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Abstract. In the context of infinite weighted graphs, we consider the discrete Laplacians on 0-
forms and 1-forms. Using Weyl’s criterion, we prove the relation between the nonzero spectrum
of Δ0 and that of Δ1 . Moreover, we give an extension of the work of John Lott to characterize
the 0-spectrum of these two Laplacians.

1. Introduction

In recent years, much attention has been paid to the analysis of discrete Lapla-
cians and elliptic differential operators acting on graphs [13], [5], [6] and [19]. More
precisely, authors have intensively studied the spectrum of the discrete Laplacian on
an infinite graph in various areas, for example, harmonic analysis on graphs (see [16],
[20]), probability theory especially Markov chains (see [8], [12]), potential theory such
as electric networks (see [17], [12]), and so on. In this paper, we define two Laplacians,
mentioned in [1] and [3], one as an operator acting on functions on vertices denoted by
Δ0 and the other one acting on functions on edges denoted by Δ1 . So, it is a natural
question to characterize the relation between their spectrum in terms of a certain geo-
metric property of the graph and properties of the operators. Especially we show that
the nonzero spectrum of Δ0 and Δ1 are the same, by using Weyl’s criterion. More-
over, with suitable weight conditions we prove that 0 is in the spectrum of Δ1 , if the
operator Δ0 is invertible. This result is inspired from J. Lott’s work [11] (Proposition
9, p. 12 ) which proves in the case of a simple graph that 0 is either in the spectrum of
the Laplacian on 0-forms, or in the spectrum of the Laplacian on 1-forms. In fact, the
major interest of J. Lott concerns the zero-in-the-spectrum question for the Laplace-de
Rham operator acting on L2 differential forms of any degree on a complete connected
oriented Riemannian manifold. The article [11] is rather expository and gives some
positive answers, in relation with topology, for small dimensions. We finish the paper
with examples of constructions of Δ1 -harmonic nonzero square-integrable functions.
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2. Preliminaries

2.1. Definition and notation

• A graph G is a couple (V ,E ) where V is a set at most countable whose ele-
ments are called vertices and E is a set of oriented edges, considered as a subset
of V ×V .

• If the graph G has a finite set of vertices, it is called a finite graph. Otherwise, G
is called an infinite graph.

• We assume that E has no self-loops and is symmetric:

v ∈ V ⇒ (v,v) /∈ E , (v1,v2) ∈ E ⇒ (v2,v1) ∈ E .

• Choosing an orientation of G consists of defining a partition of E : E +�E − = E

(v1,v2) ∈ E + ⇔ (v2,v1) ∈ E −.

• For e = (v1,v2) , we denote

e− = v1, e+ = v2 and − e = (v2,v1).

• We write v1 ∼ v2 for e = (v1,v2) ∈ E .

• The graph G is connected if any two vertices x , y in V can be joined by a path
of edges γxy , that means γxy = {ek}k=1,...,n such that

e−1 = x, e+
n = y and, if n � 2 , ∀ j ; 1 � j � (n−1)⇒ e+

j = e−j+1.

• The degree (or valence) of a vertex x is the number of edges emanating from x .
We denote

deg(x) := �{e ∈ E ; e− = x}.

• If deg(x) < ∞, ∀x ∈ V , we say that G is a locally finite graph.

2.2. Weighted graphs

DEFINITION 2.1. A weighted graph (G,c) is given by a graph G = (V ,E ) and
weights on the edges c : E → [0,∞[ such that

• c(x,x) = 0, ∀x ∈ V .

• c(x,y) > 0, ∀(x,y) ∈ E .

• c(x,y) = c(y,x), ∀(x,y) ∈ E .
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If ∑y∼x c(x,y) < ∞ for each x ∈ V , we can define a weight on V by

c̃(x) = ∑
y∼x

c(x,y), x ∈ V .

REMARK 2.1. If the graph G is locally finite, the weight c̃ on any vertex is well
defined.

EXAMPLES.
An infinite electrical network is a weighted graph (G,c) where the weight c on

the edges are called conductances and their reciprocals are called resistances. This is
the convention used in the study of random walks on weighted graphs, see [12] and
[16]. Then, c̃(x) = ∑y∈V c(x,y) is the weight associated to the vertex x .

A graph G is called a simple graph if the edge weights are equal to 1. In this case,

c̃(x) = deg(x), ∀x ∈ V .

All the graphs we shall consider in the sequel will be connected, locally finite and
weights c given in Definition 2.1.

2.3. Functional spaces

We denote the set of real functions on V by:

C (V ) = { f : V → R}

and the set of functions of finite support by C0(V ) .
Moreover, we denote the set of real skew-symmetric functions on E by:

C a(E ) = {ϕ : E → R ;ϕ(−e) = −ϕ(e)}

and the set of functions of finite support by C a
0 (E ) .

We define on the weighted graph (G,c) the following function spaces endowed
with the scalar products.

a)

l2(V ) :=

{
f ∈ C (V ); ∑

x∈V

c̃(x) f 2(x) < ∞

}
,

with the inner product

〈 f ,g〉V = ∑
x∈V

c̃(x) f (x)g(x)

and the norm
‖ f‖V =

√
〈 f , f 〉V .
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b)

l2(E ) :=

{
ϕ ∈ C a(E );

1
2 ∑

e∈E

c(e)ϕ2(e) < ∞

}
,

with the inner product

〈ϕ ,ψ〉E =
1
2 ∑

e∈E

c(e)ϕ(e)ψ(e)

and the norm
‖ϕ‖E =

√
〈ϕ ,ϕ〉E .

Then, l2(V ) and l2(E ) are separable Hilbert spaces (since V is countable).

2.4. Operators and properties

The difference operator

d : l2(V ) −→ l2(E ),

is given by
d( f )(e) = f (e+)− f (e−).

The coboundary operator is δ , the formal adjoint of d. Thus it satisfies

〈d f ,ϕ〉E = 〈 f ,δϕ〉V (2.1)

for all f ∈ l2(V ) and for all ϕ ∈ l2(E ).
As consequence, we have the following formula characterizing δ :

LEMMA 2.1. The coboundary operator δ is characterized by the formula

δϕ(x) =
1

c̃(x) ∑
e,e+=x

c(e)ϕ(e),

for all ϕ ∈ l2(E ).

Proof. For f ∈ l2(V ) and ϕ ∈ l2(E ) , using (2.1), we get

〈d f ,ϕ〉E =
1
2 ∑

e∈E

c(e)d f (e)ϕ(e)

=
1
2 ∑

e∈E

c(e)
(
f (e+)− f (e−)

)
ϕ(e)

=
1
2 ∑

x∈V

f (x)

(
∑

e,e+=x

c(e)ϕ(e)− ∑
e,e−=x

c(e)ϕ(e)

)
.
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But c(−e) = c(e) and ϕ is skew-symmetric, so we have

∑
e,e+=x

c(e)ϕ(e) = − ∑
e,e−=x

c(e)ϕ(e).

Then,

〈d f ,ϕ〉E = ∑
x∈V

c̃(x) f (x)

(
1

c̃(x) ∑
e,e+=x

c(e)ϕ(e)

)

= 〈 f ,δϕ〉V

and the formula for δϕ follows. �

DEFINITION 2.2. The Laplacian on 0-forms Δ0 defined by δd on l2(V ) is given
by

Δ0 f (x) =
1

c̃(x) ∑
y∼x

c(x,y)( f (x)− f (y)) .

In fact, we have

Δ0 f (x) = δ (d f )(x)

=
1

c̃(x) ∑
e,e+=x

c(e)d f (e)

=
1

c̃(x) ∑
e,e+=x

c(e)
(
f (e+)− f (e−)

)
=

1
c̃(x) ∑

y∼x
c(x,y)( f (x)− f (y)) .

DEFINITION 2.3. The Laplacian on 1-forms Δ1 defined by dδ on l2(E ) is given
by

Δ1ϕ(e) =
1

c̃(e+) ∑
e1,e

+
1 =e+

c(e1)ϕ(e1)− 1
c̃(e−) ∑

e2,e
+
2 =e−

c(e2)ϕ(e2).

In fact, we have

Δ1ϕ(e) = d(δϕ)(e)
= δϕ(e+)− δϕ(e−)

=
1

c̃(e+) ∑
e1,e

+
1 =e+

c(e1)ϕ(e1)− 1
c̃(e−) ∑

e2,e+
2 =e−

c(e2)ϕ(e2).

PROPOSITION 2.1. The operator Δ0 is bounded and self-adjoint.



572 H. AYADI

Proof. For f , g ∈ l2(V ) , we have

|〈Δ0 f ,g〉V | =

∣∣∣∣∣∑x c̃(x)
1

c̃(x) ∑
y∼x

c(x,y)( f (x)− f (y))g(x)

∣∣∣∣∣
� ∑

x
∑
y∼x

c(x,y) |( f (x)− f (y))| |g(x)|

� ∑
x

∑
y∼x

c(x,y) | f (x)| |g(x)|+∑
x

∑
y∼x

c(x,y) | f (y)| |g(x)|

= ∑
x

c̃(x) | f (x)| |g(x)|+∑
x

∑
y∼x

c(x,y) | f (y)| |g(x)|

� ‖ f‖V ‖g‖V + I (2.2)

where I := ∑x ∑y∼x c(x,y) | f (y)| |g(x)| .
Using the Cauchy-Schwarz inequality, we obtain

I � ∑
x

(
∑
y∼x

c(x,y) | f (y)|2
) 1

2
(

∑
y∼x

c(x,y)

) 1
2

|g(x)|

= ∑
x

(
∑
y∼x

c(x,y) f 2(y)

) 1
2

(c̃(x))
1
2 |g(x)|

�
(

∑
x

∑
y∼x

c(x,y) f 2(y)

) 1
2 (

∑
x

c̃(x)g2(x)
) 1

2

=

(
∑
y

c̃(y) f 2(y)

) 1
2 (

∑
x

c̃(x)g2(x)
) 1

2

= ‖ f‖V ‖g‖V . (2.3)

Therefore, (2.2) and (2.3) gives

|〈Δ0 f ,g〉V | � 2‖ f‖V ‖g‖V .

But by the definition of the norm of operator, we have

‖Δ0‖ = sup
‖ f‖=1

‖Δ0 f‖V = sup
‖ f‖=1

sup
‖g‖=1

〈Δ0 f ,g〉V

So ‖Δ0‖ � 2, which shows that Δ0 is a bounded operator.
Now, we want to prove the selfadjointess of the operator Δ0 defined on l2(V ) . As

Δ0 is a bounded operator on l2(V ) , it remains to show that Δ0 is symmetric.
As we have Δ0 = δd and δ is the adjoint operator of d, we obtain for f and

g ∈ l2(V )

〈Δ0 f ,g〉V = 〈δd f ,g〉V
= 〈d f ,dg〉E
= 〈 f ,δdg〉V
= 〈 f ,Δ0g〉V . �
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REMARK 2.2.

• The operators d and δ are bounded. Indeed, using the inequality (a− b)2 �
2(a2 +b2) and the definition of the weights on vertices: c̃(x) = ∑y∼x c(x,y) , we
obtain

‖d f‖2
E =

1
2 ∑

(x,y)∈E

c(x,y)(d f (x,y))2

=
1
2 ∑

(x,y)∈E

c(x,y)( f (y)− f (x))2

� ∑
(x,y)∈E

c(x,y)( f 2(y)+ f 2(x))

= 2 ∑
x∈V

f 2(x) ∑
y∼x

c(x,y)

= 2 ∑
x∈V

f 2(x)c̃(x)

= 2‖ f‖2
V .

So d is bounded, and the same is true for the adjoint δ .

Notice that since Δ0 is the composite operator of δ and d; this gives another
proof that Δ0 is bounded.

• It is easy to see that Δ0 is also positive, since 〈Δ0 f , f 〉V = 〈d f ,d f 〉E � 0.

COROLLARY 2.1. As the operator Δ0 is self-adjoint and positive, its spectrum is
real and lies in [0,2] .

2.5. Weyl’s criterion

As our operator is bounded and self-adjoint on a Hilbert space, we can use Weyl’s
criterion [14] to characterize its spectrum.

Weyl’s criterion: Let H be a separable Hilbert space, and let Δ be a bounded
self-adjoint operator on H . Then λ is in the spectrum of Δ if and only if there exists
a sequence ( fn)n∈N so that ‖ fn‖ = 1 and lim

n→∞
‖(Δ−λ ) fn‖ = 0.

We denote σ(Δ) the spectrum of Δ and we set

• σd(Δ) is the set of λ ∈ σ(Δ) which is an isolated point and an eigenvalue with
finite multiplicity.

• σess(Δ) := σ(Δ)\σd(Δ) .

3. The relation between the spectrum of Δ0 and Δ1

3.1. The nonzero spectrum of Δ0 and Δ1

In this section we will prove the relation between the spectrum of Δ0 and that of
Δ1 , by using Weyl’s criterion.
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Following [15] and [18] we have the next lemma.

LEMMA 3.1. Let Δ0 = δd and Δ1 = dδ . Then we have

1. dΔ0 = Δ1d .

2. δΔ1 = Δ0δ .

LEMMA 3.2.

1. kerΔ0 = kerd .

2. kerΔ1 = kerδ .

Proof.

1. Clearly, we have kerd ⊂ kerΔ0 .

On the other hand, if Δ0 f = 0 for f ∈ l2(V ) and f 
= 0, we have

0 = 〈Δ0 f , f 〉V = 〈d f ,d f 〉E .

Then d f = 0 for f ∈ l2(V ) .

2. If ϕ ∈ kerδ , then ϕ ∈ l2(E ) and δϕ = 0. Thus, dδϕ = 0 and we obtain ϕ ∈
kerΔ1.

For the other inclusion, let ϕ ∈ l2(V ) , ϕ 
= 0 such that Δ1ϕ = 0. Then

0 = 〈Δ1ϕ ,ϕ〉E = 〈δϕ ,δϕ〉E .

We get δϕ = 0 and as a result kerΔ1 ⊂ kerδ . �

We arrive at our main result.

THEOREM 1.
σ(Δ1)\ {0}= σ(Δ0)\ {0}.

Proof.

• Let λ 
= 0 be in the spectrum of Δ0 . By Weyl’s criterion, there exists a sequence
( fn)n of l2(V ) such that

‖ fn‖V = 1 and lim
n→∞

‖(Δ0 −λ ) fn‖V = 0.

We want to find a sequence (ϕn)n of l2(E ) such that

‖ϕn‖E = 1 and lim
n→∞

‖(Δ1 −λ )ϕn‖E = 0.
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We set

ϕn :=
d fn

‖d fn‖E

.

First, let us check that ‖d fn‖E 
= 0. We have

‖d fn‖2
E = 〈Δ0 fn, fn〉V

= 〈(Δ0 −λ ) fn, fn〉V + 〈λ fn, fn〉V
= 〈(Δ0 −λ ) fn, fn〉V︸ ︷︷ ︸

converges to 0

+λ .

Then, lim
n→∞

‖d fn‖2
E = λ . Thus, by positivity of Δ0 , there exists A > 0 and an

integer n0 such that for all n � n0 , we have ‖d fn‖E > A . This implies that the
sequence (ϕn)n is well defined.

Now, we verify that lim
n→∞

‖(Δ1−λ )ϕn‖E = 0. By the first assertion of Lemma 3.1

and the fact that the operator d is bounded, we obtain for all n sufficiently large

‖(Δ1 −λ )ϕn‖E =
∥∥∥∥(Δ1−λ )

d fn
‖d fn‖E

∥∥∥∥
E

=
‖(Δ1 −λ )d fn‖E

‖d fn‖E

=
‖d(Δ0−λ ) fn‖E

‖d fn‖E

� ‖d‖
A

‖(Δ0−λ ) fn‖V .

But lim
n→∞

‖(Δ0−λ ) fn‖V = 0. Therefore, lim
n→∞

‖(Δ1−λ )ϕn‖E = 0 and we can

conclude that λ is in the spectrum of Δ1 \ {0}.
• The second part of the proof follows in the same fashion, with the roles of d and

δ swapped. �

There is a second method to prove Theorem 1 when 0 is not in the spectrum of
Δ0 .

LEMMA 3.3. If 0 is not in the spectrum of Δ0 , then the operator d defined in
l2(V ) has a closed range.

Proof. Let ϕ ∈ Imd, let us check that ϕ ∈ Imd, that means we look for a function
f ∈ l2(V ) such that ϕ = d f . We have ϕ ∈ Imd, so there exists a sequence (ϕn)n of
Imd such that ϕn = d fn , for fn ∈ l2(V ) . Moreover, the sequence (ϕn)n converges to
ϕ in l2(E ) . On the other hand, by assumption 0 is not in the spectrum of Δ0 which
implies the existence of a positive constant C such that

‖ f‖V � C‖Δ0 f‖V , ∀ f ∈ l2(V ).
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But by the definition of the operator norm and Remark 2.2, we obtain

‖Δ0 f‖ = sup
g,‖g‖V =1

〈Δ0 f ,g〉V � ‖d f‖E sup
g,‖g‖V =1

‖dg‖E �
√

2‖d f‖E .

Then
‖ f‖V �

√
2C‖d f‖E , ∀ f ∈ l2(V ).

Thus
‖ fn − fm‖V �

√
2C‖d fn −d fm‖E , fn, fm ∈ l2(V ).

And
‖ fn − fm‖V �

√
2C‖ϕn −ϕm‖E , fn, fm ∈ l2(V ).

As the sequence (ϕn)n converges, so it is a Cauchy sequence and also ( fn)n is a Cauchy
sequence in l2(V ) which is complete. Then, ( fn)n converges to f . By the bounded-
ness of the operator d, we obtain d fn = ϕn converges to d f and by uniqueness of the
limit, we have d f = ϕ . So ϕ is in Imd. �

COROLLARY 3.1. If 0 is not in the spectrum of Δ0 , then

σ(Δ1|Imd) = σ(Δ0).

Proof. By the first assertion of Lemma 3.1, we obtain

Δ1d = dΔ0.

But by assumption 0 is not in the spectrum of Δ0 . Then by the first assertion of Lemma
3.2, the operator d is invertible. So we obtain

Δ1|Imd = dΔ0d
−1.

Thus,
σ(Δ1|Imd) = σ(Δ0). �

3.2. The 0 -spectrum of Δ0 and Δ1

As the nonzero spectrum of Δ0 and Δ1 are the same, we are interested in char-
acterizing the 0-spectrum. We give in the following an extension of a result of John
Lott’s [11] (Proposition 9, p. 12).

THEOREM 2. Let (G,c) be a connected, locally finite and weighted infinite graph
such that the weight on edges c is bounded, i.e., there exists a constant α > 0 such that
1
α � c(x,y) � α , for all (x,y) ∈ E . Then

0 ∈ σ(Δ1) or 0 ∈ σ(Δ0).

First, we start with preliminary results.
By [17] (page 44) and [9] (chapter 4) we have the next definition.
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DEFINITION 3.1. The graph G verifies the isoperimetric inequality if there exists
a constant C > 0 such that for all finite sub-graphs GU = (U,EU) of G , we have

|∂EU | � C |U | ,

where
|∂EU | = ∑

x∈U
∑
y/∈U

c(x,y) and |U | = ∑
x∈U

c̃(x).

LEMMA 3.4. If Δ0 is invertible then the isoperimetric inequality holds.

Proof. Let U a finite sub-graph of G . Let us set g = 1U , meaning that g(x) = 1
if x ∈U and g(x) = 0 if x /∈U . Then we obtain

|U | = ∑
x∈U

c̃(x) = ‖g‖2
V

and
|∂EU | = ∑

x∈U
∑
y/∈U

c(x,y) = ‖dg‖2
E .

By assumption 0 is not in the spectrum of Δ0 . Then by the first assertion of Lemma
3.2, the operator d is invertible, so there exists a positive constant λ so that

‖g‖V � λ ‖dg‖E , ∀g ∈ l2(V ).

Thus, it follows that

|∂EU | � C |U | , with C =
1

λ 2 . �

DEFINITION 3.2.

• A branch B is a finite sequence of vertices x0,x1, . . . ,xm+1 such that for all j; 1 �
j � m , we have deg(x j) = 2.

• The length of a branch B , denoted long(B) , is the number of vertices in this
branch, here, long(B) = m+2.

• The interior of the branch B is the set of vertices x j of B satisfying the following
conditions:

i) deg(x j) = 2.

ii) ∀y ∈ V ; y ∼ x j ⇒ y ∈ B .

See [5] and [19] for the definition of the interior set of vertices.

Instead of the argument of Lott [11] inspired by Gromov [10] (p. 236–237), we
use the following lemma:
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Figure 1: A branch of length m+2

LEMMA 3.5. We suppose that the following conditions are satisfied:

• The weight on edges c is bounded, i.e., there exists a constant α > 0 such that
1
α � c(x,y) � α , ∀(x,y) ∈ E .

• The operator Δ0 is invertible.

• The operator Δ1 is injective.

Then the graph (G,c) is a tree which contains brancheswith uniformly bounded lengths,
that means ∃M > 0 , ∀B branch of G, long(B) � M.

Proof. On the one hand, the operator Δ1 is injective which leads to the absence of
cycles in the graph, so that G is a tree.

On the other hand, the operator Δ0 is invertible, then the isoperimetric inequality is
checked, by Lemma 3.4 there is a positive constant C such that for all finite sub-graphs
U , we have

|∂EU | � C |U | .
Let B be a branch with vertices x0,x1, . . . ,xm,xm+1 . We set U = {x1, . . . ,xm} the inte-
rior of the branch B , then

c(x0,x1)+ c(xm,xm+1) � C
m

∑
j=1

c̃(x j). (3.4)

For the sake of simplicity, we first prove the lemma for the case of the constant weight
c = 1, before handling the case of general weights.

• If c = 1, then we have c̃(x) = ∑y∼x c(x,y) = ∑y∼x 1 = deg(x) , ∀x ∈ V (this is J.
Lott’s case [11]). Therefore, the inequality (3.4) and Definition 3.2 gives

2 � C
m

∑
j=1

deg(x j) = C
m

∑
j=1

2 = 2Cm.

We set M := 1
C +2 (independent of B), then long(B) � M . Thus the lengths of

branches of G are uniformly bounded.

• If c 
= 1 but c is bounded, that means there exists α > 0 such that 1
α � c(x,y) �

α , for all (x,y) ∈ E . And as we have the weight on the vertices is c̃(x) =
∑y∼x c(x,y) , we obtain that c̃ is also bounded from below by 1

α .
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By the inequality (3.4) we have

2α � c(x0,x1)+ c(xm,xm+1) � C
m

∑
j=1

c̃(x j) � Cm
1
α

.

Hence,
2α2

C
� m.

We set M = 2α2

C + 2 (independent of B), then long(B) � M . Thus, the lengths
of the branches of G are uniformly bounded. �

Now, we arrive to the proof of Theorem 2.

Proof. Taking the arguments from [11], we argue by contradiction. Suppose that
both operators Δ0 and Δ1 are invertible. Then, by Lemma 3.5, the graph G is a tree
which contains branches with uniformly bounded lengths; see Figure 2 for an example.

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

��

��

���� ������

���� ������

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

����

���� ������ ������ ��

������ ������ ��

����

��
��
��
��

��
��
��
��0−

0 1 2 3 4

5 6 7 8

9 10 11

12 13 14 15 16 17

5− 6− 7− 8−

B1

B2

B3

B4

Figure 2: A branch tree

But the existence of such tree gives a δ -harmonic nonzero square-integral function
ϕ . Indeed: we consider a part of the branch tree in Figure 2 as an example to simplify
the understanding of the construction.
For the sake of simplicity, we first prove the theorem for the case of the constant weight
c = 1, before handling the case of general weights.

First case: c = 1, we fix a vertex 0 as the origin of the tree and we set 0− and 1
its different neighbors. Let us take

ϕ(0,0−) = ϕ(0,1) = 1.

Then, we obtain δϕ(0) = 0 (the tree is oriented).
Afterwards on the branch B1 , ϕ is constant, in other words, ϕ( j, j +1) = 1, for

all j , such that 1 � j � 3. And at the point 4 , we have ϕ(4,5) = ϕ(4,5−) = 1
2 .

It is claimed that δϕ(4) = 0. And for the points which are in the branch B2 , the
function ϕ is constant and takes the value 1

2 . And so on to the point 8 , we have
ϕ(8,9) = ϕ(8,9−) = 1

4 , to obtain δϕ(8) = 0. And for the points which are in the
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Figure 3: An example of a branch tree
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Figure 4: Another example of a branch tree

branch B3 , the function ϕ is constant and takes the value 1
4 . And we continue in this

way. . .
In a general way, G is a tree which contains branches with uniformly bounded

lengths and we construct a functions ϕ in a part of G by selecting always two branches
at bifurcation points and at all edges that occur on other branches, ϕ is set to zero, as in
Figure 4. In the Figure 3, the construction of ϕ is done in the following way: on B0 the
function ϕ is constant and equals to 1. Then we add a generation, we get two branches
B1,1 and B1,2 such that the function ϕ takes the value 1

2 . And to the generation m , we
have Bm,k branches, where 1 � k � 2m , then the function ϕ is equal to 1

2m . As a result,
we show that this construction of ϕ is in l2(E ) . Using the fact that the lengths of the
branches of the tree are uniformly bounded by a constant M > 0, we obtain

‖ϕ‖2
E =

1
2 ∑

m�0

2m

∑
k=1

∑
e∈Bm,k

(ϕ(e))2

=
1
2 ∑

m�0

2m

∑
k=1

∑
e∈Bm,k

(
1
2m

)2

� 1
2 ∑

m�0
2mM

(
1
2m

)2

=
M
2 ∑

m�0

1
2m < ∞.
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Second case: c 
= 1 but c bounded by a positive constant. That means there exists
α > 0 such that 1

α � c(x,y) � α , ∀(x,y) in E . As in Figure 2, on the branch B1 ,
the vertex 0 has two neighbors denoted 0− and 1. We want δϕ(0) = 0, so we

choose the function ϕ in the following way ϕ(0,1) = c(0,0−)
c(0,1) ϕ(0,0−) . And in the

interior of B1 , we set ϕ( j, j +1) = c(0,0−)
c( j, j+1)ϕ(0,0−) ∀ j, 1 � j � 3. Next, we look at

the point 4 which has two neighbors 5 and 5− , to obtain δϕ(4) = 0 and as we

have ϕ(3,4) = c(0,0−)
c(3,4) ϕ(0,0−) . We choose ϕ(4,5) = c(0,0−)

2c(4,5) ϕ(0,0−) and ϕ(4,5−) =
c(0,0−)
2c(4,5−)ϕ(0,0−) . Therefore, in the interior of the branch B2 ,

ϕ( j, j +1) =
c(0,0−)

2c( j, j +1)
ϕ(0,0−) ∀ j, 5 � j � 7.

And for the vertex 8, which has two neighbors 9 and 9− . To have δϕ(8) = 0

and by using that ϕ(7,8) = c(0,0−)
2c(7,8) ϕ(0,0−) . We choose ϕ(8,9) = c(0,0−)

4c(8,9) ϕ(0,0−) and

ϕ(8,9−) = c(0,0−)
4c(8,9−)ϕ(0,0−) . And in the interior of the branch B3 ,

ϕ( j, j +1) =
c(0,0−)

4c( j, j +1)
ϕ(0,0−) for j = 10.

And so on. . . In a general way, see Figure 3, on B0 the function ϕ(e0)= c(0,0−)
c(e0)

ϕ(0,0−) ,
where e0 is an edge of B0 . Then we add a generation, we get two branches B1,1 and

B1,2 such that the function ϕ has a value ϕ(ek
1) = c(0,0−)

2c(ek
1)

ϕ(0,0−) , where ek
1 denotes

the edges of B1,k for 1 � k � 2. And at generation m , we have Bm,k branches, where

1 � k � 2m , then the function ϕ equals to ϕ(ek
m) = c(0,0−)

2mc(ek
m)ϕ(0,0−) , where ek

m denotes

the edges of Bm,k . And to simplify the formulas, we can suppose that

ϕ(0,0−) =
1

c(0,0−)
.

Then, we obtain

ϕ(ek
m) =

1
2mc(ek

m)
, ∀m � 0 and 1 � k � 2m.

Therefore, this construction gives ϕ ∈ l2(E ) . Using the fact that the lengths of the
branches of the tree are uniformly bounded by a constant M > 0 and the weight c on
the edges is bounded by a positive constant, we obtain

‖ϕ‖2
E =

1
2 ∑

e
c(e)(ϕ(e))2

� ∑
m�0

2m

∑
k=1

∑
e∈Bm,k

c(e)(ϕ(e))2
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= ∑
m�0

2m

∑
k=1

∑
e∈Bm,k

c(e)
(

1
2mc(e)

)2

= ∑
m�0

2m

∑
k=1

∑
e∈Bm,k

1
22mc(e)

� αM ∑
m�0

1
2m

= 2Mα < ∞.

Finally, we have ϕ in l2(E ) and δ -harmonic. So, 0 ∈ σ(Δ1) , which contradicts the
assumption that 0 is not in the spectrum of Δ1 . �

REMARK 3.1. Any point of the graph can play the role of the first vertex 0 in
the previous construction. It is then clear that we can construct an infinite family of
independent functions ϕ which are in l2(E ) and δ -harmonic. Then 0 is an eigenvalue
of Δ1 with infinite multiplicity, so 0 ∈ σess(Δ1) .

4. Examples

In this section, we will construct a δ -harmonic function ϕ in different examples
of trees.

1) Symmetric tree: Following [7] we introduce the next definition:

DEFINITION 4.1. A tree Ts is symmetric around o with branching numbers {mi}∞
i=0

if the degree of each vertex depends only on its distance from o , namely, for each
x ∈ Ts , deg(x) = mi if d(o,x) = i .

Example of a symmetric tree: We fix a vertex o as an origin of the tree. We
set Sn = {x ∈ Ts; d(o,x) = n} . Ts is symmetric around o with branching numbers
{mn}∞

n=0 . In Figure 4, we choose mn = 3 + n for all n ∈ N which is an increasing
sequence. So, we have m0 = 3 that means deg(o) = 3. And for x ∈ S1 , we obtain
deg(x) = m1 = 4. In the same way, if x ∈ S2 we have m2 = 5 and so on.

PROPOSITION 4.1. If the symmetric tree Ts is simple ( the edge weights are equal
to 1) with deg(x) > 2 for all x ∈ Ts , then there is a δ -harmonic function ϕ ∈ l2(E ) .

Proof. We fix a vertex x0 as an origin of the tree Ts , we can find an increasing
sequence of finite subgraph {Sn}n such that Sn = {x∈ Ts; d(x0,x) = n} and Ts =∪nSn .
By the definition of the symmetric tree, we have for all n deg(xn) = mn, ∀xn ∈ Sn .
First, we construct a function ϕ so that δϕ = 0 as follows: Let e0 and b0 denote two
distinct outward edges connecting to the vertex x0 . We define ϕ to be 0 excepted on
these edges where ϕ(e0) = 1 and ϕ(b0) = −1 which gives δϕ(x0) = 0. And denote
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o

S1

S2

Figure 5: Symmetric tree

ek
n , n � 1, 1 � k � ∏n

j=1(mj −1) , resp. bk
n , n � 1, 1 � k � ∏n

j=1(mj −1) , the outward
edges emanating from e0 , resp. b0 , of generation n . We define

ϕ(ek
n) =

1

∏n
j=1(mj −1)

ϕ(e0),

ϕ(bk
n) =

1

∏n
j=1(mj −1)

ϕ(b0)

and ϕ takes value 0 on all edges other than ek
n and bk

n .
Second, through this construction, we look for ϕ ∈ l2(E ) . Using the fact that

deg(xn) = mn � 3, ∀xn ∈ Sn , ∀n , we obtain

‖ϕ‖2
E =

1
2 ∑

e∈E

ϕ2(e)

=
1
2

⎛
⎝2+ ∑

n�1

∏n
j=1(mj−1)

∑
k=1

ϕ2(ek
n)+ ϕ2(bk

n)

⎞
⎠

= 1+ ∑
n�1

∏n
j=1(mj−1)

∑
k=1

(
1

(m1 −1)(m2−1) . . .(mn−1)

)2

= 1+ ∑
n�1

1
(m1−1)(m2−1) . . .(mn −1)

� 1+ ∑
n�1

1
2n

< ∞. �
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2) Triadic tree with weights bounded from below: As [2] (p. 19), we have the
following definition of a triadic tree.

DEFINITION 4.2. A tree is a connected graph containing no cycles. The triadic
tree is a tree such that all the vertices have degree 3.

PROPOSITION 4.2. If the triadic tree has weights on the edges bounded from be-
low by a positive constant λ , then there is a δ -harmonic function ϕ ∈ l2(E ) .

oB1
B2

e0

x1

b0

Figure 6: Triadic tree

Proof. We fix a vertex o as the origin of the tree T . Define the increasing se-
quence of finite subgraphs {Gn}n , Gn = {x ∈ V ; d(o,x) � n} and let G =

⋃
n Gn .

Denote Sn = {x ∈ T ; d(o,x) = n} .
We set x1

1 , x2
1 and x3

1 the different neighbors of o which are in S1 . We suppose
that ϕ(o,xi

1) = 0 for all i ∈ {1,2,3} , so we have δϕ(o) = 0.
We fix one vertex of S1 for example x1 := x1

1 , let e0 and b0 be the two outward
edges of x1 and define inductively ek

m , m � 1, 1 � k � 2m , resp. bk
m , m � 1, 1 � k �

2m , to be the outward edges emanating from e0 , resp. b0 , of generation m (the edge
are oriented outward). For m � 0, we define ϕ to be 0 excepted on these edges where

ϕ(ek
m) =

1
2m

1
c(ek

m)
, ∀k; 1 � k � 2m

and

ϕ(bk
m) =

−1
2m

1
c(bk

m)
, ∀k; 1 � k � 2m.

With this construction, we obtain for each xn ∈ Sn , δϕ(xn) = 0, ∀n � 1. Moreover,
ϕ ∈ l2(E ) . Indeed: by using the assumption that the weights on the edges are bounded
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from below by a positive constant λ , we obtain

‖ϕ‖2
E =

1
2 ∑

e∈E

c(e)ϕ2(e)

=
1
2

(
∑
m�0

2m

∑
k=1

c(ek
m)ϕ2(ek

m)+ c(bk
m)ϕ2(bk

m)

)

=
1
2 ∑

m�0

2m

∑
k=1

c(ek
m)

1
22m

1
c2(ek

m)
+

1
2 ∑

m�0

2m

∑
k=1

c(bk
m)

1
22m

1
c2(bk

m)

=
1
2 ∑

m�0

2m

∑
k=1

1
22m

1
c(ek

m)
+

1
2 ∑

m�0

2m

∑
k=1

1
22m

1
c(bk

m)

� λ ′ ∑
m�0

2m

∑
k=1

1
22m

= λ ′ ∑
m�0

2m 1
22m

= λ ′ ∑
m�0

1
2m

= 2λ ′,

where λ ′ = 1
λ . �

REMARK 4.1.

• The construction of a δ -harmonic nonzero square-integral function depends on
the edge weights.

• In the simple triadic tree, 0 is both in the spectrum of Δ0 [4] and in the spectrum
of Δ1 [2].
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