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Abstract. Ultraproducts of operators are used to give simpler proofs of certain results in the
paper “Weak limits of almost invariant projections” by Foias, Pasnicu and Voiculescu.

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space. The algebra
of bounded linear operators on H is denoted by B(H ) , and the ideal of compact
operators in B(H ) is denoted by K (H ) . Let p be the quotient map from B(H )
onto B(H )/K (H ) .

In [3], Foias, Pasnicu and Voiculescu established the following characterizations
of an operator Q being the weak limit of projections that are almost invariant under an
algebra A ⊂ B(H ) .

THEOREM 1.1. Let A ⊂ B(H ) be a norm-separable norm closed algebra con-
taining I , and Q ∈ B(H ) , 0 � Q � I . Then the following statements are equivalent.

(i) There exists a sequence (Pn)∞
n=1 of projections in B(H ) such that

lim
n→∞

‖(I−Pn)TPn‖ = 0 for all T ∈ A and w lim
n→∞

Pn = Q.

(ii) There exists a sequence (Rn)∞
n=1 of projections in B(H ) such that

w lim
n→∞

(I−Rn)TRn = 0 for all T ∈ A and w lim
n→∞

Rn = Q.

(iii) There exists a representation ρ of p(C∗(A )) on some separable Hilbert space
H ′ and a subspace L ⊂ H ⊕H ′ invariant under (id⊕ (ρ ◦ p))(A ) such that

PH ⊕0PL|H ⊕0 = Q.
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Note that in both (i) and (ii), the projections Pn and Rn are almost invariant under
the algbera A , whereas in (iii), L is an (exactly) invariant under the algebra (id⊕ (ρ ◦
p))(A ) instead.

In the same paper, they obtain as a consequence the following characterization of
strong reductivity.

THEOREM 1.2. Let A ⊂B(H ) be a norm-separable commutative algebra con-
taining I . The following properties are equivalent:

(i) A is strongly reductive,

(ii) the norm-closure of A is a C∗ -algebra,

(iii) for every representation ρ of A in the norm-closed unitary orbit of the identity
representation of A on H , the algebra ρ(A ) is reductive.

Note that in Theorem 1.2, (ii)⇒(i) is obvious, and (i)⇒(iii) is simple and ele-
mentary but slightly technical (see [3, page 92]). The main part of Theorem 1.2 is
(iii)⇒(ii). They ask whether there is a simple, direct proof of (iii)⇒(i). The purpose
of this paper is to provide such a proof as well as an alternative proof of the nontrivial
implication (ii)⇒(iii) in Theorem 1.1.

In Section 2, we recall some definitions, a construction of Calkin and Voiculescu’s
noncommutative Weyl-von Neumann Theorem which are needed in the rest of this
paper. In Section 3, we give a direct proof of (iii)⇒(i) in Theorem 1.2. In Section 4,
we give an alternative proof of (ii)⇒(iii) in Theorem 1.1.

2. Prelimiaries

An algebra A ⊂ B(H ) is reductive if every subspace of H invariant under A
reduces A ; A is strongly reductive (see [4] and [1]) if for every sequence (Pn)∞

n=1 of
projections in B(H ) satisfying

lim
n→∞

‖(I−Pn)TPn‖ = 0, T ∈ A ,

we have
lim
n→∞

‖TPn−PnT‖ = 0, T ∈ A .

Let ψ1,ψ2 : A → B(H ) be two representations of an algebra A ⊂ B(H ) . We say
that ψ2 is in the norm-closed unitary orbit of ψ1 , if there exists a sequence (Un)∞

n=1 of
unitary operators such that:

lim
n→∞

‖ψ2(T )−Unψ1(T )U−1
n ‖ = 0,

for all T ∈ A .
Let U be a free ultrafilter on IN. If (an)n�1 is a bounded sequence in C , then its

ultralimit through U is denoted by lim
n,U

an . Consider the Banach space

H U := �∞(H )/
{

(xn)n∈IN ∈ �∞(H ) : lim
n,U

‖xn‖ = 0

}
.
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If (xn)nIN ∈ �∞(H ) then its image in H U is denoted by (xn)U , and it can be easily
checked that

‖(xn)U ‖ = lim
n,U

‖xn‖.

Moreover, H U is, in fact, a Hilbert space with inner product

〈(xn)U ,(yn)U 〉 = lim
n,U

〈xn,yn〉.

But H U is nonseparable.
If (Tn)n∈IN is a bounded sequence in B(H ) , then its ultraproduct (T1,T2, . . .)U ∈

B(H U ) is defined by (xn)U 
→ (Tnxn)U . If T ∈ B(H ) then its ultrapower TU ∈
B(H U ) is defined by (xn)U 
→ (Txn)U . It is easy to see that

‖(T1,T2, . . .)U ‖ = lim
n,U

‖Tn‖,

(T1,T2, . . .)∗U = (T ∗
1 ,T ∗

2 , . . .)U ,

and in particular, (TU )∗ = (T ∗)U .
Consider the subspace

Ĥ :=
{

(xn)U ∈ H U : w lim
n,U

xn = 0

}
.

Here w lim
n,U

xn is the weak limit of (xn)n∈IN through U , i.e., the unique element x ∈H

such that
〈x,y〉 = lim

n,U
〈xn,y〉, y ∈ H . (2.1)

Consider also the (closed) subspace {(x)U = (x,x, . . .)U : x ∈ H } of H U . The
projection from H U onto this subspace is given by (xn)U 
→ (w lim

k,U
xk)U , and so

{(x)U : x ∈ H }⊥ = Ĥ . We shall identify {(x)U : x ∈ H } with H . So we have
H U = H ⊕ Ĥ .

For T ∈ B(H ) , Ĥ is a reducing subspace for TU and thus we can define
T̂ ∈ B(Ĥ ) by

T̂ := TU |
Ĥ

.

Hence we have
TU = T ⊕ T̂ (2.2)

with respect to the decomposition H U = H ⊕ Ĥ .
Note that K̂ = 0 for K ∈K (H ) . (The proof of this uses the topological definition

of weak ultralimit rather than (2.1) above and uses also the fact that every sequence in a
compact Hausdorff space converges to an element through U .) Throughout this paper,
the map f : B(H )/K (H ) → B(Ĥ ) is defined by f (p(T )) = T̂ .

THEOREM 2.1. ([2], Theorem 5.5) The map f is an isometric ∗ -isomorphism
into B(Ĥ ) .
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Let us recall the definition of approximate unitary equivalence of representations
and a result of Voiculescu.

Let ψ1,ψ2 : A → B(H ) be two representations of an algebra A ⊂ B(H ) .
Then ψ1 and ψ2 are approximately unitarily equivalent [6], denoted by ψ1 ∼a ψ2 , if
there is a sequence (Un)∞

n=1 of unitary operators such that

ψ2(T )−Unψ1(T )U−1
n ∈ K (H ), n � 1,

and
lim
n→∞

‖ψ2(T )−Unψ1(T )U−1
n ‖ = 0

for all T ∈ A . Note that if ψ1 ∼a ψ2 then ψ2 is in the norm-closed unitary orbit of
ψ1 .

THEOREM 2.2. ([6], Theorem 1.3) Let A be a separable C∗ -algebra with unit
and ρ a representation of A on H . Let π be a representation of p(ρ(A )) on a
separable Hilbert space Hπ . Then ρ ∼a ρ ⊕π ◦ p ◦ρ .

Suppose now that A ⊂ B(H ) . Take ρ to be the identity representation id of
A on H . If M is a separable subspace of Ĥ that reduces ( f ◦ p)(A ) , then we
define a representation fM of p(A ) on M by fM (p(S)) = Ŝ|M . Taking π to be this
representation in Theorem 2.2 with Hπ = M , we obtain

COROLLARY 2.3. Let A be a separable C∗ -subalgebra of B(H ) containing
I . Let M be a separable subspace of Ĥ that reduces ( f ◦ p)(A ) . Then id ∼a

id⊕ ( fM ◦ p ◦ id) .

3. Proof of (iii)⇒(i) in Theorem 1.2

PROPOSITION 3.1. If (iii) in Theorem 1.2 holds then the algebra {TU : T ∈ A }
in B(H U ) is reductive.

Proof. By Corollary 2.3, for every separable reducing subspace M of Ĥ that
reduces ( f ◦ p)(A ) , we have id ∼a id⊕ ( fM ◦ p ◦ id) , and so by assumption,

(id⊕ ( fM ◦ p ◦ id))(A ) = {T ⊕ [ f (p(T ))|M ] : T ∈ A }
is reductive. But TU |H ⊕M = T⊕(T̂ |M )= T⊕ [ f (p(T ))|M ] . Therefore, {TU |H ⊕M :
T ∈ A } is reductive.

For every separable subspace N of H U , there is a separable reducing subspace
M for ( f ◦ p)(A ) such that N ⊂H ⊕M . (Take, for example, M to be the smallest
subspace of Ĥ that contains PĤN and reduces ( f ◦ p)(A ) .) Thus, if N is invari-
ant under {TU : T ∈ A } , then N is invariant under {TU |H ⊕M : T ∈ A } . Since
{TU |H ⊕M : T ∈A } is reductive, this implies that N reduces {TU |H ⊕M : T ∈ A }
and thus reduces {TU : T ∈ A } . Therefore, every separable subspace of H U that is
invariant under {TU : T ∈ A } reduces {TU : T ∈ A } .
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Suppose now that N is a subspace of H U invariant under {TU : T ∈ A } but
N is not necessarily separable. Let z ∈ N . Then ∨{TU z : T ∈ A } is a separable
subspace of H U that is invariant under {TU : T ∈ A } . So by the conclusion of
the previous paragraph, ∨{TU z : T ∈ A } reduces {TU : T ∈ A } . Thus, (TU )∗z ∈
∨{TU z : T ∈ A } for all T ∈ A . Since N is invariant under {TU : T ∈ A } , this
implies that (TU )∗z ∈ N for all T ∈ A and z ∈ N . Therefore, N reduces {TU :
T ∈ A } . It follows that {TU : T ∈ A } is reductive. �

We are now ready to complete the proof of (iii)⇒(i) in Theorem 1.2. Suppose
that (iii) is true and (i) is not true. Then there exist ε > 0, T0 ∈ A and a sequence
(Pn)n� of projections in B(H ) such that lim

n→∞
‖(I −Pn)TPn‖ = 0 for all T ∈ A but

‖T0Pn−PnT0‖ � ε for all n ∈ IN.
Note that (P1,P2, . . .)U is a projection in B(H U ) and

(I− (P1,P2, . . .)U )TU (P1,P2, . . .)U = ((I−P1)TP1,(I−P2)TP2, . . .)U = 0

for all T ∈ A . So by Proposition 3.1, TU (P1,P2, . . .)U = (P1,P2, . . .)U TU for all
T ∈ A . This means that

lim
n,U

‖TPn−PnT‖ = 0, T ∈ A .

But ‖T0Pn−PnT0‖ � ε for all n � 1 which is a contradiction. Therefore, (iii)⇒(i).

4. Proof of (ii)⇒(iii) in Theorem 1.1

PROPOSITION 4.1. Let A be a norm-separable algebra containing I and let
Q ∈ B(H ) . If there exists a bounded sequence (Rn)∞

n=1 in B(H ) such that
w lim

n→∞
(I −R∗

n)TRn = 0 for all T ∈ A and w lim
n→∞

Rn = Q, then there is a separable

subspace L of H U invariant under {TU : T ∈ A } such that

PH ⊕0PL|H ⊕0 = Q.

Proof. Take
L = ∨{(TRny)U : T ∈ A , y ∈ H }.

Then L is a separable subspace of H U that is invariant under TU for every T ∈ A .
It remains to show that

PH ⊕0PL|H ⊕0 = Q.

For every x,y ∈ H ,

〈(x)U − (Rnx)U ,(TRny)U 〉 = 〈((I−Rn)x)U ,(TRny)U 〉
= lim

n,U
〈(I−Rn)x,TRny〉

= lim
n,U

〈x,(I−R∗
n)TRny〉

= 0 by assumption.



598 M. T. BOEDIHARDJO

Thus, ((x)U − (Rnx)U ) ⊥ L for every x ∈ H . But (Rnx)U ∈ L . Therefore, by the
definition of orthogonal projection onto L ,

PL(x)U = (Rnx)U .

Taking PH ⊕0 on both sides, we obtain

PH ⊕0PL(x)U = PH ⊕0(Rnx)U = w lim
n,U

Rnx = Qx. �

We are now ready to complete the proof of (ii)⇒(iii) in Theorem 1.1.
Assume (ii). Applying Proposition 4.1, we obtain a separable subspace L of H U

invariant under {TU : T ∈ A } such that

PH ⊕0PL|H ⊕0 = Q.

By (2.2),

TU = T ⊕ T̂ = T ⊕ f (p(T )) = (id⊕ ( f ◦ p))(T ).

Take H ′ to be the smallest subspace of Ĥ that contains P
Ĥ

L and reduces ( f ◦
p)(C∗(A )) . Note that H ′ is separable. Take ρ to be S 
→ f (S)|H ′ for S∈ p(C∗(A )) .
We obtain (iii).

REMARK. Since the assumption of Proposition 4.1 is slightly weaker than (ii) in
Theorem 1.1, we have the following slight improvement of Theorem 1.1.

THEOREM 4.2. Let A be a norm-separable norm closed algebra containing I ,
and Q ∈ B(H ) , 0 � Q � I . Then the following statements are equivalent.

(i) There exists a sequence (Pn)∞
n=1 of projections in B(H ) such that

lim
n→∞

‖(I−Pn)TPn‖ = 0 for all T ∈ A and w lim
n→∞

Pn = Q.

(ii) There exists a bounded sequence (Rn)∞
n=1 in B(H ) such that

w lim
n→∞

(I−R∗
n)TRn = 0 for all T ∈ A and w lim

n→∞
Rn = Q.

(iii) There exists a representation ρ of p(C∗(A )) on some separable Hilbert space
H ′ and a subspace L ⊂ H ⊕H ′ invariant under (id⊕ (ρ ◦ p))(A ) such that

PH ⊕0PL|H ⊕0 = Q.
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[1] C. APOSTOL, C. FOIAŞ AND D. VOICULESCU,On strongly reductive algebras, Rev. Roumaine Math.
Pures Appl. 21 (1976), no. 6, 663–641.

[2] J. W. CALKIN, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space,
Ann. of Math. 42 (1941), 839–873.
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