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AN OBSERVATION ABOUT NORMALOID OPERATORS

JOR-TING CHAN AND KONG CHAN

(Communicated by E. Poon)

Abstract. Let H be a complex Hilbert space and B(H) the Banach space of all bounded linear
operators on H. For any A € B(H), let w(A) denote the numerical radius of A. Then A is
normaloid if w(A) = ||A]|. In this note, we show that A is normaloid if there is a sequence of
unit vectors (x,) such that lim, ... ||Ax,|| = ||A|| and lim, .. |(Ax,,x,)| = w(A) simultaneously.
The result is then used to study the Davis-Wielandt radius.

1. Introduction

Let H be a complex Hilbert space and B(H) the Banach space of all bounded
linear operators on H. When dimH = n < oo, B(H) will be identified with M,,, the
space of all n x n complex matrices. For any operator A € B(H), the numerical range
and numerical radius of A are defined respectively by

W(A) = {{Ax,x) : x isaunit vectorin H} and w(A)=sup{|A]|: 1 € W(A)}.

It is well-known that w(-) is a norm on B(H) which satisfies
1
Sl <w(a) <[A]| forall A € B(H).

See, for example, [5, Problem 218]. When w(A) = ||A]|, A is called normaloid. All
normal operators are normaloid, but not all normaloid operators are normal. It is an
interesting topic to characterize normaloid operators. When H is finite dimensional,
a characterization was given by Goldberg and Zwas in [4], which states that a matrix
A € M,, is normaloid if and only if there exists an integer 1 < k < n and a unitary matrix

U such that
AO «
A_U<O B)U ,

where A = diag(Ay,...,A4) with [A4;| =--- = |A&] = ||A|| and B € M,,_ is such that
I|B|l < ||A]|. When H is infinite dimensional, characterizations of normaloid operator
A can be found in [1], [9] and [10].
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2. Normaloid operators
Our main result is the following observation about normaloid operators.

THEOREM 1. An operator A € B(H) is normaloid if and only if there is a se-
quence of unit vectors (x,) in H such that

lim ||Ax,|| = ||A|l and lim [{(Ax,,xn)| = w(A). (%)

Proof. The necessity is clear. If A is normaloid, then every sequence of unit vec-
tors (x,) such that lim,_.|(Ax,,x,)| = w(A) = ||A]| satisfies lim, .. ||Ax,| = ||A]|.
This follows from

IA[] = [|Axa]| = [(Axn, x0)| = w(A) —& = [|A]| &,

for all € > 0 and n large enough.
To prove the sufficiency, assume without loss of generality that 1 = ||A|| > w(A) >
0 and that (x,) is a sequence of unit vectors satisfying (). For each n, let y, be a unit
vector in H such that (x,,y,) =0 and Ax, = a,x, + c,y,. Then from the hypothesis,
we have
lim [, = w(4) and lim (Ja, + [ef?) = A]> = 1.

Our aim is to show that lim,_...c, =0 so that w(A) =1=||A]|.
Consider the compression of A onto span{x,,y,}, realized as the 2 x 2 matrix

A = (Axp, Xn) (Ayn,xn) _ [ by
" \Axyn) Ay ) \cwda)

Passing to a subsequence if necessary, we may further assume that
_ (an by ab\)
we(ad) - (o) =

lim |a,| < lim w(A,) < w(A) = lim |ay],
n—soo n—so0 n—soo

From

and w(Ag) = lim, .. w(A,), we get w(Ag) = lim, . |a,| = |a|. Similarly, [|Aq]> =
ja? +le[> =1.
We claim that |b| = |¢|. For this purpose, consider the hermitian matrix

1 1 [ 2la|> @b+ac

ac+abad+ad
As the (1,1)-entry of H is |a|?,

1
of <ow(t) = (@0 +ap) ) <ol
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implying that w(H) = |a|®. Since H is hermitian, ||H|| = w(H) = |a|>. The (1, 2)-
entry of H must be zero. In other words, @c + ab = 0, from which the claim |b| = |c|
follows.

We now show that ¢ = 0. Assume on the contrary that ¢ # 0. Consider

oA la> 4+ |c|*> ab+cd
007N Batde |pP+dP?)

Since [|AjAol = [|Ao|* = |a|® + |c[?, the (2, 1)-entry of Ag is zero. In other words,
ba+dc = 0. Together with |b| = |c| > 0, we get |a| = |d|. Hence |b|* + |d|* =
|la|?+ |c|* =1 and consequently AjAg = I, the 2 x 2 identity matrix I>. This means Ag
is a unitary matrix. As the numerical radius of a unitary matrix is one, |a| =w(A¢) = 1.
It follows that ¢ = 0, a contradiction.

From our construction,

IA]| = Tim y/|an|* + |ca]* = lim [a,| = w(A),
n—00 n—oo

i.e., A is normaloid. [
We remark that even if A is normaloid, not every (x,) such that lim,_... ||Ax,|| =
|A] satisfies limy,_ e (Ax,,x,) = w(A). Let

1
%OO

—|
A= %OO

001

It is not hard to see that A is normaloid with ||A|| = w(A) = 1. However for x =
(1 0 0), ||Ax|]| = L =||A|| while |[(Ax,x)| # w(A).

Theorem 1 can be stated in terms of the maximal numerical range of the operator
A. The notion was introduced by Stampfli in [1 1] and defined by

Wo(A) = {4 : (Axn,x,) — A for unit vectors (x,) such that ||Ax,| — [|A]|}.

Call wo(A) = sup{|A|: X € Wy(A)} the maximal numerical radius of A. It is not hard
to see that Wy(A) C W(A)~, the closure of A, and therefore wy(A) < w(A). Some
other properties of wy(-) were given in [12]. We have

COROLLARY 1. Anoperator A € B(H) is normaloid if and only if wo(A) =w(A).

Proof. Suppose A is normaloid. Take a sequence (x,) of unit vectors such that
limy,—eo [ {Axy, xn)| = w(A) = ||A||. Then limy,—. ||Ax,|| = ||A||. Any accumulation point
of ((Ax,,x,)) belongs to Wy(A) and has modulus w(A). Since wyp(A) < w(A), we must
have wo(A) =w(A).

Now suppose that wo(A) = w(A). By definition of wy(A),

w(A) = wo(A) = lim [(Ax,,x)]

for a sequence of unit vectors (x,) such that ||Ax,|| — ||A||. Therefore A is normaloid,
by Theorem 1. [J
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3. The Davis-Wielandt radius
For any A € B(H), its Davis-Wielandt shell is the set
DW(A) = {({Ax,x), (Ax,Ax)) :x € H and ||x|| = 1}.

It was introduced by Davis in [3] and has been studied extensively as a generalization of
the numerical range. See, for example, [6], [7] and [8]. As in the case of the numerical
range, we define the Davis-Wielandt radius of A by

row(A) = sup{y/|(Ax.x) |2 + | (A"Ax.x) - x € H and x| =1}
= sup{1/|[{(Ax,x)|2 + ||[Ax||* : x € H and |]x|| = 1}.

It is easy to see that rpw(-) is not positive homogeneous and therefore cannot be a
norm on B(H). In spite of this, it has many interesting properties. A description of
rpw (+) -distance preservers was given in [2]. Here, we are interested in the following
inequalities, which will be stated without proof.

All? < rpw (4) < /(w(A)) + A%

Both inequalities in Proposition 1 can be attained by a nonzero A. Clearly,

PROPOSITION 1. Forevery A € B(H),

row (1) =/ (w(D))* + [[1]*.

For the other inequality, consider A = <8 (l)> . It is easy to see that ||A|| =1. To
compute rpw (A), write any unit vector in C> as (Acos6,usin@)’, where A and u
are complex units. Then
rpw (4)* = max{|(Ay,y) > + | 4y||* : y € H and ||| = 1}
= max{cos® §sin’ 0 +sin* 0 : 6 € R}
— max{sin’6 : 6 € R}.

Therefore rpw (A) = 1 = ||A||>.
One may wonder if (x,) is a sequence of unit vectors such that

tim /1) Al = row (4),

would it be also true that lim,,—... ||Ax,|| = ||A|| ? The following example shows that this

is not the case. Let
010
a={000] = (85)59@),
00r
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where r € (0,1). Then [|A]| = 1, which is attained only at unit multiples of x; =
(0 1 0)'. To compute rpw(A), we have by [8, Theorem 2.1 (e)],

row (A) :max{rDW ((8 é)) oW ((r))} = max {1,727},

Clearly, we can choose r large enough so that rpwy(-) is attained at x, = (0 0 1),
which is not a multiple of x; .

PROPOSITION 2. Suppose A € B(H). Then rpw(A) =/ (W(A))?+ ||A||* if and
only if A is normaloid.

Proof. Suppose that rpy (A) = /(w(A))? + ||A]|*. Take a sequence of unit vectors
(xn) such that

Tim /1,20 2+ A4 = row (4) =/ (w(4))2 + A1,

Then we have

lim ||Ax,|| = [A]| and  lim [{Ax,,x,)| = w(A).

By Theorem 1, A is normaloid.
Conversely, suppose A is normaloid. Take any sequence of unit vectors (x,) such
that limy, e | (Axn,x,)| = w(A) = ||A||. Then lim,_.||Ax,|| = ||A] and

tim /] (A, ) P+ Axall* = 1/ (w(4))2 + 1A%

n—00

As rpw(A) < /(w(A))? + ||A[|*, equality follows. [
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