−
1
2 (Z−A)(I−A∗Z)−1(I−A∗A)

1
2 .

(ii) η is a bi-holomorphic mapping on B .

(iii) If dim(K) < ∞ , then η is WOT-continuous.

Proof. To prove statement (i), take any Z ∈ B and insert

Y = (I−AA∗)−
1
2 (Z−A)(I−A∗Z)−1(I−A∗A)

1
2 .

We shall show that η(Y ) = Z . To do this we should note that

Y = (I−AA∗)
1
2 (I−ZA∗)−1(Z−A)(I−A∗A)−

1
2 . (2)

For, (2) is equivalent to the identity

(Z−A)(I−A∗A)−1(I−A∗Z) = (I−ZA∗)(I−AA∗)−1(Z−A),

which can be easily verified by a straightforward calculation. Now, we evaluate the
operator I +A∗Y :

I +A∗Y = I +A∗(I−AA∗)
1
2 (I−ZA∗)−1(Z−A)(I−A∗A)−

1
2

= I +(I−A∗A)
1
2 (I−A∗Z)−1(A∗Z−A∗A)(I−A∗A)−

1
2

= I− I +(I−A∗A)
1
2 (I−A∗Z)−1(I−A∗A)

1
2

= (I−A∗A)
1
2 (I−A∗Z)−1(I−A∗A)

1
2 .

From this equation we see at once that

η(Y ) = (I−AA∗)−
1
2 (Y +A)(I−A∗A)−

1
2 (I−A∗Z)

= [Z(I−A∗Z)−1−ZA∗(I−ZA∗)−1A](I−A∗A)−1(I−A∗Z)
= Z(I−A∗Z)−1[I−A∗A](I−A∗A)−1(I−A∗Z)
= Z.

Statement (ii) was shown in theorem 2 of [12]. To prove statement (iii): It is easy to
check that if K is finite dimensional, then the norm topology of B(K,H) coincides with
the strong operator topology while WOT coincides with the weak topology of B(K,H) .
In this case, the WOT-continuity of η was noticed and used by Krein [17]. �
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3. The metric space C(H,K)

We denote the space of all closed densely-defined linear operators from H to K
by C(H,K) . The first relaxation in the concept of operator is to not assume that the
operators are defined everywhere on H . Hence, densely-defined operator T : H → K
is a linear function whose domain of definition is dense linear subspace D(T ) in H . T
is closed if its graph, G (T ) , is a closed subset of space H ⊕K [20].

Let T ∈C(H,K) and define LT and RT settings as:

LT (X) = (I +T ∗T )
1
2 X∗ −T∗(I +XX∗)

1
2 ,

RT (X) = (I +XX∗)
1
2 (I +TT ∗)

1
2 −XT∗.

Consider operator X such that the compositions are well-defined. Next, we briefly
discussed considerations to define a new metric. Although, some of the statements
follows easily from [14]. Using lemma 1.10 of Schmüdgen [20], recall that G (T ∗) =
V (G (T ))⊥ where V (x,y)= (−y,x) , x∈H , y∈K . Hence, K

⊕
H = G (T ∗)

⊕
V (G (T )) .

Therefore, for each u ∈ H , there exist x ∈ D(T ) and y ∈ D(T ∗) such that y−Tx = 0,
T ∗y+x = u . That is, I +T ∗T is surjective. T ∗T is a positive self-adjoint operator and,
for x ∈ D(T ∗T ) :

‖(I +T ∗T )x‖2 = ‖x‖2 +‖T∗Tx‖2 +2‖Tx‖2,

hence, I +T ∗T is a bijective mapping with a positive bounded self-adjoint inverse on
H such that:

0 � (I +T ∗T )−1 � I.

On the other hand:

(I +T∗T )−1(H) = D(I +T ∗T ) = D(T ∗T ),

hence:

‖T (I +T ∗T )−1x‖2 = 〈T ∗T (I +T ∗T )−1x,(I +T ∗T )−1x〉
� 〈T ∗T (I +T ∗T )−1x,(I +T ∗T )−1x〉

+〈(I +T ∗T )−1x,(I +T∗T )−1x〉
= 〈(I +T ∗T )(I +T ∗T )−1x,(I +T ∗T )−1x〉
= 〈x,(I +T ∗T )−1x〉 = ‖(I +T ∗T )−

1
2 x‖2,

that is:
‖T (I +T ∗T )−

1
2 y‖ � ‖y‖ for y ∈ (I +T ∗T )−

1
2 (H).

Since (I+T ∗T )−
1
2 is bijective, (I +T ∗T )−

1
2 H is dense in H . Operator T (I+T ∗T )−

1
2

is closed since T is closed and (I + T ∗T )−
1
2 is bounded [20]. This implies that

D(T (I + T ∗T )−
1
2 ) = H , and ‖T (I + T ∗T )−

1
2 ‖ � 1. A similar argument shows that
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‖(I +T ∗T )−
1
2 T ∗‖ � 1; however, if K is finite dimensional, operator TT ∗ is bounded

and

‖T (I +T ∗T )−
1
2 ‖2 = ‖TT ∗(I +TT ∗)−1‖ =

‖TT ∗‖
1+‖TT ∗‖ < 1.

It is known that ‖ f (TT ∗)‖ = f (‖TT ∗‖) if function f is non-decreasing on the
interval [0,‖TT ∗‖] and TT ∗ is a positive operator; thus, if K is a finite dimensional
Hilbert space, the inverse of the operator RS(T ) exists, and:

RS(T )−1 = (I +SS∗)−
1
2 [I−T(I +T ∗T )−

1
2 (I +S∗S)−

1
2 S∗]−1(I +TT ∗)−

1
2 .

REMARK 3.1. From the above it follows that if K is finite dimensional and T ∈
C(H,K) , then T̂ = (I +T ∗T )−

1
2 T ∗ ∈ B . If A ∈ B , then ker(I−A∗A) = 0. Because,

if A∗A(x) = x then
〈A∗A(x),x〉 = 〈x,x〉,

which means ‖A(x)‖ = ‖x‖ and x must be zero. So, A0 = (I−A∗A)−
1
2 A∗ is a closed

densely-defined operator from H to K , such that Â0 = A .

LEMMA 3.2. If T ∈C(H,K) , then ψT , by the following definition, is of the form
of (1), ψT (T̂ ) = 0 , ψT (0) = −T̂ and ψ−1

T = ψ−T .

For each X ∈ B , ψT (X) = LT (Y )RY (T )−1 where Y = (1−X∗X)−
1
2 X∗ .

Proof. It is easy to see that ψT is of the form of (1), because:

ψT (X) = LT (Y )RY (T )−1

= {(I +T ∗T )
1
2Y ∗ −T ∗(I +YY ∗)

1
2 }{(I +TT ∗)

1
2 (I +YY ∗)

1
2 −TY ∗}−1

= {(I +T ∗T )
1
2Y ∗ −T ∗(I +YY ∗)

1
2 }(I +YY ∗)−

1
2 {(I +TT ∗)

1
2 −TŶ}−1

= {(I +T ∗T )
1
2 Ŷ −T ∗}{(I +TT ∗)

1
2 −TŶ}−1

= {[(I +T ∗T )−1(I +T ∗T −T ∗T )]−
1
2 Ŷ −T ∗}{(I +TT ∗)

1
2 −TŶ}−1

= {[I− T̂ T̂ ∗]−
1
2 Ŷ −T ∗}{(I +TT ∗)

1
2 −TŶ}−1

= {(I− T̂ T̂ ∗)−
1
2 Ŷ − [I +T ∗T −T ∗T ]

1
2 T ∗}{(I +TT ∗)

1
2 −TŶ}−1

= {(I− T̂ T̂ ∗)−
1
2 Ŷ − (I− T̂ T̂ ∗)−

1
2 T̂}{(I +TT ∗)

1
2 −TŶ}−1

= (I− T̂ T̂ ∗)−
1
2 (Ŷ − T̂ ){(I +TT ∗)

1
2 −TŶ}−1

= (I− T̂ T̂ ∗)−
1
2 (Ŷ − T̂ ){I− (I +TT ∗)−

1
2 TŶ}−1(I +TT ∗)−

1
2

= (I− T̂ T̂ ∗)−
1
2 (Ŷ − T̂ ){I− T̂ ∗Ŷ}−1(I +TT ∗)−

1
2

= (I− T̂ T̂ ∗)−
1
2 (Ŷ − T̂ )(I− T̂ ∗Ŷ )−1{(I +TT ∗)−1[I +TT ∗ −TT ∗]} 1

2

= (I− T̂ T̂ ∗)−
1
2 (Ŷ − T̂ )(I− T̂ ∗Ŷ )−1{I− T̂ ∗T̂} 1

2

= (1− T̂ T̂ ∗)−
1
2 (X − T̂ )(1− T̂∗X)−1(1− T̂∗T̂ )

1
2 ,

where T̂ = (1+T∗T )−
1
2 T ∗ ∈ B .
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Therefore, by lemma 2.3, ψ−1
T = ψ−T , ψT (T̂ ) = 0 and ψT (0) = −T̂ . �

THEOREM 3.3. If H , K are complex Hilbert spaces and dimK < ∞ , then

d(T,S) = tanh−1 ‖LT (S)RS(T )−1‖.
defines a metric on C(H,K) . This metric satisfies the next equality.

d(T,S) = KB(T̂ , Ŝ)

Proof. It is easy to see that, in this case, by theorems 2.1, 2.2 and lemma 3.2, d
defines a metric on C(H,K) . And for each T,S ∈C(H,K) , we have:

d(T,S) = tanh−1 ‖LT (S)RS(T )−1‖ = ω(0,‖ψT (Ŝ)‖)
= KB(0,ψT (Ŝ)) = KB(ψT (T̂ ),ψT (Ŝ)) = KB(T̂ , Ŝ),

where ψT is as in lemma 3.2. �
For more details about this metric, see [18].

4. Complex symmetric operators from H to K

Suppose that H and K are two complex separable Hilbert space endowed with a
c-pair (C1,C2) from H to K . Specifically, this means that C1 : H →K and C2 : K →H
are conjugate linear operators that is C2C1 = idH or C1C2 = idK , and they are involutive
with each other, meaning that 〈C1x,y〉K = 〈C2y,x〉H holds for all x ∈ H and y ∈ K .
Actually, we can describe these operators as conjugate linear isometries or coisometries.

An operator T : H → K is called (C1,C2)-symmetric if C2T = T ∗C1 whenever
C2C1 = idH , and TC2 = C1T ∗ whenever C1C2 = idK . More generally, T is called
complex symmetric if it is (C1,C2)-symmetric with respect to some c-pair (C1,C2) .

In the following, we let CSOu(H,K) and CSOb(H,K) denote the set of all com-
plex symmetric operators of C(H,K) and B(H,K) , respectively.

The terminology arises from the fact that if H = K and C1 =C2 =C , T is (C,C)-
symmetric if and only if it is C -symmetric. In particular, an n×m (n � m) matrix T
contains a symmetric m×m block if and if C2T = T ∗C1 where C1 and C2 are define
by:

C1(z1, . . . ,zm) = (z1,z2, . . . ,zm,0, . . . ,0),
C2(z1, . . . ,zn) = (z1,z2, . . . ,zm),

for zi ∈ C .
Note that the operator T ∗T is not necessarily complex symmetric. For example:

T =

⎛
⎝ i 2i

3 4i
1 2

⎞
⎠ , T ∗T =

(
11 4+12i

4−12i 24

)
.
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Accordingly, for an arbitrary operator T : H → K , there is not necessarily exists a
conjugation J on H commuting with |T | . But, we can obtain the next theorem. It
should be noted that for the special case H = K , Garcia [5] proved that a bounded C -
symmetric operator T factors as T =CJ|T | , where J is an auxiliary partial conjugation
which commutes with |T | .

THEOREM 4.1. Let T : H → K be a closed densely-defined linear operator. If at
least one of T and T ∗ is one-to-one, then the operator T : H →K is complex symmetric
if there exists a conjugation J on H commuting with |T | .

Proof. Let J be a conjugation on H commuting with |T | . We may take a polar
decomposition T =V |T | with V ∗V = idH or VV ∗ = idK . Then C1 =VJ and C2 = JV ∗
form a c-pair for which T is complex symmetric. Explicitly, for each x ∈ H , y ∈ K ,
we have

〈C1x,y〉 = 〈VJx,y〉 = 〈Jx,V ∗y〉 = 〈JV ∗y,x〉 = 〈C2y,x〉.
Now, if V ∗V = idH , we have

C2T = JV ∗V |T | = |T |J = |T |V ∗VJ = T ∗C1,

and in general we also have

TC2 = V |T |JV ∗ = VJ|T |V ∗ = C1T
∗. �

LEMMA 4.2. Every closed densely-defined operator from a Hilbert space H to a
Hilbert space K , has a complex symmetric extension.

Proof. Let T ∈C(H,K) and (C1,C2) be an arbitrary conjugation pair from H to
K . The operator T̃ from H ⊕H to K ⊕K is a (C̃1,C̃2)-symmetric extension of T ,
where T̃ , C̃1 and C̃2 are defined by:

T̃ =
(

T 0
0 C1T ∗C1

)
, C̃1 =

(
0 C1

C1 0

)
, C̃2

(
0 C2

C2 0

)
. (3)

This completes the proof. �

LEMMA 4.3. Let A be a bounded (C1,C2)-symmetric operator from K to H ,

with ‖A‖< 1 . Then T = (I−A∗A)−
1
2 A∗ is a closed densely-defined complex symmetric

operator from H to K .

Proof. For x ∈ D(T ) , we compute

‖Tx‖2 +‖x‖2 = 〈AA∗(I−AA∗)−
1
2 x,(I−AA∗)−

1
2 x〉+ 〈x,x〉

= −〈(I−AA∗)(I−AA∗)−
1
2 x,(I−AA∗)−

1
2 x〉+ 〈x,x〉

+〈(I−AA∗)−
1
2 x,(I−AA∗)−

1
2 x〉

= ‖(I−AA∗)−
1
2 x‖2. (4)
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We prove that T is closed. Suppose that xn → x and Txn → y for a sequence of vectors
xn ∈ D(T ) . Then, by (4), {(I −AA∗)−

1
2 xn} is a Cauchy sequence, so it converges in

H . Since (I−AA∗)−
1
2 is self-adjoint and hence closed, we get x ∈ D((I−AA∗)−

1
2 ) =

D(T ) and (I−AA∗)−
1
2 xn → (I−AA∗)−

1
2 x . Hence,

Txn = A∗(I−AA∗)−
1
2 xn → A∗(I−AA∗)−

1
2 x = Tx = y.

This proves that the operator T is closed. Clearly, T is densely-defined, because the
self-adjoint operator (I −AA∗)−

1
2 is densely-defined. Therefore, T ∈ C(H,K) . Now,

we are ready to prove that T is symmetric.
Let C2C1 = idK , and define C1 and C2 settings as:

C1 = (I−A∗C1C2A)−
1
2C2(I−AA∗)

1
2 ,

C2 = (I−AA∗)
1
2C1(I−A∗C1C2A)−

1
2 .

For each x∈K and y∈H , ‖C1x‖= ‖x‖ and ‖C2y‖� ‖y‖ . So, I−A∗C1C2A is positive
self-adjoint and ker(I−A∗C1C2A) = {0} . Because, ‖A‖< 1 and if A∗C1C2Ax = x then

〈x,x〉 = 〈A∗C1C2Ax,x〉
= 〈C1C2Ax,Ax〉
= 〈C2Ax,C2Ax〉
= ‖C2Ax‖2 � ‖Ax‖2,

which means ‖Ax‖ = ‖x‖ and x must be zero. This proves that C1 and C2 are well-
define. It is obviouse that (C1,C2) is a conjugation pair from H to K and T is a
(C1,C2)-symmetric operator. Because:

C1C2 = (I−A∗C1C2A)−
1
2C2(I−AA∗)C1(I−A∗C1C2A)−

1
2

= (I−A∗C1C2A)−
1
2 (C2C1−A∗C1C2A)(I−A∗C1C2A)−

1
2 = idK ,

and

TC2 = (I−A∗A)−
1
2 A∗(I−AA∗)

1
2C1(I−A∗C1C2A)−

1
2

= A∗C1(I−A∗C1C2A)−
1
2

= C2A(I−A∗C1C2A)−
1
2

= (I−C2AA∗C1)−
1
2C2A

= (I−A∗C1C2A)−
1
2C2(I−AA∗)

1
2 (I−AA∗)−

1
2 A

= C1T
∗. �

We are now ready to prove the main result of this section. Our approach is inspired
by the arguments of [8].



COMPLEX SYMMETRIC OPERATORS ACTING BETWEEN TWO DIFFERENT HILBERT SPACES 565

THEOREM 4.4. If H , K are complex separable Hilbert spaces, H is infinite-
dimensional and dimK < ∞ , then

CSO
d
u = C(H,K).

Proof. Let T ∈C(H,K) , fix an orthonormal basis α = { f1, . . . , ft} of K and an or-
thonormal basis β = {e1,e2, . . .} of H , and let Hn = 〈e1, . . .en〉 . Define An ∈ B(K,Hn)
by insisting that 〈An fk,e j〉 = 〈T̂ fk,e j〉 , for 1 � k � t and 1 � j � n . In other words,
An is simply the upper-left n× k principal submatrix of the matrix representation of T̂
with respect to α and β . Let (C1

n ,C
2
n) be an arbitrary conjugation pair from K to H

and observe that the operator Ãn from K ⊕K to H ⊕H is complex symmetric by 3.
Since n > i implies that

‖T fi − Ãn fi‖2 =
∞

∑
j=n+1

|〈T̂ fi,e j〉|2,

it follows that Ãn fi → T fi for each fixed i . Since ‖Ãn‖ � ‖T̂‖ by construction, it fol-
lows from proposition IX. 1.3. (d) of [2] that Ãn → T̂ (SOT). Since the weak-operator
topology is weaker than the strong-operator topology, we also have the convergence
in the weak-operator topology. Therefore, by lemma2.3 and lemma3.2, ψT (Ãn) → 0
(WOT), and hence limn ‖ψT (Ãn)‖ = 0. Because K is finite dimensional and

‖ψT (Ãn)‖ �
t

∑
i=1

‖ψT (Ãn) fi‖.

Insert Tn = (I− Ãn
∗
Ãn)−

1
2 Ãn

∗
. By lemma 3.2, we have

d(Tn,T ) = tanh−1 ‖LTn(T )RT (Tn)−1‖
= tanh−1 ‖ψT (T̂n)‖ = tanh−1 ‖ψT (Ãn)‖.

This implies that limn d(Tn,T ) = 0. By lemma 4.3, Tn is complex symmetric operator,
and this completes the proof. �

Now, we consider the weak operator topology (WOT), strong operator topology
(SOT), and strong-* topology (SST), on B(H,K) . You should note that by using the

proof of previous theorem, CSO
SST
b = B(H,K) . Since the strong and weak operator

topologies are both weaker than the strong-* topology, we have the next corollary.

COROLLARY 4.5. If H , K are complex separable, infinite-dimensional Hilbert
spaces, then

CSO
(SST )
b = CSO

(SOT )
b = CSO

WOT
b = B(H,K)
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