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KSGNS CONSTRUCTION FOR τ –MAPS
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Abstract. We introduce S-modules, which generalizes the notion of Krein C∗-modules and where
a fixed unitary replaces the symmetry of Krein C∗-modules. The representation theory on S-
modules is explored and for a given ∗ -automorphism α on a C∗ -algebra the KSGNS construc-
tion for α -completely positive maps is illustrated. An extention of this construction for τ -maps
is also achieved, when τ is an α -completely positive map. We prove decomposition theorems
for α -CPD-kernels and K -families.

1. Introduction

A symmetry on a Hilbert space is a bounded operator J such that J = J∗ = J−1 . A
Hilbert space along with a symmetry, forms a Krein space where the symmetry induces
an indefinite inner-product on the space. Dirac and Pauli were among the pioneers to
explore the quantum field theory using Krein spaces.

In quantum field theory one encounters Wightman functionals which are positive
linear functionals on a Borchers algebra (cf. [8]). In the massless or the guage quantum
field theory, Strocchi showed that, both the locality and the positivity cannot be as-
sumed together in a model. The axiomatic field theory motivates theoretical physicists
to keep the locality assumption and sacrifice the positivity by considering indefinite
inner products (cf. [7]), and more specifically Krein spaces, in the gauge field theory.
In this context Jakobczyk defined the α -positivity, where α is a ∗ -automorphism of a
Borchers algebra, in [12] and derived a reconstruction theorem for Strocchi-Wightman
states.

DEFINITION 1. Let B be a ∗ -subalgebra of a unital ∗ -algebra A containing
the unit. Assume P : A → B to be a conditional expectation (i.e. P is a linear map
preserving the unit and the involution, such that P(bab′) = bP(a)b′ for each a ∈ A ;
b,b′ ∈ B ). A Hermitian linear functional τ defined on A is called a P-functional (cf.
[2]) if the following holds:

(i) τ ◦P = τ ,
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(ii) 2τ(P(a)∗P(a)) � τ(a∗a) for all a ∈ A .

If we define a linear mapping α : A →A by α(a) = 2P(a)−a for each a ∈ A ,
then the P-functional τ satisfies

τ(α(a)α(a′)) = τ(aa′) and τ(α(a)∗a) � 0 for all a,a′ ∈ A .

Thus P-functionals generalize α -positivity. The Gelfand-Naimark-Segal (GNS) con-
struction for states, is a fundamental result in operator theory, which illustrates how
using a state on a C∗ -algebra we can obtain a cyclic representation of that C∗ -algebra
on a Hilbert space. Antoine and Ota [2] proved that using P-functionals one can obtain
unbounded GNS representations of a ∗ -algebra on a Krein space.

The completely positive maps are crucial to the study of the classification of C∗ -
algebras, the classification of E0 -semigroups, etc. The Stinespring theorem character-
izes completely positive maps, and if we consider the special case where the completely
positive maps are states, then for them the Stinespring theorem gives the GNS construc-
tion. Motivated by α -positivity and P-functional, J. Heo et al. introduced the concept
of α -completely positive maps in [10], where α is a bounded Hermitian map from a
C∗ -algebra to itself such that α2 = id (i.e., order of α is 2), and did a KSGNS type
construction on certain module called the Krein C∗-module for any α -completely pos-
itive map. U.C. Ji et al. did a KSGNS construction in [13] for α -completely positive
maps where α is a ∗ -automorphism on a C∗ -algebra such that α2 = id. We extend
this study of α -completely positive maps for any ∗ -automorphism α, not necessarily
of order 2, and obtain a KSGNS type construction on a bigger class of modules called
S -modules. To illustrate KSGNS construction we first need to recall some notions:

DEFINITION 2. Let E and F be Hilbert A -modules over a C∗ -algebra A . For
a given map S : E → F if there exists a map S′ : F → E such that

〈S(x),y〉 = 〈x,S′(y)〉 for all x ∈ E,y ∈ F,

then S′ is unique for S , and we say S is adjointable and denote S′ by S∗ . Every
adjointable map S : E → F is right A -linear, i.e., S(xa) = S(x)a for all x∈ E, a∈A .
The symbol Ba(E,F) denotes the collection of all adjointable maps from E to F . We
use Ba(E) for Ba(E,E) . The strict topology on Ba(E) is the topology induced by
the seminorms a 	→ ‖ax‖ , a 	→ ‖a∗y‖ for each x,y ∈ E .

Kasparov obtained the following theorem, called Kasparov-Stinespring-Gelfand-
Naimark-Segal (KSGNS) construction (cf. [14]), which is a dilation theorem for strictly
continuous completely positive maps:

THEOREM 1. Let B and C be C∗ -algebras. Assume E to be a Hilbert C -
module and τ : B → Ba(E) to be a strictly continuous completely positive map. Then
there is a Hilbert C -module F with a nondegenerate ∗ -homomorphism π : B →
Ba(F) and V ∈ Ba(E,F) such that span π(B)VE = F and

τ(b) =V ∗π(b)V for all b ∈ B.
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Szafraniec [25] obtained a dilation theorem, which extends the Sz-Nagy’s prin-
cipal theorem [19], for certain C∗ -algebra valued positive definite functions defined
on ∗ -semigroups. The KSGNS construction is a special case of Szafraniec’s dilation
theorem.

Let (E,〈·, ·〉) be a Hilbert C∗-module over a C∗ -algebra A and let J be a fun-
damental symmetry on E , i.e., J is an invertible adjointable map on E such that
J = J∗ = J−1 . Define an A -valued indefinite inner product on E by

[x,y] := 〈Jx,y〉 for all x,y ∈ E. (1)

In this case we say (E,A ,J) is a Krein A -module or Krein C∗-module over A . If
A = C , then (E,C,J) is a Krein space and in addition if J is the identity operator,
then it becomes a Hilbert space. In the definition of Krein spaces if we replace the
symmetry J by a unitary, then we get S-spaces. The two sided shift is unitary and
therefore it is normal. Szafraniec introduced the notion of S-spaces in [24] and proved
that the closure of the two-sided weighted shift is S -normal. Phillipp, Szafraniec and
Trunk [18] investigated invariant subspaces of selfadjoint operators in Krein spaces by
using results obtained through a detailed analysis of S-spaces. We introduce the notion
of S-modules below:

DEFINITION 3. Let (E,〈·, ·〉) be a Hilbert C∗-module over a C∗ -algebra A and
let U be a unitary on E , i.e., U is an invertible adjointable map from E to E such that
U∗ = U−1 . Then we can define an A -valued sesquilinear form by

[x,y] := 〈x,Uy〉 for all x,y ∈ E. (2)

In this case we say (E,A ,U) is an S-module.

If U = I , then 〈·, ·〉 and [·, ·] coincide for the S-module (E,A ,U) . In the case
when U = U∗ , the S-module (E,A ,U) forms a Krein A -module. The following is
the definition of an α -completely positive map which will play an important role in
this article:

DEFINITION 4. Let A be a unital C∗ -algebra and α : A →A be a ∗ -automorp-
hism, i.e., α is a unital bijective ∗ -homomorphism. Let B be a C∗ -algebra and E be a
Hilbert B -module. If (E,B,U) is an S-module, then a map τ : A →Ba(E) is called
α -completely positive (or α -CP) if it is a ∗ -preserving map such that

(i) τ (α(a)) = U∗τ(a)U = τ(a) for all a ∈ A ;

(ii)
n
∑

i, j=1

〈
xi,τ (α (a∗i )a j)x j

〉
� 0 for all n � 1; a1, . . . ,an ∈ A and x1, . . . ,xn ∈ E ;

(iii) for any a ∈ A , there is M(a) > 0 such that

n

∑
i, j=1

〈
xi,τ (α (a∗i a

∗)aa j)x j
〉

� M(a)
n

∑
i, j=1

〈
xi,τ (α(a∗i )a j)x j

〉
for all n � 1; x1, . . . ,xn ∈ E and a1, . . . ,an ∈ A .
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For an α -CP map we define below certain maps associated to them:

DEFINITION 5. Let A and B be unital C∗ -algebras, E be a Hilbert A -module
and α : A →A be a ∗ -automorphism. Let (E1,B,U1) and (E2,B,U2) be S -modules
and τ : A → Ba(E1) be an α -CP map. A map T : E → Ba(E1,E2) is called a (α
completely positive) τ -map if

T (x)∗T (y) = τ(〈x,y〉) for all x,y ∈ E.

The dilation theory of τ -maps, where τ is a CP map, has been explored in [5],
[22], [23], [13], etc. In [13], for an order two ∗ -automorphism α on a C∗ -algebra A ,
the authors did a KSGNS type construction for τ -maps where τ is an α -CP map. This
and the study done in [11] are motivations for the approach taken by us to study the
representation theory of τ -maps on S -modules in Section 2.

For any Hilbert spaces H and K , let B(H ,K ) denote the space of all bounded
linear operators from H to K . Assume E to be a Hilbert B -module where B is a
von Neumann algebra such that there exist a non-degenarate representation of B on a
Hilbert space H . The interior tensor product E

⊗
H is a Hilbert space. For a fixed

x ∈ E we define a bounded linear operator Lx : H → E
⊗

H by

Lx(h) := x⊗h for h ∈ H .

We have L∗
x1

Lx2 = 〈x1,x2〉 for all x1,x2 ∈ E . This allows us to identify each x ∈ E
with Lx and thus E is identified with a concrete submodule of B(H ,E

⊗
H ) . We

say that E is a von Neumann B -module or a von Neumann module over B if E is
strongly closed in B(H ,E

⊗
H ) ⊂ B(H ⊕ (E ⊗H )) . This notion of von Neu-

mann modules is due to Skeide (cf. [21]). In fact, a 	→ a⊗ idH is a representation
of Ba(E) on E

⊗
H , and therefore it is an isometry. Thus we are allowed to con-

sider Ba(E) ⊂ B(E
⊗

H ) and so Ba(E) is a von Neumann algebra acting non-
degenerately on E

⊗
H . In [26], we proved a Stinespring type theorem for τ -maps,

when B is any von Neumann algebra and F is any von Neumann B -module. As in
[26], in this article too at certain places we work with von Neumann modules instead
of Hilbert C∗-modules because all von Neumann modules are self-dual (cf. [21]), and
hence they are complemented in all Hilbert C∗-modules which contain them as sub-
modules.

C∗ -algebra valued positive definite kernels were defined by Murphy in [16]. In
Section 3 we obtain a decomposition theorem for an α -CPD-kernel (see Section 3
for definition), for any ∗ -automorphism α on a C∗ -algebra, with the help of repro-
ducing kernel S-correspondences. An α -CPD-kernel is a CPD kernel if α = id. We
obtain a new proof for the factorization theorem for K-families where K is a CPD-
kernel. Accardi and Kozyrev, in [1], considered semigroups of CPD-kernels over the
set Ω = {0,1} . Barreto, Bhat, Liebscher and Skeide [4] studied several results regard-
ing structure of type I product-systems of Hilbert C∗-modules based on the dilation
theory of CPD-kernels over any set Ω . Their approach was based on the Kolmogorov
decomposition of a CPD-kernel. Ball, Biswas, Fang and ter Horst [3] introduced the
notion of reproducing kernel C∗ -correspondences and identified Hardy spaces studied



KSGNS CONSTRUCTION FOR τ -MAPS AND K -FAMILIES 683

by Muhly-Solel [15] with a reproducing kernel C∗ -correspondence for a CPD-kernel
which is an analogue of the classical Szegö kernel.

2. KSGNS type construction for τ -maps

Assume (E1,B,U1) and (E2,B,U2) to be S-modules. For each T ∈ Ba(E1,E2) ,
there exists an operator T � ∈ Ba(E2,E1) such that

〈T (x),U2y〉 = 〈x,U1T
�(y)〉 for all x ∈ E1, y ∈ E2.

In fact, T � = U∗
1 T ∗U2 . Suppose A is a C∗ -algebra and (E,B,U) be an S-module.

An algebra homomorphism π : A → Ba(E) is called an U -representation of A on
(E,B,U) if π(a∗) = U∗π(a)∗U = π(a)� , i.e.,

[π(a)x,y] = [x,π(a∗)y] for all x,y ∈ E.

The theorems in this section are analogous to Theorem 3.2 of [11] and Theorem
4.4 of [10], and Theorem 2.6 of [13].

THEOREM 2. Let A and B be unital C∗ -algebras and α : A → A be a
∗ -automorphism. Suppose (E1,B,U1) is an S-module. If τ : A → Ba(E1) is an
α -CP map, then there exist

(i) a Hilbert B -module E0 and a unitary U0 such that (E0,B,U0) is an S-module,

(ii) a map V ∈ Ba(E1,E0) such that V � = V ∗ and an U0 -representation π0 of A
on (E0,B,U0) satisfying

V ∗π0(a)∗π0(b)V = V ∗π0(α(a)∗b)V for each a,b ∈ A ,

and
τ(a) = V ∗π0(a)V for all a ∈ A .

Proof. Let A
⊗

alg E1 be the algebraic tensor product of A and E1 . Define a
map 〈·, ·〉 : (A

⊗
alg E1)× (A

⊗
alg E1) → B by〈

n

∑
i=1

ai⊗ xi,
m

∑
j=1

a′j ⊗ y j

〉
=

n

∑
i=1

m

∑
j=1

〈
xi,τ

(
α (a∗i )a′j

)
y j
〉

for all a1, . . . ,an; a′1, . . . ,a
′
m ∈ A and x1, . . . ,xn; y1, . . . ,ym ∈ E1 . The condition (ii)

of Definition 4 implies that 〈·, ·〉 is a positive definite semi-inner product. Using the
Cauchy-Schwarz inequality for positive-definite sesquilinear forms we observe that K
is a submodule of A

⊗
alg E1 where

K :=

{
n

∑
i=1

ai⊗ xi ∈ A
⊗

alg E1 :
n

∑
i, j=1

〈
xi,τ (α(a∗i )a j)x j

〉
= 0

}
.



684 S. DEY AND H. TRIVEDI

Therefore 〈·, ·〉 induces naturally on the quotient module
(
A
⊗

alg E1
)
/K, a B -valued

inner product. We denote this induced inner-product also by 〈·, ·〉 . Assume that E0

denote the Hilbert B -module obtained by the completion of
(
A
⊗

alg E1
)
/K .

It is easy to check that (E0,B,U0) is an S-module, where the unitary U0 is defined
by

U0

(
n

∑
i=1

ai⊗ xi +K

)
=

n

∑
i=1

α(ai)⊗U1xi +K where a ∈ A ,x ∈ E1.

Indeed, U0 is a unitary, because for all a,a′ ∈ A and x,y ∈ E1 we get〈
U0

(
n

∑
i=1

ai⊗ xi +K

)
,U0

(
n

∑
j=1

a j ⊗ x j +K

)〉

=
n

∑
i, j=1

〈α (ai)⊗U1xi +K,α (a j)⊗U1x j +K〉 =
n

∑
i, j=1

〈U1xi,τ(α(α(ai)∗)α(a j))U1x j〉

=
n

∑
i, j=1

〈xi,τ(α(a∗i )a j)x j〉 =

〈
n

∑
i=1

ai ⊗ xi +K,
n

∑
j=1

a j ⊗ x j +K

〉
,

and because U0 is surjective. Since〈
U0

(
n

∑
i=1

ai⊗ xi +K

)
,

m

∑
j=1

a′j ⊗ y j +K

〉

=
n

∑
i=1

m

∑
j=1

〈α (ai)⊗U1xi +K,a′j ⊗ y j +K〉 =
n

∑
i=1

m

∑
j=1

〈U1xi,τ(α(α(ai)∗)a′j)y j〉

=
n

∑
i=1

m

∑
j=1

〈xi,τ(α(a∗i )α
−1(a′j))U

∗
1 y j〉 =

〈
n

∑
i=1

ai ⊗ xi +K,
m

∑
j=1

α−1(a′j)⊗U∗
1 y j +K

〉
,

we obtain U∗
0

(
m
∑
j=1

a′j ⊗ y j +K

)
=

m
∑
j=1

α−1(a′j)⊗U∗
1 y j +K . Define a map V : E1 →E0

by
Vx := 1⊗U1x+K where x ∈ E1.

For each x ∈ E1 we have

‖Vx‖2 = ‖〈Vx,Vx〉‖ = ‖〈1⊗U1x+K,1⊗U1x+K〉‖ = ‖〈U1x,τ(1)U1x〉‖
� ‖τ(1)‖‖x‖2.

This implies that V is bounded. For each a1,a2, . . . ,an ∈ A and x,y1,y2, . . . ,yn ∈ E1

we have〈
Vx,

n

∑
i=1

ai⊗ yi +K

〉
=

〈
1⊗U1x+K,

n

∑
i=1

ai⊗ yi +K

〉
=

〈
U1x,

n

∑
i=1

τ(α(1)ai)yi

〉

=

〈
x,

n

∑
i=1

U∗
1 τ(ai)yi

〉
=

〈
x,

n

∑
i=1

τ(ai)U∗
1 yi

〉
. (3)
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From Lemma 2.8 of [10] there exists M > 0 such that

(τ(a∗i )τ(a j)) � M(τ(α(a∗i )a j)).

Thus, for each a1,a2, . . .an ∈ A and y1,y2, . . .yn ∈ E1 we get

∥∥∥∥∥
n

∑
i=1

τ(ai)U∗
1 yi

∥∥∥∥∥
2

=

∥∥∥∥∥
〈

n

∑
i=1

τ(ai)U∗
1 yi,

n

∑
j=1

τ(a j)U∗
1 y j

〉∥∥∥∥∥
=

∥∥∥∥∥
n

∑
i=1

n

∑
j=1

〈
U∗

1 yi,τ(a∗i )τ(a j)U∗
1 y j
〉∥∥∥∥∥

� M

∥∥∥∥∥
n

∑
i=1

n

∑
j=1

〈
U∗

1 yi,τ(α(a∗i )a j)U∗
1 y j
〉∥∥∥∥∥

= M

∥∥∥∥∥
n

∑
i=1

ai⊗ yi +K

∥∥∥∥∥
2

. (4)

Therefore using Equations 3 and 4, we conclude that V is an adjointable map with
adjoint

V ∗
(

n

∑
i=1

ai⊗ xi +K

)
:=

n

∑
i=1

U∗
1 τ(ai)xi where ai ∈ A ; xi ∈ E1 for 1 � i � n .

For each a1,a2, . . . ,an ∈ A ; x1,x2, . . . ,xn ∈ E1 we obtain

V �

(
n

∑
i=1

ai⊗ xi +K

)
= U∗

1V ∗U0

(
n

∑
i=1

ai⊗ xi +K

)
= U∗

1V ∗
(

n

∑
i=1

α(ai)⊗U1xi +K

)

= U∗
1

n

∑
i=1

τ(α(ai))U∗
1U1xi = U∗

1

n

∑
i=1

τ(α(ai))xi

= V ∗
(

n

∑
i=1

ai⊗ xi +K

)

which implies that V � = V ∗ . Define the map π ′
0 : A → Ba(E0) by

π ′
0(a)

(
n

∑
i=1

bi⊗ xi +K

)
=

n

∑
i=1

abi⊗ xi +K (5)
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for all a,b1,b2, . . . ,bn ∈ A ;x1,x2, . . . ,xn ∈ E1. We have

∥∥∥∥∥π ′
0(a)

(
n

∑
i=1

ai ⊗ xi +K

)∥∥∥∥∥
2

=

∥∥∥∥∥
n

∑
i=1

aai⊗ xi +K

∥∥∥∥∥
2

=

∥∥∥∥∥
〈

n

∑
i=1

aai⊗ xi +K,
n

∑
j=1

aa j ⊗ x j +K

〉∥∥∥∥∥=

∥∥∥∥∥
n

∑
i, j=1

〈
xi,τ(α(a∗i a

∗)aa j)x j
〉∥∥∥∥∥

� M(a)

∥∥∥∥∥
n

∑
i, j=1

〈
xi,τ(α(a∗i )a j)x j

〉∥∥∥∥∥= M(a)

∥∥∥∥∥
(

n

∑
i=1

ai⊗ xi +K

)∥∥∥∥∥
2

where a,a1, . . . ,an ∈ A and x1, . . . ,xn ∈ E1 . Thus for each a ∈ A , π ′
0(a) is a well-

defined bounded linear operator from E0 to E0 . Using

〈
π ′

0(a)

(
n

∑
i=1

ai ⊗ xi +K

)
,

m

∑
j=1

a′j ⊗ x′j +K

〉

=

〈
n

∑
i=1

aai⊗ xi +K,
m

∑
j=1

a′j ⊗ x′j +K

〉
=

n

∑
i=1

m

∑
j=1

〈
xi,τ(α(a∗i a

∗)a′j)x
′
j

〉

=
n

∑
i=1

m

∑
j=1

〈
xi,τ(α(a∗i )α(a∗)a′j)x

′
j

〉

=

〈
n

∑
i=1

ai⊗ xi +K,
m

∑
j=1

α(a∗)a′j ⊗ x′j +K

〉

and

U0π ′
0(a

∗)U∗
0

(
m

∑
j=1

a′j ⊗ x′j +K

)
= U0π ′

0(a
∗)

(
m

∑
j=1

α−1(a′j)⊗U∗
1 x′j +K

)

= U0

(
m

∑
j=1

(a∗α−1(a′j))⊗U∗
1 x′j +K

)

=
m

∑
j=1

α(a∗)a′j ⊗ x′j +K

for all a1, . . . ,an,a′1, . . . ,a
′
m ∈ A and x1, . . . ,xn,x′1, . . . ,x

′
m ∈ E1 , it follows that π ′

0 :
A →Ba(E0) is a well-defined map. Indeed, π ′

0 : A →Ba(E0) is an U0 -representation.
Define an U0 -representation π0 : A → Ba(E0) by π0(a) := π ′

0(α(a)) for all a ∈ A .
Since V � = V ∗, for all a ∈ A , x ∈ E1 we obtain

V �π ′
0(a)Vx = V ∗ (a⊗U1x+K) = U∗

1 τ(a)U1x = τ(a)x.

Therefore τ(a) = τ(α(a)) = V �π0(a)V for all a ∈ A . Moreover, for each x ∈ E1 and



KSGNS CONSTRUCTION FOR τ -MAPS AND K -FAMILIES 687

a,b ∈ A we get

V ∗π ′
0(a)∗π ′

0(b)Vx = V ∗U0π ′
0(a

∗)U∗
0 π ′

0(b)Vx = V ∗U0π ′
0(a

∗)U∗
0 (b⊗U1x+K)

= V ∗U0π ′
0(a

∗)(α−1(b)⊗ x+K)
= V ∗U0(a∗α−1(b)⊗ x+K) = V ∗(α(a∗α−1(b))⊗U1x+K)
= U∗

1 τ(α(a∗α−1(b)))U1x = τ(α(a)∗b)x = V ∗π ′
0(α(a)∗b)Vx.

From this equality, it follows that

V ∗π0(a)∗π0(b)V = V ∗π ′
0(α(a))∗π ′

0(α(b))V = V ∗π ′
0(α(α(a))∗α(b))V

= V ∗π ′
0(α(α(a)∗b))V = V ∗π0(α(a)∗b)V

for each a,b ∈ A . �
In the following theorem we extend the KSGNS construction for τ -maps:

THEOREM 3. Assume A to be a unital C∗ -algebra and α : A → A be a
∗ -automorphism. Suppose B ⊂ B(H ) is a von Neumann algebra for some Hilbert
space H and E is a Hilbert A -module. Let E1 be a Hilbert B -module and E2 be
a von Neumann B -module, and (E1,B,U1) and (E2,B,U2 = idE2) be S-modules. If
τ : A → Ba(E1) is an α -CP map and T : E → Ba(E1,E2) is a τ -map, then there
exist

(i) (a) a von Neumann B -module E3 with a unitary U3 such that (E3,B,U3) is
an S-module,

(b) an U3 -representation π of A on (E3,B,U3) with a map V ∈ Ba(E1,E3)
such that V � = V ∗ , and

τ(a) = V ∗π(a)V for all a ∈ A ,

(ii) (a) a von Neumann B -module E4 such that (E4,B,U4 = idE4) is an S-module
and a map Ψ : E → Ba(E3,E4) which is a π -map,

(b) a coisometry W from E2 onto E4 satisfying W � = W ∗ ,

T (x) =W ∗Ψ(x)V for all x ∈ E.

Proof. By Theorem 2 we obtain the triple (π0,V,E0) associated to τ where
(E0,B,U0) is an S-module. Here V ∈ Ba(E1,E0), the Hilbert B -module E0 sat-
isfies span π0(A )VE1 = E0 , and π0 is an U0 -representation of A to Ba(E0) such
that

τ(a) = V ∗π0(a)V for all a ∈ A .

We obtain a von Neumann B -module E3 by taking the strong operator topology clo-
sure of E0 in B(H ,E0

⊗
H ) . Consider the element of Ba(E1,E3) which gives the

same value as V when evaluated on the elements of E1 , because E0 is canonically
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embedded in E3 . We denote this element of Ba(E1,E3) by V . Fix lim
α

x0
α ∈ E3 with

x0
α ∈ E0 . It is easy to check that sot- lim

α
π0(a)x0

α exists for each a ∈ A . The U0 -

representation π0 : A → Ba(E0) extends to a representation of A on E3 as follows:
For each a ∈ A and x=sot- lim

α
x0

α ∈ E3 with x0
α ∈ E0 , define

π(a)(x) := sot- lim
α

π0(a)x0
α .

For each a ∈ A , x=sot- lim
α

x0
α and y=sot- lim

β
y0

β ∈ E3 with x0
α ,y0

β ∈ E0 we have

〈π(a)x,y〉 = sot- lim
β
〈π(a)x,y0

β 〉 = sot- lim
β

(sot- lim
α
〈y0

β ,π0(a)x0
α〉)∗

= sot- lim
β

(sot- lim
α
〈π0(a)∗y0

β ,x0
α〉)∗ = 〈x,π(a)∗y〉,

i.e., π(a) ∈ Ba(E3) for each a ∈ A . Let U3 : E3 → E3 be a map defined by

U3(x) := sot- lim
α

U0(x0
α)) where x=sot- lim

α
x0

α ∈ E3 with x0
α ∈ E0 .

It is easy to observe that U3 is a unitary, (E3,B,U3) is an S-module and the triple
(π ,V,E3) satisfies all the conditions of the statement (i).

Let E ′
4 be the Hilbert B -module span T (E)E1 . For each x ∈ E , define a map

Ψ0(x) : E0 → E ′
4 by

Ψ0 (x)

(
n

∑
i=1

π0 (ai)Vxi

)
=

n

∑
i=1

T (xai)xi (6)

for all a1,a2, . . . ,an ∈ A and x1,x2, . . . ,xn ∈ E1 . Each Ψ0(x) is a bounded right
B -linear map from E0 to E ′

4 . Indeed, we have

〈
Ψ0 (x)

(
n

∑
i=1

π0 (ai)Vxi

)
,Ψ0 (y)

(
m

∑
j=1

π0
(
a′j
)
Vx′j

)〉

=

〈
n

∑
i=1

T (xai)xi,
m

∑
j=1

T
(
ya′j
)
x′j

〉
=

n

∑
i=1

m

∑
j=1

〈
xi,T (xai)

∗ T
(
ya′j
)
x′j
〉

=
n

∑
i=1

m

∑
j=1

〈
xi,τ(〈xai,ya

′
j〉)x′j

〉
=

n

∑
i=1

m

∑
j=1

〈
xi,V

∗π0
(
a∗i 〈x,y〉a′j

)
Vx′j
〉

=
n

∑
i=1

m

∑
j=1

〈
xi,V

∗π0(ai)∗π0(〈x,y〉a′j)Vx′j
〉

=

〈
n

∑
i=1

π0 (ai)Vxi,π0 (〈x,y〉)
m

∑
j=1

π0
(
a′j
)
Vx′j

〉
(7)
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for all x,y ∈ E ; and ai,a′j ∈ A and xi,x′j ∈ E1 for 1 � i � n, 1 � j � m . We denote
by E4 the strong operator topology closure of E ′

4 in B(H ,E ′
4
⊗

H ) . For each x ∈ E
and z=sot- lim

α
z0

α ∈ E3 with z0
α ∈ E0, define a mapping Ψ(x) : E3 → E4 by

Ψ(x)(z) := sot- lim
α

Ψ0(x)z0
α .

Note that the limit sot- limα Ψ0(x)z0
α exists. For all z=sot- lim

α
z0

α ∈ E3 with z0
α ∈ E0

and x,y ∈ E we have

〈Ψ(x)z,Ψ(y)z〉 = sot- lim
α
{sot- lim

β
〈Ψ0(y)z0

α ,Ψ0(x)z0
β 〉}∗

= sot- lim
α
{sot- lim

β
〈z0

α ,π0(〈x,y〉)z0
β 〉}∗ = 〈z,π(〈x,y〉)z〉.

Since E3 is a von Neumann B -module, we conclude that Ψ : E → Ba(E3,E4) is
a π -map. Because E4 is a von Neumann B -submodule of E2 , we get an orthogo-
nal projection from E2 onto E4 (cf. Theorem 5.2 of [20]) which we denote by W .
Therefore W ∗ is the inclusion map from E4 to E2 , and hence WW ∗ = idE4 , i.e.,
W is a coisometry. Considering the S-module (E4,B,U4 = idE4) it is evident that
W �(x) = U∗

2W ∗U4(x) = W ∗(x) for all x ∈ E2 . Eventually

W ∗Ψ(x)V = Ψ(x)V = Ψ(x)(π(1)V ) = T (x) for all x ∈ E. �

3. Reproducing kernel S -correspondences

Suppose B and C are unital C∗ -algebras. We denote the set of all bounded linear
maps from B to C by B(B,C ) . Let α be a ∗ -automorphism on B. For a set Ω ,
a kernel K over Ω from B to C is called Hermitian if Kσ ,σ ′

(b∗) = Kσ ′,σ (b)∗ for all
σ ,σ ′ ∈ Ω and b ∈ B . We say that a Hermitian kernel K over Ω from B to C is an
α -completely positive definite kernel or an α -CPD-kernel over Ω from B to C if for
finite choices σi ∈ Ω , bi ∈ B , ci ∈ C we have

(i) ∑i, j c
∗
i K

σi,σ j (α(bi)∗b j)c j � 0,

(ii) Kσi,σ j (α(b)) = Kσi ,σ j (b) for all b ∈ B ,

(iii) for each b ∈ B there exists M(b) > 0 such that

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi ,σ j (α(b∗i b

∗)bb j)c j

∥∥∥∥∥ � M(b)

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi,σ j (α(b∗i )b j)c j

∥∥∥∥∥ .

In this section we discuss the decomposition of K-families for an α -CPD-kernel
in terms of a reproducing kernel S-correspondence which is defined as follows:



690 S. DEY AND H. TRIVEDI

DEFINITION 6. Let A and B be unital C∗ -algebras. An S-module (F ,B,U)
is called an S-correspondence over Ω from A to B if there exists a U -representation
π of A on (F ,B,U) . We define

a f := π(a) f for all a ∈ A , f ∈ F .

Let Ω be a set. If (F ,B,U) is an S-correspondence from A to B , consisting of
functions from Ω×A to B , which forms a vector space with point-wise vector space
operations, and for each σ ∈ Ω there exists an element kσ in F called the kernel
element satisfying

f (σ ,a) = 〈kσ ,a f 〉 for all a ∈ A , f ∈ F ,

then this S-correspondence is called a reproducing kernel S-correspondence over Ω
from A to B . The mapping K : Ω×Ω → B(A ,B) defined by

Kσ ,σ ′
(a) = kσ ′(σ ,a) for all a ∈ A , σ ′ ∈ Ω

is called the reproducing kernel for the reproducing kernel S-correspondence.

In Theorem 3.1 of [6], Bhattacharyya, Dritschel and Todd proved that a kernel K
is dominated by a CPD-kernel if and only if K has a Kolmogorov decomposition in
which the associated module forms a Krein C∗ -correspondence. Skeide’s factorization
theorem for τ -maps [22] is based on the Paschke’s GNS construction (cf. Theorem
5.2, [17]) for CP map τ . Using the Kolmogorov decomposition we proved a factor-
ization theorem for K-families in Theorem 2.2 of [9] when K is a CPD-kernel. In
Theorem 3.5 of [3], a characterization of a CPD-kernel in terms of reproducing kernel
C∗ -correspondences was obtained.

THEOREM 4. Let K be a Hermitian kernel over a set Ω from a unital C∗ -algebra
B to a unital C∗ -algebra C . Assume α to be a ∗ -automorphism on B . Then the
following statements are equivalent:

(i) K is an α -CPD-kernel.

(ii) K is the reproducing kernel for an reproducing kernel S-correspondence F =
F (K) over Ω from B to C , i.e., there is an S-correspondence F = F (K)
whose elements are C -valued functions on Ω×B such that for any σ ′ ∈ Ω the
function kσ ′ defined by

kσ ′(σ ,b) := Kσ ,σ ′
(b) for all σ ∈ Ω; b ∈ B

belongs to F (K) and has the reproducing property

〈kσ ,b f 〉 = 〈α(b∗)kσ , f 〉 = f (σ ,b) for all σ ∈ Ω, f ∈ F (K), b ∈ B

where bkσ ∈ F is given by

(bkσ )(σ ′,b′) := Kσ ′,σ (b′b) for all b′ ∈ B.
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Proof. Suppose (ii) holds. Thus from the reproducing property it follows that

∑
i, j

c∗i K
σi,σ j (α(b∗i )b j)c j = ∑

i, j
c∗i kσ j(σi,α(b∗i )b j)c j = ∑

i, j
c∗i 〈kσi ,α(b∗i )b jkσ j 〉c j

=

〈
∑
i

bikσi ci,∑
j

b jkσ j c j

〉
� 0

for all finite choices of σi ∈ Ω , bi ∈ B , ci ∈ C . Further, for all b ∈ B and σ ,σ ′ ∈ Ω
we get

Kσ ,σ ′
(α(b)) = kσ ′(σ ,α(b)) = 〈kσ ,α(b)kσ ′ 〉 = 〈b∗kσ ,kσ ′ 〉

= (〈kσ ′ ,b∗kσ 〉)∗ = kσ (σ ′,b∗)∗ = Kσ ′,σ (b∗)∗ = Kσ ,σ ′
(b).

Finally, for a fixed b ∈ B and each finite choices σi ∈ Ω , bi ∈ B , ci ∈ C we obtain

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi ,σ j (α(b∗i b

∗)bb j)c j

∥∥∥∥∥=

∥∥∥∥∥
n

∑
i, j=1

c∗i kσ j (σi,α(b∗i b
∗)bb j)c j

∥∥∥∥∥
=

∥∥∥∥∥
n

∑
i, j=1

c∗i 〈kσi ,(α(b∗i b
∗)bb j)kσ j 〉c j

∥∥∥∥∥=

∥∥∥∥∥
〈

n

∑
i=1

bikσi ci,α(b)∗b

(
n

∑
j=1

b jkσ j c j

)〉∥∥∥∥∥
� ‖α(b)∗b‖

∥∥∥∥∥
n

∑
i=1

bikσi ci

∥∥∥∥∥
2

� ‖b‖2

∥∥∥∥∥
〈

n

∑
i=1

bikσi ci,
n

∑
j=1

b jkσ j c j

〉∥∥∥∥∥
= ‖b‖2

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi,σ j (α(b∗i )b j)c j

∥∥∥∥∥ .

Thus the function K is an α -CPD-kernel, i.e., (i) holds.

Conversely, suppose (i) holds. For each σ ′ ∈ Ω let kσ ′ : Ω×B → C be a map
defined by kσ ′(σ ,b) := Kσ ,σ ′

(b) where σ ∈ Ω, b∈B . Let us define the mapping bkσ ′

by (σ ,b′) 	→Kσ ,σ ′
(b′b) = kσ ′(σ ,b′b) where σ ,σ ′ ∈ Ω and b,b′ ∈B . For fixed c∈ C

we define the function kσ ′c by (σ ,b) 	→ Kσ ,σ ′
(b)c = kσ ′(σ ,b)c for all σ ,σ ′ ∈ Ω and

b∈B . In a canonical way define (bkσ )c and b(kσc) for all σ ∈ Ω, b∈B, and c∈C .
Let F0 be the right C -module generated by the set {bkσ : b∈B, σ ∈Ω} consisting of
C -valued functions on Ω×B , i.e., F0 = {∑m

j=1(b jkσ j)c j : b1, . . . ,bm ∈B;c1, . . . ,cm ∈
C ;σ1, . . . ,σm ∈Ω;m∈N}. Note that (bkσ )c = b(kσ c) for all σ ∈Ω, b∈B, and c∈C
and hence we write F0 = {∑m

j=1 b jkσ j c j : b1, . . . ,bm ∈ B;c1, . . . ,cm ∈ C ;σ1, . . . ,σm ∈
Ω;m ∈ N}. Define a map 〈·, ·〉 : F0 ×F0 → C by

〈 f ,g〉 :=
m

∑
j=1

n

∑
i=1

c∗jK
σ j ,σ ′

i (α(b j)∗b′i)c
′
i (8)



692 S. DEY AND H. TRIVEDI

where f = ∑m
j=1 b jkσ j c j , g = ∑n

i=1 b′ikσ ′
i
c′i ∈ F0 . With f = ∑m

j=1 b jkσ j c j and g =
∑n

i=1 b′ikσ ′
i
c′i in F0 , we obtain

m

∑
j=1

c∗j g(σ j,α(b j)∗)

=
m

∑
j=1

n

∑
i=1

c∗jb
′
ikσ ′

i
(σ j,α(b j)∗)c′i =

m

∑
j=1

n

∑
i=1

c∗j kσ ′
i
(σ j,α(b j)∗b′i)c

′
i

=
m

∑
j=1

n

∑
i=1

c∗jK
σ j ,σ ′

i (α(b j)∗b′i)c
′
i =

m

∑
j=1

n

∑
i=1

c∗jK
σ j ,σ ′

i (b∗jα
−1(b′i))c

′
i

=
m

∑
j=1

c∗j
n

∑
i=1

(Kσ ′
i ,σ j (α−1(b′i)

∗b j))∗c′i =
m

∑
j=1

c∗j
n

∑
i=1

(kσ j (σ
′
i ,α

−1(b′i)
∗b j))∗c′i

=
m

∑
j=1

c∗j
n

∑
i=1

(b jkσ j (σ
′
i ,α−1(b′i)

∗))∗c′i =
n

∑
i=1

(
m

∑
j=1

b jkσ j(σ
′
i ,α−1(b′i)

∗)c j

)∗
c′i

=
n

∑
i=1

( f (σ ′
i ,α

−1(b′i)
∗))∗c′i. (9)

Thus the function 〈·, ·〉 defined above does not depend on the representations chosen
for f and g . Since K is an α -CPD-kernel,〈

m

∑
j=1

b jkσ j c j,
m

∑
i=1

bikσi ci

〉
=

m

∑
=1

m

∑
i=1

c∗jK
σ j ,σi(α(b j)∗bi)ci � 0.

Therefore the map 〈·, ·〉 is positive definite. For f := ∑m
j=1 b jkσ j c j ∈F0, b∈B, c∈C

and σ ∈ Ω , Equations 8 and 9, and the Cauchy-Schwarz inequality gives

‖ f (σ ,b)c‖2 = ‖〈 f ,α(b)∗kσ c〉‖2 � ‖〈α(b)∗kσ c,α(b)∗kσ c〉‖‖〈 f , f 〉‖.
So f ∈ F0 vanishes pointwise if 〈 f , f 〉 = 0. This implies that F0 is a right inner-
product C -module with respect to 〈·, ·〉 . Let F be the completion of F0 . It is easy
to observe that the linear map f 	→ ((σ ,b) 	→ 〈α(b∗)kσ , f 〉) , from F to the set of all
functions from Ω×B to C , is injective. Therefore we identify F as a subspace of
the set of all functions from Ω×B to C .

If ∑m
j=1 b jkσ j c j and ∑n

i=1 b′ikσ ′
i
c′i are elements of F0 , then we get

〈
m

∑
j=1

b jkσ j c j,
n

∑
i=1

b′ikσ ′
i
c′i

〉
=

m

∑
j=1

n

∑
i=1

c∗jK
σ j ,σ ′

i (α(b j)∗b′i)c
′
i

=
m

∑
j=1

n

∑
i=1

c∗jK
σ j ,σ ′

i (α(α(b∗j)b
′
i))c

′
i

=

〈
m

∑
j=1

α(b j)kσ j c j,
n

∑
i=1

α(b′i)kσ ′
i
c′i

〉
. (10)
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Therefore we get an isometry U : F → F by ∑n
i=1 bikσi ci 	→ ∑n

i=1 α(bi)kσi ci. More-
over, from Equation 10, it is easy to check that U is a unitary with the adjoint U∗ :
F → F defined by ∑n

i=1 bikσi ci 	→ ∑n
i=1 α−1(bi)kσi ci. We define a sesquilinear form

[·, ·] : F ×F → C as follows:

[ f , f ′] := 〈 f ,U f ′〉
where f , f ′ ∈ F , i.e., for ∑m

j=1 b jkσ j c j , ∑n
i=1 b′ikσ ′

i
c′i ∈ F we obtain[

m

∑
j=1

b jkσ j c j,
n

∑
i=1

b′ikσ ′
i
c′i

]
=

〈
m

∑
j=1

b jkσ j c j,
n

∑
i=1

α(b′i)kσ ′
i
c′i

〉
.

For each b ∈ B define π(b) : F → F by

π(b)

(
m

∑
j=1

b jkσ j c j

)
:=

m

∑
j=1

bb jkσ j c j for all b′ ∈ B,σ ∈ Ω,c ∈ C .

Therefore for b,b1, . . . ,bn ∈ B ; c1, . . . ,cn ∈ C and σ1, . . . ,σn ∈ Ω we have∥∥∥∥∥π(b)

(
n

∑
i=1

bikσi ci

)∥∥∥∥∥
2

=

∥∥∥∥∥
n

∑
i=1

bbikσi ci

∥∥∥∥∥
2

=

∥∥∥∥∥
〈

n

∑
i=1

bbikσi ci,
n

∑
j=1

bb jkσ j c j

〉∥∥∥∥∥
=

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi,σ j (α(b∗i b

∗)bb j)c j

∥∥∥∥∥
� M(b)

∥∥∥∥∥
n

∑
i, j=1

c∗i K
σi ,σ j (α(b∗i )b j)c j

∥∥∥∥∥= M(b)

∥∥∥∥∥
n

∑
i=1

bikσi ci

∥∥∥∥∥
2

.

This implies that for each b ∈ B , π(b) is a well defined bounded linear operator from
F to F . From〈

π(b)

(
n

∑
i=1

bikσi ci

)
,

m

∑
j=1

b′jkσ ′
j
c′j

〉
=

〈
n

∑
i=1

bbikσi ci,
m

∑
j=1

b′jkσ ′
j
c′j

〉

=
n

∑
i=1

m

∑
j=1

c∗i K
σi,σ ′

j (α(b∗i b
∗)b′j)c

′
j =

n

∑
i=1

m

∑
j=1

c∗i K
σi,σ ′

j (α(b∗i )α(b∗)b′j)c
′
j

=

〈
n

∑
i=1

bikσi ci,
m

∑
j=1

α(b∗)b′jkσ ′
j
c′j

〉

and

Uπ(b∗)U∗
(

m

∑
j=1

b′jkσ ′
j
c′j

)
= Uπ(b∗)

(
m

∑
j=1

α−1(b′j)kσ ′
j
c′j

)
= U

(
m

∑
j=1

b∗α−1(b′j)kσ ′
j
c′j

)

=

(
m

∑
j=1

α(b∗α−1(b′j))kσ ′
j
c′j)

)
=

(
m

∑
j=1

α(b∗)b′jkσ ′
j
c′j

)
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for all b,b′1, . . . ,b
′
n ∈ B ; c′1, . . . ,c

′
n ∈ C and σ ′

1, . . . ,σ
′
n ∈ Ω , it follows that π is an

U -representation from B to the S-module (F ,C ,U) and F becomes an S-correspon-
dence with left action induced by π . Using Equations 8 and 9, we can realize elements
g of F as C -valued functions on Ω×B which satisfy the following reproducing
property:

g(σ ,b) = 〈kσ ,bg〉 for all σ ∈ Ω, b ∈ B. �

The “(ii) =⇒ (i)” part of the Theorem 4 gives a typical example of an α -CPD-
kernel.

Motivated by the definition of τ -map, we introduced the following notion of K-
family in [9] which we recall below: Let E and F be Hilbert C∗-modules over C∗ -
algebras B and C respectively. Assume Ω to be a set and K : Ω×Ω → B(B,C ) to
be a kernel. Let K σ be a map from E to F for each σ ∈ Ω . The family {K σ}σ∈Ω
is called K-family if

〈K σ (x),K σ ′
(x′)〉 = Kσ ,σ ′

(〈x,x′〉) for x,x′ ∈ E; σ ,σ ′ ∈ Ω.

REMARK 1. The U -representation π in Theorem 4 is not necessarily ∗ -preserving,
and π(b∗)∗ = π(α(b)) for all b ∈ B .

Let us, in addition, assume α = idB in Theorem 4 (i.e., K is a CPD-kernel). Then
U is the identity map and π is a ∗ -preserving representation, and hence F becomes a
C∗ -correspondence. This yields a new proof of our earlier result from Section 2 of [9]
on a factorization for K-families where K is a CPD-kernel:

COROLLARY 1. Under the setting of Theorem 4, let E and F be Hilbert C∗-
modules over B and C respectively, and let K σ be a map from E to F, for each
σ ∈ Ω . Then {K σ}σ∈Ω is a K-family where K is a CPD-kernel if and only if K is
the reproducing kernel for an reproducing kernel S-correspondence F =F (K) over Ω
from B to C with kernel elements kσ ∈F and there exists an isometry ν : E

⊗
B F →

F such that

ν(x⊗bkσc) = K σ (xb)c for all x ∈ E, b ∈ B, c ∈ C , σ ∈ Ω. (11)

Proof. Suppose the family {K σ}σ∈Ω is a K-family. For each b,b′ ∈ B; c,c′ ∈
C ; x,x′ ∈ E; σ ,σ ′ ∈ Ω we get

〈K σ (xb)c,K σ ′
(x′b′)c′〉 = c∗Kσ ,σ ′

(〈xb,x′b′〉)c′
= 〈kσc,b∗〈x,x′〉b′kσ ′c′〉
= 〈bkσc,〈x,x′〉b′kσ ′c′〉.

Define a linear map ν from the interior tensor product E
⊗

B F to F by

ν(x⊗bkσc) := K σ (xb)c for all x ∈ E, b ∈ B, c ∈ C , σ ∈ Ω.
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We obtain

〈ν(x⊗bkσc),ν(x′ ⊗b′kσ ′c′)〉 = 〈K σ (xb)c,K σ ′
(x′b′)c′〉 = 〈bkσ c,〈x,x′〉b′kσ ′c′〉

= 〈x⊗bkσc,x′ ⊗b′kσ ′c′〉
for all x,x′ ∈ E; b,b′ ∈ B; c,c′ ∈ C ; σ ,σ ′ ∈ S . Hence ν is an isometry.

Conversely, assume that there exist an isometry ν : E
⊗

B F → F defined by
Equation 11. For each x,x′ ∈ E; σ ,σ ′ ∈ Ω we obtain

〈K σ (x),K σ ′
(x′)〉 = 〈ν(x⊗ kσ ),ν(x′ ⊗ kσ ′)〉

= 〈x⊗ kσ ,x′ ⊗ kσ ′ 〉 = 〈kσ ,(〈x,x′〉)kσ ′ 〉
= kσ ′(σ ,〈x,x′〉) = Kσ ,σ ′

(〈x,x′〉).
So {K σ}σ∈Ω is a K-family. �
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[2] J.-P. ANTOINE AND S. ŌTA, Unbounded GNS representations of a ∗ -algebra in a Kreı̆n space, Lett.
Math. Phys. 18 (1989), no. 4, 267–274. MR1028193 (92a:46061).

[3] JOSEPH A. BALL, ANIMIKH BISWAS, QUANLEI FANG, AND SANNE TER HORST, Multivariable
generalizations of the Schur class: positive kernel characterization and transfer function realization,
Recent advances in operator theory and applications, Oper. Theory Adv. Appl., vol. 187, Birkhäuser,
Basel, 2009, pp. 17–79. MR2742657.

[4] STEPHEN D. BARRETO, B. V. RAJARAMA BHAT, VOLKMAR LIEBSCHER, AND MICHAEL SKEIDE,
Type I product systems of Hilbert modules, J. Funct. Anal. 212 (2004), no. 1, 121–181. MR2065240
(2005d:46147).

[5] B. V. RAJARAMA BHAT, G. RAMESH, AND K. SUMESH, Stinespring’s theorem for maps on Hilbert
C∗ -modules, J. Operator Theory 68 (2012), no. 1, 173–178. MR2966040.

[6] TIRTHANKAR BHATTACHARYYA, MICHAEL A. DRITSCHEL, AND CHRISTOPHER S. TODD, Com-
pletely bounded kernels, Acta Sci. Math. (Szeged) 79 (2013), no. 1-2, 191–217. MR3100435.

[7] P. J. M. BONGAARTS, Maxwell’s equations in axiomatic quantum field theory, I, Field tensor and
potentials, J. Mathematical Phys. 18 (1977), no. 7, 1510–1516. MR0446183 (56 #4512).

[8] H.-J. BORCHERS, On the structure of the algebra of field operators, II, Comm. Math. Phys. 1 (1965),
49–56. MR0182331 (31 #6554).

[9] SANTANU DEY AND HARSH TRIVEDI, K -families and CPD-H-extendable families, to appear in
Rocky Mountain Journal of Mathematics, arXiv:1409.3655v1 (2016).

[10] JAESEONG HEO, JANG PYO HONG AND UN CIG JI, On KSGNS representations on Krein C∗-
modules, J. Math. Phys. 51 (2010), no. 5, 053504, 13. MR2666982 (2011e:46097).

[11] JAESEONG HEO, UN CIG JI, AND YOUNG YI KIM, Covariant representations on Krein C∗-modules
associated to pairs of two maps, J. Math. Anal. Appl. 398 (2013), no. 1, 35–45. MR2984313.
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