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ON THE DIFFERENCE OF A CONTRACTION AND
AN INVERSE STRONGLY MONOTONE OPERATOR

DINU TEODORESCU

(Communicated by R. Curto)

Abstract. In this paper we prove a unique fixed point result in real Hilbert spaces for the differ-
ence operator 7' — F', where T is a contraction and F is an inverse strongly monotone operator.

1. Introduction

Let E be a Banach space with the norm ||-||;. An operator T : E — E is said to
be o -contraction if there exist a real number o € (0,1) such that

ITx=Ty|le < eflx=ylle

forall x, ye E.

The famous Banach fixed point theorem affirm that every ¢ -contraction has a
unique fixed pointin E.

Applying the same Banach fixed point theorem it is easy to obtain

THEOREM 1.1. Let oc € (0,1) and T : E — E be a oc-contraction. If v+ f§ < 1
and V : E — E is a B -contraction, then the operator T —V has a unique fixed point
in E.

In this paper we prove that, in some particular case, the Theorem 1.1. holds even
if the B -contraction V do not satisfies the condition ot + 3 < 1.

To expose our particular case we need the notion of inverse strongly monotone
operator.

Let H be a real Hilbert space with the inner product (-,-) and the correspond-
ing norm denoted by ||-||. An operator F : H — H is said to be m-inverse strongly
monotone (m > 0) if

(Fx—Fy,x—y) > m|[Fx—Fy|’

forall x, ye H.
Clearly, using the Schwartz inequality, we deduce that every m-inverse strongly
monotone operator F is a X -Lipschitz operator (i.e. ||[Fx—Fy|| < L{|x—y|| for all
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x, y € H). Particularly, if m > 1, then the m-inverse strongly monotone operator F is
a %-contraotion.

The definition of monotone operator was first given by Kachurovski [6] (see Brow-
der and Petryshyn [2]). The notion of inverse strongly monotone operator appears firstly
in 1967 (Browder and Petryshyn [2]).

As examples of inverse strongly monotone operators we give:

— the projection operator Px, where K is a nonempty closed convex subset of H ;

— the operator I — 7', where T is a nonexpansive operator from H into itself and
I is the identity of H;

— every 1 -strongly monotone and 0 -Lipschitz operator A from H into itself is
% -inverse strongly monotone operator (see [5]).

Many recent papers involving inverse strongly monotone operators are dedicated
to the study of iterative schemes for finding a common element of the set of fixed points
of a nonexpansive operator and the set of solutions of the variational inequality for an
inverse strongly monotone operator (see for example [1, 3, 5, 7]).

In the following we prove using a simple method, based on an application of the
Banach fixed point theorem in real Hilbert spaces, that the difference operator of a
contraction and an inverse strongly monotone operator has a unique fixed point.

a

2. The result

The result below can be regarded as a consequence of the following more general
theorem, whose proof uses results involving differential operatorial equations in Hilbert
spaces:

THEOREM 2.1. Let X be areal Hilbert space and F : X — X be a mapping. Then

a) If F is monotone, hemicontinuous and coercive, then it is a surjection (i.e.: the
equation Fx = h has a solution, for each h € X ).

b) If F is continuous and strongly monotone, then it is a homeomorphism (i.e.:
F~': X — X exists and is continuous) (see Deimling [4], page 100).

Now we are in position to give the main result of this paper:

THEOREM 2.2. Let H be a real Hilbert space and T : H — H be a o.-contraction.
If F:H — H is a m-inverse strongly monotone operator, then the operator T — F has
a unique fixed point in H.

Proof. The operator I — T, where [ is the identity of H, satisfies
(I=T)x—(I—T)y,x—y) > (1—a)|]x—y|[> forall x,ycH.
Indeed, using the Schwartz inequality, we have

(I=T)x—(I-T)yx—y) = |[x—y||* = (Tx—Ty,x—)
> |lx—y|[* = [|Tx—Ty|| - |lx— || > (1 — &) ||x — y|[?

forall x,ye H (1 —o > 0).
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The operator F satisfies (Fx— Fy,x—y) >0 and ||[Fx—Fy|| < L|[x—y|| forall
x,yEH.
Let A: H — H be the operator defined by Au = (I — T + F)u. We obtain for all
x,yeH
1+m+mo

1
Ax—Ayl| < (1+a+—) eyl = LEmEme )
m m

and

(Ax—Ay,x—y) =(I-T)x— (I =T)y,x—y) + (Fx—Fy,x—y)
>((I-T)x—(I-T)yx—y) = (1—0a)|lx—y|

Now let us define, for y > 0, the operator

Sy:H—H
given by
Syu = (I—7yA)u.
We have
1S, — Syl > = (x — yAx — (y — yAy),x — yAx — (y — YAy))
= |Jx — y[[* = 27(Ax — Ay,x — y) + V|| Ax — Ay|
1l+m+mo 2
< [1—27(1—a)+7’2(,n72) =y,
)
(1+m+ma)?
1S3 = Syl < \/1—2Y(1—06)+Y27'|x—y|,

for all x, y € H. Further, remark that if
2(1— o)m?
fy c 07 (7)’%2 ,
(1+m+ma)

2
then Sy isa \/ 1-2y(1—o)+ 72% -contraction, because

1 2
\/1—27(1—&)+72(4_r'1n%a)<1

and consequently, applying the Banach fixed point theorem, Sy has a unique fixed point
in H. In other words, there exists a unique element u* € H such that

u' =S,
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which is succesive equivalent with

wW=I-yAu" < u" =u"—yAu" < Au" =0.

Further,

A =0 (I-T+F)Ju"=0su"=(T—F)u",

thus u* is the unique fixed point of 7 — F and the proof of Theorem 2.2 is com-
plete. O

Remark that, if m > 1, then the operators 7 and F are contractions, the operator

T — F has a unique fixed point, but it is not necessary that o + % <1.
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