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(Communicated by S. McCullough)

Abstract. We study reproducing kernel Hilbert spaces induced by inclusion G1 ⊂ G2 of two
connected graphs having a common vertex set. Under a certain finiteness condition, it is shown
that the dimensions of de Branges-Rovnyak complements associated with inclusion G1 ⊂ G2
are described by the language of graph theory.

1. Introduction

Let G1 and G2 be connected graphs with a common vertex set V , where V is
assumed to be at most countable. Throughout this paper, we suppose that G1 is a sub-
graph of G2 . Further, we assume that every graph appearing in this paper is locally
finite, that is, number of edges connecting with x is finite for every x in V . For unde-
fined terms of graphs, see Section 2. Let Lj (resp. A( j) ) be the Laplace matrix (resp.
the adjacency matrix) of Gj for j = 1,2. Then we define a densely defined bi-linear
form on �2(V ) , the set of all square summable real functions on V , as follows:

〈u,v〉HGj
= 〈u,v〉�2(V ) +∑〈Lju,v〉�2(V )

= 〈u,v〉�2(V ) +
1
2 ∑

x,y∈V
A( j)

x,y(u(x)−u(y))(v(x)− v(y)),

Let HGj denote the real Hilbert space induced by 〈·, ·〉HGj
. Further, it is well known

that HGj has reproducing kernels, that is, for any x in V , there exists a unique vector

k( j)
x in HGj such that

u(x) = 〈u,k( j)
x 〉HGj

(u ∈ HGj ).

k( j)
x is called the reproducing kernel of HGj at x , and

Kj = (〈k( j)
x ,k( j)

y 〉HGj
)x,y∈V
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will be called the Gram matrix of HGj . It is not hard to see that K1 −K2 is positive
semi-definite, for example, which is deduced from Lemma 3.1 in this paper. Let T be
the canonical embeddingmap of HG2 into HG1 , and let H (T ) (resp. H (T ∗)) denote
the de Branges-Rovnyak complement associated with T (resp. T ∗ ). Some details of
these spaces are given in Section 3.

Let V0 be the set of vertices which are not isolated in G2 −G1 = (V,E2 \E1) . In
graph theory, G2 −G1 is called the relative complement of G1 in G2 . Now, we set
G2 �G1 = (V0,E2 \E1) . Note that G2 �G1 is the graph obtained by deleting isolated
vertices from G2 −G1 . The main result of this paper is the following formula holding
under the condition that |E2 \E1| is finite:

dimH (T ) = dimH (T ∗) = |V0|− χ(G2�G1) < ∞ (1.1)

(Theorem 4.1 and Theorem 5.1).
We shall mention that there is a large number of researches on graphs from the

view point of electric networks. One of standard references will be Doyle-Snell [3]. For
recent progress, see Jorgensen-Tian [4, 5] and Jorgensen-Pearse [6]. In these papers,
we will find that reproducing kernels play important role for graph theory.

2. Preliminaries from graph theory

In this section, we collect the terminology for graphs, see Bollobás [1] for more
details. A graph G is a pair (V,E) , V is called the vertex set (in this paper, we assume
that V is at most countable), and E is a subset of the set of {{x,y} | x,y ∈ V,x �= y} ,
called the edge set. For two graphs G1 = (V1,E1) and G2 = (V2,E2) , G1 is called a
subgraph of G2 if V1 ⊂V2 and E1 ⊂ E2 hold. A graph G is said to be connected if for
any distinct vertices x and y , there exist edges {z1,z2},{z2,z3}, . . . and {zl−1,zl} such
that x = z1 and zl = y . If G is not connected, then G is a disjoint union of connected
subgraphs of G , and those connected subgraphs are called connected components of
G . For a subgraph G1 of G2 with a common vertex set, the relative complement of G1

in G2 , which will be denoted by G2−G1 , is defined to be (V,E2 \E1) . For two graphs
G1 = (V1,E1) and G2 = (V1,E2) , a homomorphism ι : G1 → G2 is a map from V1 to
V2 such that if {x,y} ∈ E1 then {ι(x), ι(y)} ∈ E2 . In this paper, we deal only with
the case V1 = V2 and E1 ⊂ E2 , namely the case where G1 is a subgraph of G2 with a
common vertex set. The degree dx of G at x ∈ V is the number of edges connecting
with x . G is said to be locally finite if dx is finite for every x in V . The adjacency
matrix A and the Laplace matrix L of G are |V |× |V | matrices with rows and columns
indexed by the elements of V such that for x,y ∈V ,

Axy =

{
1 if {x,y} ∈ E,

0 otherwise,
Lxy =

⎧⎪⎨
⎪⎩

dx if x = y,

−1 if {x,y} ∈ E,

0 otherwise.

Let us assign an orientation to any edge in the graph G . For an edge e = {x,y}∈E ,
the oriented edge e is a pair either (x,y) or (y,x) . When an oriented edge is (x,y) , we
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say x is the initial vertex and y is the terminal vertex. For the orientation, we define the
incidence matrix B by a |V |× |E| matrix with rows indexed by the elements of V and
columns indexed by the elements of E such that for x ∈V and e ∈ E ,

Bx,e =

⎧⎪⎨
⎪⎩

1 if x is the initial vertex of the edge e,

−1 if x is the terminal vertex of the edge e,

0 otherwise.

3. Preliminaries from operator theory

In this section, lemmas needed to prove (1.1) are given. Although some of them
are quite elementary or have been given previously in our papers [8], [9] and [10], we
shall give full proofs for general readers.

Let ι : G1 →G2 be the homomorphism such that ι fixes vertices, namely ι(x) = x
for any x in V , and let T denote the embedding map u 
→ u◦ ι = u from HG2 to HG1 .

LEMMA 3.1. The following hold.

(i) ‖Tu‖HG1
� ‖u‖HG2

,

(ii) T ∗k(1)
x = k(2)

x ,

(iii) T and T ∗ are invertible if |E2 \E1| is finite.

Proof. First, since

‖u‖2
HG2

−‖Tu‖2
HG1

=
1
2 ∑

x,y∈V
A(2)

x,y |u(x)−u(y)|2− 1
2 ∑

x,y∈V
A(1)

x,y |u(x)−u(y)|2

=
1
2 ∑

x,y∈V
(A(2)

x,y −A(1)
x,y )|u(x)−u(y)|2,

we have (i). Next,

〈u,T ∗k(1)
x 〉HG2

= 〈Tu,k(1)
x 〉HG1

= 〈u,k(1)
x 〉HG1

= u(x) = 〈u,k(2)
x 〉HG2

.

This concludes (ii). If |E2 \E1| is finite, then HG1 = HG2 as linear spaces. By the
open mapping theorem, we have (iii). �

We note that IHG2
− T ∗T and IHG1

− TT ∗ are positive semi-definite by (i) of
Lemma 3.1. These two operators will play important roles in our study. We also note
that K1−K2 is positive semi-definite. Indeed, for any finite sequence (cx)x∈V , we have
that

〈(K1 −K2)(cx),(cy)〉�2(V ) = ∑
x,y∈V

cxcy(〈k(1)
x ,k(1)

y 〉HG1
−〈k(2)

x ,k(2)
y 〉HG2

)

= 〈(I−TT ∗) ∑
x∈V

cxk
(1)
x , ∑

x∈V
cyk

(1)
y 〉HG1

.
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For a subset X of a linear space, spanX will denote the linear subspace gener-
ated by X .

LEMMA 3.2. If |E2 \E1| is finite, then

ran(IHG2
−T ∗T ) = span{k(2)

x − k(2)
y : A(1)

x,y < A(2)
x,y}.

Proof. We set
S = span{k(2)

x − k(2)
y : A(1)

x,y < A(2)
x,y}.

Then, since

〈(IHG2
−T ∗T )u,u〉HG2

= ‖u‖2
HG2

−‖u‖2
HG1

=
1
2 ∑

x,y∈V
(A(2)

x,y −A(1)
x,y )|u(x)−u(y)|2,

we have that ker(IHG2
−T ∗T )= S ⊥ in HG2 , and which is equivalent to that ran(IHG2

−
T ∗T ) = S . This concludes the proof. �

REMARK 3.1. We note that the value of inner product 〈(IHG2
−T ∗T )u,u〉HG2

is
dependent only on Laplace matrices L1 and L2 .

LEMMA 3.3. If |E2 \E1| is finite, then

ran(IHG1
−TT ∗) = span{k(1)

x − k(1)
y : A(1)

x,y < A(2)
x,y}.

Proof. Since T ∗ : HG1 →HG2 is invertible by (iii) of Lemma 3.1 and T ∗(IHG1
−

TT ∗) = (IHG2
−T ∗T )T ∗ ,

T ∗|ran(IHG1
−TT ∗) : ran(IHG1

−TT ∗) → ran(IHG2
−T ∗T )

is a bijective linear mapping. By (ii) of Lemma 3.1 and Lemma 3.2, we have the
conclusion. �

Now, we shall give another inner product on ran(IHG1
−TT ∗)1/2 as follows:

〈(IHG1
−TT ∗)1/2u,(IHG1

−TT ∗)1/2v〉H (T) = 〈Pu,Pv〉HG1
,

where P denotes the orthogonal projection onto the orthogonal complement of ker(IHG1

− TT ∗)1/2 in HG1 . Let H (T ) be the Hilbert space with the inner product defined
above, that is, we set

H (T ) = (ran(IHG1
−TT ∗)1/2,〈·, ·〉H (T )).

H (T ) is called the de Branges-Rovnyak complement induced by T . H (T ∗) is
defined similarly. See Ball-Bolotnikov [2] or Sarason [7] for details of general de
Branges-Rovnyak space theory.
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4. Structure of H (T ∗)

In this section we shall study the structure of H (T ∗) . Let V0 be the set of vertices
which are not isolated in G2−G1 = (V,E2 \E1) , and we set G2�G1 = (V0,E2 \E1) .

THEOREM 4.1. If |E2 \E1| is finite, then

dimH (T ∗) = |V0|− χ(G2�G1).

Proof. If |E2 \E1| is finite, IHG2
− T ∗T is a finite rank self-adjoint operator by

Lemma 3.2. Then, by elementary spectral theory, we have that ran(IHG2
−T ∗T )1/2 =

ran(IHG2
−T ∗T ) . Hence it suffices to show that

dimran(IHG2
−T ∗T ) = |V0|− χ(G2�G1).

Let S be the linear operator induced by the canonical embedding map of G2 �G1 into
G2 , and jx denote the reproducing kernel of HG2�G1 . Then, by (ii) of Lemma 3.1, we

have that S∗ jx = k(2)
x for any x in V0 . Hence we have that

S∗ span{ jx − jy : A(1)
x,y < A(2)

x,y} = span{k(2)
x − k(2)

y : A(1)
x,y < A(2)

x,y}.
Since kerS∗ is trivial, it suffices to show that

dimspan{ jx − jy : A(1)
x,y < A(2)

x,y} = |V0|− χ(G2�G1).

However, this is trivial, because

dim(HG2�G1 � span{ jx − jy : A(1)
x,y < A(2)

x,y}) = χ(G2 �G1). �

Here, the authors would like to state another proof of Theorem 4.1. Although this
second proof having graph theoretical flavor is slightly complicated, it seems to give us
further information on the structure of H (T ∗) .

Proof. We fix an orientation of H = G2 �G1 = (V0,E2 \E1) . Let B be the in-
cidence matrix of H . Since H = G2 �G1 is a finite graph, setting V0 = {x1, . . . ,xn} ,
E2 \E1 = {e1, . . . ,em} , B can be written as follows:

B =

⎛
⎜⎜⎜⎜⎜⎝

bx1,e1 · · · bx1,em

bx2,e1 · · · bx2,em
...

...
bxn,e1 · · · bxn,em

O

⎞
⎟⎟⎟⎟⎟⎠ .

Then, the space span{k(2)
x − k(2)

y : A(1)
x,y < A(2)

x,y} coincides with the column space of

F2 = K2B =

⎛
⎜⎜⎜⎜⎝

k(2)
x1 (x1) · · · k(2)

x1 (xn) ∗
...

...

k(2)
xn (x1) · · · k(2)

xn (xn) ∗
∗ ∗

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

bx1,e1 · · · bx1,em

bx2,e1 · · · bx2,em
...

...
bxn,e1 · · · bxn,em

O

⎞
⎟⎟⎟⎟⎟⎠ .
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Moreover, for c = (c1, . . . ,cn,0, . . .) in kerK2|Rn⊕{0} , K2c = 0 is equivalent to that

n

∑
j=1

c jk
(2)
x (x j) = 0 (x ∈V0)

and
n

∑
j=1

c jk
(2)
y (x j) = 0 (y ∈V \V0).

Hence we have that

n

∑
j=1

c jk
(2)
x j (z) =

n

∑
j=1

c jk
(2)
z (x j) = 0 (z ∈V ).

Since reproducing kernels k(2)
x1 , . . . ,k(2)

xn are linearly independent, the dimension of the
range space of F2 = K2B is equal to rankB , and we have

dimspan{k(2)
x − k(2)

y : A(1)
x,y < A(2)

x,y} = rankF2 = rankK2B = rankB. (4.1)

Moreover, it is known that the kernel of B coincides with the cycle space Z(H) of H
(see p. 55 of [1]). Then by Theorem 9 in Section II of [1], we have that

rankB = |E(H)|−dimZ(H) = |E(H)|− (|E(H)|− |V0|+ χ(H)) = |V0|− χ(H).
(4.2)

Combining the equations (4.1) and (4.2), we have

dimspan{k(2)
x − k(2)

y : A(1)
x,y < A(2)

x,y} = |V0|− χ(H).

This concludes the proof. �

Next, we shall see that k(2)
x − k(2)

y plays remarkable role in H (T ∗) . Fixing an

orientation of G2 �G1 = (V0,E2 \E1) , we set f (2)
e = k(2)

x − k(2)
y for e = {x,y} in E2 .

THEOREM 4.2. If |E2 \E1| is finite, then { f (2)
e : e ∈ E2 \E1} is a Parseval frame

for H (T ∗) , that is,

‖u‖2
H (T ∗) = ∑

e∈E2\E1

|〈u, f (2)
e 〉H (T ∗)|2 (u ∈ H (T ∗)).
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Proof. For u = (IHG2
−T ∗T )a , we may take this a from (ker(IHG2

−T ∗T ))⊥ .
Then we have that

‖u‖2
H (T ∗) = 〈(IHG2

−T∗T )a,a〉HG2

= ‖a‖2
HG2

−‖a‖2
HG1

= ∑
{x,y}∈E2\E1

|a(x)−a(y)|2

= ∑
e∈E2\E1

|〈a, f (2)
e 〉HG2

|2

= ∑
e∈E2\E1

|〈(IHG2
−T ∗T )a, f (2)

e 〉H (T ∗)|2

= ∑
e∈E2\E1

|〈u, f (2)
e 〉H (T∗)|2. �

5. Structure of H (T )

In this section, we shall study the structure of H (T ) . Let dom(K1 −K2) be the

set of finite sequences in �2(V ) , and we set hx = k(1)
x − k(2)

x . We define two linear
spaces as follows:

V = {∑
x∈V

cxhx : (cx)x∈V ∈ dom(K1 −K2)},

N = {∑
x∈V

cxhx ∈ V : ∑
x,y∈V

cxcyhx(y) = 0}.

We note that

〈(K1 −K2)(cx),(cy)〉�2(V ) = ∑
x,y∈V

cxcyhx(y)

for any (cx)x∈V in dom(K1 −K2) . Then 〈[hx], [hy]〉 = hx(y) defines an inner product
on V /N , where [·] denotes an equivalence class in V /N . Taking the completion
of V /N with respect to the norm induced by the above inner product, we obtain
reproducing kernel Hilbert space HK1−K2 .

THEOREM 5.1. If |E2 \E1| is finite, then

(i) dimH (T ) = |V0|− χ(G2�G1) ,

(ii) H (T ) is isomorphic to HK1−K2 .

Proof. By Lemma 3.3 and Theorem 4.1, we have (i). We shall show (ii). Here, we
note that H (T ) has also a reproducing kernel Hilbert space structure. Let P denote
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the orthogonal projection onto the orthogonal complement of ker(IHG1
−TT ∗)1/2 in

HG1 . If u = (IHG1
−TT ∗)1/2v , then

〈u,(IHG1
−TT ∗)k(1)

x 〉H (T ) = 〈Pv,P(IHG1
−TT ∗)1/2k(1)

x 〉HG1

= 〈(IHG1
−TT ∗)1/2v,k(1)

x 〉HG1

= u(x),

that is, (IHG1
−TT ∗)k(1)

x is the reproducing kernel of H (T ) . Then the Gram matrix
of H (T ) is given as follows:

〈(IHG1
−TT ∗)k(1)

x ,(IHG1
−TT ∗)k(1)

y 〉H (T )

= 〈P(IHG1
−TT ∗)1/2k(1)

x ,P(IHG1
−TT ∗)1/2k(1)

y 〉HG1

= 〈(IHG1
−TT ∗)k(1)

x ,k(1)
y 〉HG1

= 〈k(1)
x ,k(1)

y 〉HG1
−〈T ∗k(1)

x ,T ∗k(1)
y 〉HG2

= 〈k(1)
x ,k(1)

y 〉HG1
−〈k(2)

x ,k(2)
y 〉HG2

.

Hence the Gram matrix of H (T ) is equal to K1−K2 . It follows from this that HK1−K2

is isomorphic to H (T ) . �

COROLLARY 5.1. For finite graphs,

dimker(K1 −K2) = χ(G2−G1).

Proof. It is easy to see that HK1−K2 = V /N as reproducing kernel Hilbert spaces
and

dimker(K1 −K2) = dimN .

Therefore, by Lemma 3.3, we have that

|V |−dimker(K1−K2) = |V |−dimN = dimHK1−K2 = dimH (T ).

Further, since
|V |− χ(G2−G1) = |V0|− χ(G2�G1) (5.1)

for finite graphs, we have the conclusion by (i) of Theorem 5.1. �

COROLLARY 5.2. Let G1 ⊂ ·· · ⊂ Gn be a chain of connected graphs having a
common vertex set. If |En \E1| is finite, then

|V (Gn �G1)|−
n−1

∑
j=1

|V (Gj+1�Gj)| � χ(Gn�G1)−
n−1

∑
j=1

χ(Gj+1�Gj).
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Proof. Let ι j, j+1 : Gj → Gj+1 and ι j : G1 → Gj be canonical embedding maps,
and let Tj, j+1 : HGj+1 → HGj and Tj : HGj → HG1 be operators corresponding to
ι j, j+1 and ι j , respectively. Since ι j = ι j−1, j ◦ · · ·◦ ι1,2 , it is trivial that Tj+1 = TjTj, j+1 .
Further, we note that every Tj is invertible by (iii) of Lemma 3.1. Hence, by the fol-
lowing decomposition of IHG1

−TnT ∗
n :

IHG1
−TnT

∗
n =

n−1

∑
j=1

Tj(IHGj
−Tj, j+1T

∗
j, j+1)T

∗
j (T1 := IHG1

)

(see also Theorem A140 in Vasyunin-Nikol’skiı̆ [11]), we have that

dimH (Tn) �
n−1

∑
j=1

dimH (Tj, j+1).

Therefore, by Theorem 5.1, we have the conclusion. �

REMARK 5.1. For chains of finite graphs, from (5.1) and Corollary 5.2, we have
the following inequality:

n−1

∑
j=1

χ(Gj+1−Gj) � χ(Gn −G1)+ (n−2)|V |. (5.2)

(5.2) should be known and elementary among graph theorists. However, it might be
worthwhile mentioning that (5.2) means a dimension inequality for reproducing kernel
Hilbert spaces over graphs.
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