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CHARACTERIZATION OF TRUNCATED
TOEPLITZ OPERATORS BY CONJUGATIONS

KAMILA KLIé—GARLICKA, BARTOSZ EANUCHA AND MAREK PTAK

(Communicated by S. McCullough)

Abstract. Truncated Toeplitz operators are C-symmetric with respect to the canonical conjuga-
tion given on an appropriate model space. However, by considering only one conjugation one
cannot characterize truncated Toeplitz operators. It will be proved, for some classes of inner
functions and the model spaces connected with them, that if an operator on a model space is
C—symmetric for a certain family of conjugations in the model space, then is has to be trun-
cated Toeplitz. A characterization of classical Toeplitz operators is also presented in terms of
conjugations.

1. Introduction

Let . denote a complex Hilbert space. Denote by L(.7#) the algebra of all
bounded linear operators on 7. A conjugation is an antilinear involution C: J —
such that (Cf,Cg) = (g, f) for all f,g € . An operator A € L(5) is called C-
symmetric if CAC=A*.

Let D denote the open unit disk, let T = JdID denote the unit circle and let m be
the normalized Lebesgue measure on T. Denote by L? the space L*(T,m) and by
L” = L*(T,m). Recall that a classical Toeplitz operator T, with a symbol ¢ € L on
the Hardy space H? is given by the formula

Tof = P(of) for f € H?,

where P: L?> — H? is the orthogonal projection. Denote by .7 the set of all Toeplitz
operators, i.e., 7 ={Tp: @ € L"}.

Let 6 be a nonconstant inner function. Consider the so-called model space K} =
H?© 0H? and the orthogonal projection Py : L> — Kj3. A truncated Toeplitz operator
Af with a symbol ¢ € L7 is defined as

AY:D(AY) C K —K§: ASf=Pylof)
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for f € D(AS) ={f €Kj:@f €L*}. Denoteby .7 (6) the set of all bounded truncated
Toeplitz operators on Kg .

The conjugation Cg defined for f € L? by the formula

Cof(z) = 0(2)zf(2), |zl =1,

is a very useful tool in investigating Toeplitz operators. In fact, all truncated Toeplitz
operators are Cg -symmetric [7].

Truncated Toeplitz operators have been recently strongly investigated (see for in-
stance [10, 1, 3, 4, 5, 6, 8]). However, usually only one (canonical) conjugation was
involved in analysis on these operators. In this paper we suggest to consider a family
of conjugations to study Toeplitz operators. In particular, we give a characterization
of the classical Toeplitz operators as well as some special cases of truncated Toeplitz
operators using conjugations.

Itis easy to see thatif 6 =z, then K3 = CV . The natural conjugation Cy = C,v in
CN canbe expressed as Cy(z1,...,2v) = (Zn.-., Z1). Note thata matrix (a; ;)i j=1.. .~
is Cy -symmetric if and only if it is symmetric with respect to the second diagonal, i.e.,

Qi j = AaN—j4+1,N—i+1 for i,jzl,...,N.

On the other hand, a finite matrix (a; ;);, j=1,...~ is a Toeplitz matrix if and only if it has
constant diagonals, that is,

ajj=dag| if i—jZk—l.

Hence, as D. Sarason in [10] observed, each N x N Toeplitz matrix is Cy -symmetric
but the reverse implication is true only if N < 2. However, one can notice that for a
given matrix (a; ;) j—1,..n» if the matrix is C, -symmetric for every n <N, i.e.,

i j = dp—j+1n—i+1 for n < N and i7j = 1, ...n,

then the matrix (a; j); j—1,.. ~ has to be Toeplitz. Corollary 2.3 gives a precise proof of
this fact. One can ask if a similar property can be obtained for other inner functions than
0=7". Using known matrix descriptions [5, 6, 8] we obtained the positive answer: for
a Blaschke product with a single zero in Section 3, for a finite Blaschke product with
distinct zeros in Section 4 (the most demanding case), for an infinite Blaschke product
with uniformly separated zeros in Section 5. For a general case we put the conjecture in
Section 6. However, even for the simplest singular inner function 0(z) = exp(f_r—}) no
similar description is known and to solve the conjecture probably a different approach
is needed. In Section 2 we also give similar characterization of the classical Toeplitz
operators on the Hardy space in terms of conjugations.
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2. Characterization of Toeplitz operators by conjugations

Let o and 6 be two nonconstant inner functions. We say that o divides 0 (o <
6) if @6 is an inner function. It is easy to verify that K3 C K3 for every a < 6. It
is known that truncated Toeplitz operators on Kg are Cy-symmetric but this property
does not characterize them, i.e., there are Cy-symmetric operators on K2, which are
not truncated Toeplitz ([7], [10, Lemma 2.1, Corollary on p. 504]). Note however that
Ag is Cy -symmetric for every o < 6. Namely:

LEMMA 2.1. Let Ag: Kg — Kg be a truncated Toeplitz operator. For every o <
0 the operator PaAZ‘ e is Cy -symmetric.
o

Proof. Note that PO‘AZ\ 2 belongsto 7 (a). Actually, PO‘AZ\ 2 =Ag, henceitis
Cq -symmetric by [10, Lemma 2.1]. [

A similar argument shows that if A € .7, then POCA| K2 is Cq -symmetric for all
inner functions o. The latter can be used to characterize all Toeplitz operators on H:
THEOREM 2.2. Let A € L(H?). Then the following conditions are equivalent:
(1) Ae 7;
(2) CoqAaCq = A}, for all nonconstant inner functions o, where Ay = PaA‘Ké N

(3) CoAaCq = Ay, forall oo =7", where Ay :PaAthzx.

Proof. The proof of the implication (1) = (2) is similar to the proof of Lemma
2.1. Since (2) = (3) is obvious, we will prove now that (3) = (1).

The equivalent condition for a bounded operator on H? to be Toeplitz is that it has
to annihilate all rank-two operators of the form

t:Zm®Zr_Zm+l®Zr+l with m7r>o7

in the sense that tr(Az) = 0 (it follows form the well known Brown—Halmos charac-
terization of Toeplitz operators given in [2]). Each such operator can be obtained from
1@ -7 @ or F®1 - o7, with k,I > 0. Hence our reasoning will be held
only for such operators.

Fix k,l >0 andlet o« =7", n=k+1+1. Since

CaZk — ankfl — Zl and Cal — anl — ZkJrl,
the Cy -symmetry of A, gives

r(A(1®7") = (A1,2) = (441,2") = (Cad',Codnl)
= (Ca AL C1) = (ALY = (g, 7)) = w(A( @ &),
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Similarly,
(A ®1)) =@ @)

Therefore all operators of the form 1®z* — 7/ @ A, @1 -2 @7 for k,1 >0, are
annihilated by A. Hence A is Toeplitz. [l

From the previous proof we can obtain

COROLLARY 2.3. Let A € L(KzzN), N €N. Then A € 7 (ZV) if and only if for
every 1 < n < N the operator A, is Cp-symmetric, i.e., C;nAyCon = A, where A, =
PnA‘ K2 and Py: KZZN — Kzzn is the orthogonal projection.

3. The case of a Blaschke product with a single zero

Let o, 8 be any nonconstant inner functions. We say that a unitary operator
U: K} — K2 defines a spatial isomorphism between .7 (0) and .7 () if U7 (0)U* =
I (), thatis, A € Z(0) if and only if UAU* € 7 (a). If such U exists, Z(6) and
7 () are said to be spatially isomorphic. The spatial isomorphism between spaces of
truncated Toeplitz operators is discussed in [6, Chapter 13.7.4].

PROPOSITION 3.1. Let ¢, 6 be any nonconstant inner functions. Let U : Kg —
K2 be such that U defines a spatial isomorphism between 7 (0) and 7 (o). Then
UCy = CyU.

Proof. 1t is known [6, Chapter 13.7.4] that there are three basic types of unitary
operators that define a spatial isomorphism between .7 (0) and .7 (). The requested
intertwining property for one of those basic types is proved in [10, Lemma 13.1]. The
proof for two other types is similar. Since every U : Kg — K2 such that U defines a
spatial isomorphism between .7 (0) and 7 (), is a composition of at most three of
those basic types of operators, it follows that U also has this intertwining property. [

Let a €D and N € N. Denote b,(z) = =% .

1—az

PROPOSITION 3.2. Let A € L(KIfN). Then A € 7 (bY) if and only if for every
L <n< N the operator Ay is Cpn -symmetric, i.e., CynAnCpn =A;, where Ay = PnA‘Kz
bi

and P,: K — K b is the orthogonal projection.

Proof. The operator Uy, given by

a
U, 1) = L o (2
—az
defines a spatial isomorphism between C" = Kzzn and K2 foreach n=1,....N (see
[6, chapter 13.7.4(i)]). By Proposition 3.1, Up, intertwines the conjuganons C,» and
Cpn . Application of Corollary 2.3 finishes the proof. [J
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4. The case of a finite Blaschke product with distinct zeros

Let B be a finite Blaschke product of degree N with distinct zeros ay, ...

N

; z—a;j

B(z) =[] —=L,
,1;[1 l—ajz

where y € R. As usual, for w € D by

1—B(w)B
(o) = LB
1—wz
we denote the reproducing kernel for Kf;, that is,

Fw) = (f:k3)
for f € K3. Note that for j=1,...,N we have

1
Cl-ajz

kj(z) := kfj (2)

811

yAN 5

4.1)

4.2)

As it was observed in [5], the model space K§ is N -dimensional and the functions

ki,...,ky form a (non—orthonormal) basis for Ké.
A simple computation gives the following.

LEMMA 4.1. ([5],p. 5)

(1) (Cokj)(z) =2 for j=1,....N.

z—aj

o auni={y, i

(3) <kj7kl> = l*j?ja,"

LEMMA 4.2. Let B be a finite Blaschke product of degree N with distinct zeros
ai,...,ay. Let Cg be the conjugation in K3 given by Cpf(z) = B(2)zf(2) for f € K3.

Assume that an operator A € L(K3) has a matrix representation (b;j); j—1

respect to the basis {ki,...,kn}. Then the following are equivalent:
(1) A is Cp-symmetric;

(2) (Aki,Cpk;) = (Ak;j,Cgki) forall ijj=1,...,N;

(3) B’(aj)ij :B’(a,-)bm- forall i,j = 1,...,N.
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Proof. The implication (1) = (2) follows from
(Ak;,Cpk;) = (Chk;j,CpAki) = (k;j,A*Cpk;) = (Ak;,Cpk;).

The reverse implication can be proved similarly.
To prove that (2) < (3) note that Ak; = %:1 bi,ikn, . Hence, by Lemma 4.1(2),

N —_—
(Aki;Cpkj) = 3" by,ilkm,Cpkj) = B'(a;)bj .

m=1

Analogously,
<Akj,CBki> = B/(a,‘)bw'. U

Let 1 <n < N. Denote by B, the finite Blaschke product with n distinct zeros
al,...,dp,

Ba() = [ 24 43)
" o l—ajz’

and by C, = Cp, the conjugation in K} given by

(Caf)(2) = Bu(2)2f(2), [zl =1.

THEOREM 4.3. Let B be a finite Blaschke product of degree N with distinct zeros
ai,...,ay. Denote by B, the Blaschke product of degree n with zeros ay,...,a, and
by P, the orthogonal projection from Kl% onto Kén forn=1,....N. Let A € L(Kl%).
The following conditions are equivalent:

(1) Ac 7(B);

(2) for every Blaschke product Bs dividing B the operator Ag = PBGA‘ K3, is Cp, -
symmetric;

(3) forevery n=1,...,N the operator A, = P,A > is C,-symmetric.
K,

To give the proof of Theorem 4.3 we need two technical lemmas. Firstly, let us
observe by (4.2) that kg;? :kgj =kjfor I<n<N, j=1,...,n. Hence {ky,....k,} is
a basis for Kén CK3.

LEMMA 4.4. For 1 <m,n < N the following holds:

0 for m<nm#j,

(1) (Cokj k) = { Bulaj)  for m<nm=j, for j=1,....n;
5;’7@2’]) for m>n,

_ z Bn(am) A .
(2) Pk, = JZ,I A=) k;j for n<m;
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—l—|an|2 forn>1;

(aj) 1—ana;

B _
(4) z"s;,Ea, =l Jorn>1, j=1,..n—1

Proof. To show (1) note that C,k; € K3 C Kj for I <n< N, j=1,...,n, and

that
B, (2)

(G = 722

by Lemma 4.1(1). If m > n, then the reproducing property of &, yields

By (am)
am—aj’

<anj7km> = (anj)(am) =

On the other hand, if m < n, then it follows from Lemma 4.1(2) that
_ 0 for m# j,
Gk fim) = {B;,(aj) for m=j.

n
To show (2) assume that m > n and P,k,, = Y, dik;. Then, by part (1), for j =
=1

Bn o n —
n) (o o) = (G i) 2 (Cukj ki) = By (a;)d.

Hence _
By (am)

By(a)(an—aj)’
which proves (2). The statements (3) and (4) follow directly from

j:

B2 =B,y 2 1, (o Al
sl el l—az n-112 (1—auz)*
LEMMA 4.5. Let A € L(Kén) have a matrix representation (bl(,j))l./ 1.0 With
respect to the basis {ki,...,kn}. Then Ay = P,_ 1A‘ K2 has a matrix representation
n—1

“1
(b,(r; ))i,j:1,...,n71,

(n—1) (n)
bj; '=b t+ =——=—"—
"/ ! B; 1(ai)(an—a,~)

with respect to the basis {ki,... .ky—1}.

Proof. Note that by Lemma 4.4(2),

= B, 1 (an)

Pn—lkn 2

_ — k-
m= an 1(am)(an_am)
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Hence, for j=1,...,n—1, we have

P, 1(Akj)) =P, 1(2 bk >_ 1 ( > 5 ko >+Pn_ bk
m=1
n—1 TRy (n)
o (n B l(a,,)b
- Z (bm +37, ( J k.

)(an am)

—_

m=1 n—1
Since
5J B;,I(ai)
we get
b(n—l) _ 1 nil b(n) + B, l( )b(n) <k C k>
YT B () e\ B @ )

by Lemma4.4(1). O

Proof of Theorem 4.3. Since multiplying B by a constant of modulus 1 does not
change K7, we can assume without any loss of generality that B is given by (4.1) with
y=0, thatis, B=By.

The implication (1) = (2) follows from Lemma 2.1 and the implication (2) = (3)
is obvious. We only need to prove the implication (3) = (1). This will be proved by
induction. Note firstly that it is true for N =2 by [10, p. 505].

Assume now that the assertion is true for n — 1 < N, which means that A, | =

P,_ IA\KZ is Toeplitz and has a matrix representation (b(" 1>),, 1,..n—1 With respect
to the ba51s {ki,...,ky—1} satisfying
Y Y (=1, ~ (=1, ~
) _ B, \(a)) [ b); (a1— ai) +b3}?j (aj—ar) @.4)
L] B;l_l(al) aj_ai
for 1 <i,j<n—1, i#j, by [5 Theorem 1.4]. Assume also that A € L(K3 ) is

C, symmetnc and has a matrix representation (bl( J)) i.j=1,...n. With respect to the basis
{ki,...,kn}. We will show that A is Toeplitz, i.e., b§7 j) satisfies [5, Theorem 1.4]:

Jo_ Butar) (BU(@ —a@)+h7ya; - @)

v B i

for 1 <i,j<n,i#j.
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Since A, is C,—1-symmetric, for i, j = 1,...,n— 1 we have, by Lemma 4.2 and
Lemma 4.5,

b(n_l) . B;_l(a,-) b(n._l) B;_l(a,-) b(n) anl(an)b(n])‘

n7.

T = . = v — (4.5)
B e Y By(a) \ Y B (@) (an - a)
On the other hand, by Lemma 4.5 and using the C,-symmetry of A,
By A
b('n.—l) _ b(n) + nfl(an) n,i
Mo R () @
" ) (4.6)
_ BZ(CI,‘) b(n) 4 BZ(ai) anl(an) bz)n
B,(aj) "' B(an) B,_,(a)) @ —a;

Comparing (4.5) with (4.6) and putting i = 1 we obtain

B @) O Bia) Biata) b +<B¢1<a1> B;_1<“‘)>
i \Bpla;) B,_(a)

b\"(ay — ay).

o0 B;(al)bi’?,l(an—alu( Bia) B:1_1<aj>_B;_1<a1>>
J

" Byw) @—a;  \Byi(a) Byla)  Bii(a))
4.7)
Using Lemma 4.4 we can simplify
B,(a1) B, (a)) _ B,_i(a1)
B, (an) Bi, (aj) anl(an)
_Bl/i(a1> 1 <l_anaj l—ana1>
B (ay) 1 — |an* \ aj— ay an—ai
_Ba) (@)
B;z(an) (aj aﬂ)(an al)
which together with (4.7) gives
o Bya) [ ba(a —an) (@ - ) s
" B (an) aj—an '

for 1 < j<n—1.From (4.8), the C,-symmetry of A, and Lemma 4.2 we also get

N (n), - (n), - _
) ! by (ay—a;)+by (an—a
bt = Bal) oy _ Balan) (101, (@ 7 @) 201 ) (49)
.’ Bz/1 (ai) .' B;/1 (Cli) anp —dai
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for ] <i<n—1.ByLemma4.2 and Lemma4.5, we have fori=1,....n—1,

S

PR PR = »,®
(n—1) _ B;hl(ai) b(n—l) _ B;hl(ai) b(n) + anl(an) bnill
Yo B e M B (a) \ Y B (ay) @i
Using Lemma 4.2 again we obtain

(n—1) _ Z(al)BLl(ai)b@ B (a1) B,—1(an) bm

L,i (4.10)

 Bj(a) B, (@) " Bja,) B)_(a1) @ —ai

Now applying Lemma 4.5 to the left-hand side of (4.4), and formula (4.10) to the
right-hand side of (4.4) we can calculate forall i,j=1,...,n—1,

n)
), By—1(an) bEt,j
)
o )
_Bla) @ =i o Bula) Bui(a) fmf%yh @4.11)
B;L(az) aj—ai BZ(CI") Br/1—l(al) (Lln B al)(aj al)
+B§,(a1)B;,1(a,) 67;—a1b(n)+B;1(“1)anl(aﬂ) aj—ai p{")
By (aj) B),_(a;) @j—ai Y Bl (an) B,_(a;) (an—aj)(a;—ai)
Note that

Bi(a1) B, _|(aj) aj—a;
B, (a;) B)_(a;) aj—di

_ B)(ar) a;—a b("). n By _1(an) By (a1) aj—ai b(ﬂ)
B(a) @j—a " " B (a;) B)(ay) (@n—a)(@;—a,) '

by Lemma 4.4. Moreover,

L <51_5i+a~’_a1)= _ Onoa 4.12)
aj—ai \ap—a; da,—a; (an—aj)(an—aj)

Hence, (4.11) and (4.12) give

) Bil@) By Bla) b @ = @)+ bi(a, - @)
’ (ai an—ai B’/1 (a,-) 67j —a;

)
By i(@) 1 Bylay) bia(@ —an) +b{")a;—a)

(a,-) ay—a; B;l(a,,) aj —dap

B/

n—1

Taking into account (4.8) and (4.9), the above equation implies that

o _ Bula) (BU(@ —a@)+h7ya; - @)
" B (a) a—a

forall 1 <i,j<n,i# j, which completes the proof. [J
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5. An infinite Blaschke product with uniformly separated zeros

Let B be an infinite Blaschke product,

> ai oa;
e U eR 5.1
le 27 YER, (5.1)

(if a; =0, then a;/|aj| is interpreted as — 1) with uniformly separated zeros ay,as, ...,
i.e.,

inf [T |2=21> 5 (5.2)

n .
J#n

1-— C?,'an

for some & > 0. In particular, the zeros {a;}7_, are distinct. As before, By, n € N,
denotes the finite Blaschke product with zeros ay,...,a,, given by (4.3).

THEOREM 5.1. Let B be an infinite Blaschke product with uniformly separated
zeros {a j};f’z - Denote by B, the Blaschke product of degree n with distinct zeros

{ai,...,ay} and by P, the orthogonal projection form Kl% onto Kén for n e N. Let
A € L(K32). The following conditions are equivalent:

(1) Ac 7(B);

(2) for every Blaschke product Bs dividing B the operator Ag = PBGA‘ e is

Cg,, -symmetric;

(3) for every n € N the operator A, = PnA| K3 is Cy,-symmetric.

Again, before we give the proof some preparations are necessary. Clearly, Kén C
K3 forall n € N and kfj =k; forall j € N. Condition (5.2) implies that the reproducing

kernels k;, j € N, form a basis for K§ (for more details see [6, Chapter 12], [7] or [9]).
In particular, every f € K§ can be written as

i faCBk>
Jj=1 aj

where the series converges in the norm.

LEMMA 5.2. Let A € L(K32) have a matrix representation (b;, Diie

to the basis {k;: i € N}. Then A, =P, A\KZ has a matrix representation (bl( J)) i j=1, s

| with respect

” _b7j+ 2 M
m=n+1 B, (at)(am ai)

with respect to the basis {ki,...,kn}.
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Proof. Let ne N and 1 <i,j<n. Since

n
Ak; =Y b ko,

m=1

Lemma 4.4(1) gives

) — (Aukj, Cks).

Since
Ak =Y b, jkm,
m=1

and the series converges in norm, we get

by Lemma 4.4(1). U

COROLLARY 5.3. Forall i,j €N,

(n)

bij = limb}").

Proof. 1t is known that the infinite Blaschke product B converges uniformly on
compact subsets of . It follows that if

EI_J

then A,B, — B and A,B!, — B’ as n — o (uniformly on compact subsets of D). In
particular,
MB,(a;)) — B'(a;) as n— oo

foreach i € N. Fix i,j € N. Let n > max{i, j} and write
n oo
Akj =" by jkn+ra, where ry= Y by jkn.
m=1 m=n-+1

As in the proof of Lemma 5.2,

)
b = by j+ ==

i (rn,Cuki) = bi j+ =—=— (rmle)

)L,,B’ (@)

( i)
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where the last equality follows form the fact that A, € T. Since r, tends to zero in the
norm, the sequence (A,C,k;),>; is bounded and A,B,(a;) — B'(a;), we get

lim b{") = by + lim (= (ri, 2 Wi)) =bij. O
Proof of Theorem 5.1. As in the proof of Theorem 4.3, without loss of generality,
assume that B is given by (5.1) with ¥ = 0. The implication (1) = (2) follows from
Lemma 2.1 and the implication (2) = (3) is obvious. We only need to prove (3) = (1).
Let A € L(KI%) and assume that A, = PnA| K2 is C,-symmetric for every n € N.

By [8, Remark 2.4], to prove that A € .7 (B) it is enough to show that

B'(ay) (bh,-(al —a;)+byj(a;— El))

B(a;) aj—a;

bij=

(5.3)

for all i # j, where (b;;)7;_, is the matrix representation of A with respect to the
basis {k;: i € N}. Fix i,j € N, i # j, and take an arbitrary N > max{i,j}. By (3),
PnAN‘ K = A, is C,-symmetric for all n=1,...,N. Hence Theorem 4.3 implies that

An € I (By). By [5, Theorem 4.1],

YTy N)/ - _ N), — _
™) _ Bylar) v (@ —ai) b1 (@ - @) (5.4)
v B Ga | -

where (b(l;.’) )i, _j=1....N is the matrix representation of the operator Ay with respect to the
basis {ki,...,ky}. Taking the limit in (5.4) as N tends to infinity we get (5.3) because

bg}/) — b; j and By (a;) — B'(a;) by Corollary 5.3 and its proof. [

6. Conjecture

Theorems 2.2, 4.3, 5.1 and Proposition 3.2 suggest that the following conjecture
can be true:

CONJECTURE 6.1. Let 8 be a nonconstant inner function, and let A € L(K3).
Then A € 7 (0) if and only if for every nonconstant inner function o dividing 0 the
operator Ay, = PaA‘ K2 is Cy, -symmetric.

The following example supports the conjecture.

EXAMPLE 6.2. Consider

_Z, where w #£0.
1—wz

Then the space K3 has dimension 3 and the set {1,z, ﬁkw}, ky(z) = (1 —wz)71, is
an orthonormal basis for K3.
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We first describe the operators form .7 (B) in terms of their matrix representations
with respect to the basis {1,z, ﬁkw}. Let AB, ¢ € L?, be an operator from 7 (B),
and let M as = (i ;) be its matrix representation. By [10, Theorem 3.1] we can assume

that ¢ € BH? + BH?, namely, that

2 - _ 2
Lk +c 17+ co+crz+ ok,
[ [Tl

p=co

It is now a matter of a simple computation to see that the matrix M a5 = (bij) is given
by

co Cc_1 Cc_2

cl co cow+ HLIQTIH

1) m—kczw c oW ||k ||+ c_1W+ co+ crw+ cow? || k|

From this, the elements b; ; are described by the following system of equations

byp=b11 (6.1)
by3 =Why 5+ |[kw|| 'b12 (6.2)
b3 = [k~ b2y +wh3, (6.3)
b33 = by 1 +Wllky| b2+ wlky|b3 2 (6.4)

= b1+ ||k ||b1 3+ Wby o+ whyy 4w k|B3.1.

Clearly, each 3 x 3 matrix (b; ;) satisfying (6.1)—(6.4) is determined by five elements
(the first row and the first column) and the space .#p of all such matrices has dimension
5. As matrices representing operators from 7 (B) have to belong to .#p and the
dimension of .7 (B) in this case is also 5, we conclude that a linear operator A form
K3 into K3 belongs to .7 (B) if and only if its matrix representation with respect to

{12, ik} satisfies (6.1)~(6.4).
Now let A be an operator from K§ into K§ such that for every B < B the com-

pression Ag = Pg,Ap, is Cp,-symmetric. Using the above characterization we show
that A must belong to .7 (B). Let M = (b; ;) be the matrix representation of A with

respect to the basis {1,z, ﬁkw}. Our goal is to show that (b; ;) satisfies (6.1)-(6.4).
Let B(z) =z%> and A| = Pg,Ajp, . Then the space Kél is spanned by {1,z},

Cpl=z Cpz=1,

and the Cp, -symmetry of Ay gives (6.1).
Let By(z) = 2175 and Ay = Pg,A|, . Then the space K§2 is spanned by {1,k },

1-wz

Cp,1=7=%, and Cp,k, = —zk,.

1-wz?

Moreover, we have

Cpz= 155 =Cn,1,  Cp(h) = —ku,

wz
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and
Wby 3+ |kl 'b12 = ||kw] (A (szkw+Z) 1)

Since
Welky + 2 = zkyy

and A, Ay are symmetric with respect to Cp and Cp, , respectively, we obtain (6.2).
Namely,
Wblﬁ + ||kWH7lb1,2 = HkW||71<A (ka) ) 1> = _HkW||71<A2CszWv 1>
= _||kWH_1<CBzA§kW7 1> = _HkW||_1<A2Cleakw>
= ||kl (ACBz, Ca(%kw)) = [l ' (CpA*z,CB (ki)
= |lkw|| " (A(Zky),2) = b2 3.
Similarly we can obtain (6.3).
To get (6.4) firstly, by using Cg-symmetry of A, we have
b33 = ||kWH72<A(szW)a22kw>
= ||kWH72<ACBkW7CBkW>
= ||ka_2<AkW,kW>.
From this
b373—b11:(1—|w| V(Aky, ky) — 1) = ( WIW_WZ) w) — (AL, 1)
={(Al,k,—1)— (A(1 = ),k ) = w(Al,zk,) +W(ACpz,Cp(Zky))
= —w(Az1,Cpykw) + W(A(Z k), 2) = —w(Aoky,Ci, 1) + W[k || D23

= w(ACg(2ky),Cpz) + | kw||b23 = w(Az,2°ky) -+ ]|k D23
= wl|ky||b3 2 + Wk || D2 3,

which completes the proof.
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