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Abstract. Let H be a complex Hilbert space and B(H) the Banach space of all bounded linear
operators on H . For any A ∈ B(H) , let w(A) denote the numerical radius of A . Then A is
normaloid if w(A) = ‖A‖ . In this note, we show that A is normaloid if there is a sequence of
unit vectors (xn) such that limn→∞ ‖Axn‖= ‖A‖ and limn→∞ |〈Axn,xn〉|= w(A) simultaneously.
The result is then used to study the Davis-Wielandt radius.

1. Introduction

Let H be a complex Hilbert space and B(H) the Banach space of all bounded
linear operators on H . When dimH = n < ∞ , B(H) will be identified with Mn , the
space of all n×n complex matrices. For any operator A ∈ B(H) , the numerical range
and numerical radius of A are defined respectively by

W (A) = {〈Ax,x〉 : x is a unit vector in H } and w(A) = sup{|λ | : λ ∈W (A)}.

It is well-known that w(·) is a norm on B(H) which satisfies

1
2
‖A‖ � w(A) � ‖A‖ for all A ∈ B(H) .

See, for example, [5, Problem 218]. When w(A) = ‖A‖ , A is called normaloid. All
normal operators are normaloid, but not all normaloid operators are normal. It is an
interesting topic to characterize normaloid operators. When H is finite dimensional,
a characterization was given by Goldberg and Zwas in [4], which states that a matrix
A∈Mn is normaloid if and only if there exists an integer 1 � k � n and a unitary matrix
U such that

A = U

(
Λ 0
0 B

)
U∗,

where Λ = diag(λ1, . . . ,λk) with |λ1| = · · · = |λk| = ‖A‖ and B ∈ Mn−k is such that
‖B‖ < ‖A‖ . When H is infinite dimensional, characterizations of normaloid operator
A can be found in [1], [9] and [10].
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2. Normaloid operators

Our main result is the following observation about normaloid operators.

THEOREM 1. An operator A ∈ B(H) is normaloid if and only if there is a se-
quence of unit vectors (xn) in H such that

lim
n→∞

‖Axn‖ = ‖A‖ and lim
n→∞

|〈Axn,xn〉| = w(A). (∗)

Proof. The necessity is clear. If A is normaloid, then every sequence of unit vec-
tors (xn) such that limn→∞ |〈Axn,xn〉| = w(A) = ‖A‖ satisfies limn→∞ ‖Axn‖ = ‖A‖ .
This follows from

‖A‖ � ‖Axn‖ � |〈Axn,xn〉| � w(A)− ε = ‖A‖− ε,

for all ε > 0 and n large enough.
To prove the sufficiency, assume without loss of generality that 1 = ‖A‖� w(A) >

0 and that (xn) is a sequence of unit vectors satisfying (∗ ). For each n , let yn be a unit
vector in H such that 〈xn,yn〉 = 0 and Axn = anxn + cnyn . Then from the hypothesis,
we have

lim
n→∞

|an| = w(A) and lim
n→∞

(|an|2 + |cn|2) = ‖A‖2 = 1.

Our aim is to show that limn→∞ cn = 0 so that w(A) = 1 = ‖A‖ .
Consider the compression of A onto span{xn,yn} , realized as the 2×2 matrix

An =

(
〈Axn,xn〉 〈Ayn,xn〉
〈Axn,yn〉 〈Ayn,yn〉

)
=

(
an bn

cn dn

)
.

Passing to a subsequence if necessary, we may further assume that

An =
(

an bn

cn dn

)
→
(

a b
c d

)
= A0.

From
lim
n→∞

|an| � lim
n→∞

w(An) � w(A) = lim
n→∞

|an|,

and w(A0) = limn→∞ w(An) , we get w(A0) = limn→∞ |an| = |a| . Similarly, ‖A0‖2 =
|a|2 + |c|2 = 1.

We claim that |b| = |c| . For this purpose, consider the hermitian matrix

H =
1
2
(aA0 +aA∗

0) =
1
2

(
2|a|2 ab+ac

ac+ab ad +ad

)
.

As the (1,1)-entry of H is |a|2 ,

|a|2 � w(H) = w

(
1
2
(aA0 +aA∗

0)
)

� |a|2,
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implying that w(H) = |a|2 . Since H is hermitian, ‖H‖ = w(H) = |a|2 . The (1, 2)-
entry of H must be zero. In other words, ac+ab = 0, from which the claim |b| = |c|
follows.

We now show that c = 0. Assume on the contrary that c �= 0. Consider

A∗
0A0 =

(
|a|2 + |c|2 ab+ cd

ba+dc |b|2 + |d|2
)

.

Since ‖A∗
0A0‖ = ‖A0‖2 = |a|2 + |c|2 , the (2, 1)-entry of A0 is zero. In other words,

ba + dc = 0. Together with |b| = |c| > 0, we get |a| = |d| . Hence |b|2 + |d|2 =
|a|2+ |c|2 = 1 and consequently A∗

0A0 = I2 , the 2×2 identity matrix I2 . This means A0

is a unitary matrix. As the numerical radius of a unitary matrix is one, |a|= w(A0) = 1.
It follows that c = 0, a contradiction.

From our construction,

‖A‖ = lim
n→∞

√
|an|2 + |cn|2 = lim

n→∞
|an| = w(A),

i.e., A is normaloid. �
We remark that even if A is normaloid, not every (xn) such that limn→∞ ‖Axn‖ =

‖A‖ satisfies limn→∞〈Axn,xn〉 = w(A) . Let

A =

⎛
⎜⎝

1√
2

0 0
1√
2

0 0

0 0 1

⎞
⎟⎠ .

It is not hard to see that A is normaloid with ‖A‖ = w(A) = 1. However for x =
(1 0 0)t , ‖Ax‖ = 1 = ‖A‖ while |〈Ax,x〉| �= w(A) .

Theorem 1 can be stated in terms of the maximal numerical range of the operator
A . The notion was introduced by Stampfli in [11] and defined by

W0(A) = {λ : 〈Axn,xn〉 → λ for unit vectors (xn) such that ‖Axn‖→ ‖A‖}.
Call w0(A) = sup{|λ | : λ ∈W0(A)} the maximal numerical radius of A . It is not hard
to see that W0(A) ⊆ W (A)− , the closure of A , and therefore w0(A) � w(A) . Some
other properties of w0(·) were given in [12]. We have

COROLLARY 1. An operator A∈B(H) is normaloid if and only if w0(A) = w(A) .

Proof. Suppose A is normaloid. Take a sequence (xn) of unit vectors such that
limn→∞ |〈Axn,xn〉|= w(A) = ‖A‖ . Then limn→∞ ‖Axn‖= ‖A‖ . Any accumulation point
of (〈Axn,xn〉) belongs to W0(A) and has modulus w(A) . Since w0(A) � w(A) , we must
have w0(A) = w(A) .

Now suppose that w0(A) = w(A) . By definition of w0(A) ,

w(A) = w0(A) = lim
n→∞

|〈Axn,xn〉|
for a sequence of unit vectors (xn) such that ‖Axn‖→ ‖A‖ . Therefore A is normaloid,
by Theorem 1. �
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3. The Davis-Wielandt radius

For any A ∈ B(H) , its Davis-Wielandt shell is the set

DW (A) = {(〈Ax,x〉,〈Ax,Ax〉) : x ∈ H and ‖x‖ = 1}.

It was introduced by Davis in [3] and has been studied extensively as a generalization of
the numerical range. See, for example, [6], [7] and [8]. As in the case of the numerical
range, we define the Davis-Wielandt radius of A by

rDW (A) = sup{
√
|〈Ax,x〉|2 + |〈A∗Ax,x〉|2 : x ∈ H and ‖x‖ = 1}

= sup{
√
|〈Ax,x〉|2 +‖Ax‖4 : x ∈ H and ‖x‖ = 1}.

It is easy to see that rDW (·) is not positive homogeneous and therefore cannot be a
norm on B(H) . In spite of this, it has many interesting properties. A description of
rDW (·)-distance preservers was given in [2]. Here, we are interested in the following
inequalities, which will be stated without proof.

PROPOSITION 1. For every A ∈ B(H) , ‖A‖2 � rDW (A) �
√

(w(A))2 +‖A‖4 .

Both inequalities in Proposition 1 can be attained by a nonzero A . Clearly,

rDW (I) =
√

(w(I))2 +‖I‖4.

For the other inequality, consider A =
(

0 1
0 0

)
. It is easy to see that ‖A‖ = 1. To

compute rDW (A) , write any unit vector in C2 as (λ cosθ ,μ sinθ )t , where λ and μ
are complex units. Then

rDW (A)2 = max{|〈Ay,y〉|2 +‖Ay‖4 : y ∈ H and ‖y‖ = 1}
= max{cos2 θ sin2 θ + sin4 θ : θ ∈ R}
= max{sin2 θ : θ ∈ R}.

Therefore rDW (A) = 1 = ‖A‖2 .
One may wonder if (xn) is a sequence of unit vectors such that

lim
n→∞

√
|〈Axn,xn〉|2 +‖Axn‖4 = rDW (A),

would it be also true that limn→∞ ‖Axn‖= ‖A‖? The following example shows that this
is not the case. Let

A =

⎛
⎝0 1 0

0 0 0
0 0 r

⎞
⎠=

(
0 1
0 0

)
⊕ (r),
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where r ∈ (0,1) . Then ‖A‖ = 1, which is attained only at unit multiples of x1 =
(0 1 0)t . To compute rDW (A) , we have by [8, Theorem 2.1 (e)],

rDW (A) = max

{
rDW

((
0 1
0 0

))
,rDW ((r))

}
= max

{
1,
√

r2 + r4
}

.

Clearly, we can choose r large enough so that rDW (·) is attained at x2 = (0 0 1)t ,
which is not a multiple of x1 .

PROPOSITION 2. Suppose A ∈ B(H) . Then rDW (A) =
√

(w(A))2 +‖A‖4 if and
only if A is normaloid.

Proof. Suppose that rDW (A)=
√

(w(A))2 +‖A‖4 . Take a sequence of unit vectors
(xn) such that

lim
n→∞

√
|〈Axn,xn〉|2 +‖Axn‖4 = rDW (A) =

√
(w(A))2 +‖A‖4.

Then we have

lim
n→∞

‖Axn‖ = ‖A‖ and lim
n→∞

|〈Axn,xn〉| = w(A).

By Theorem 1, A is normaloid.
Conversely, suppose A is normaloid. Take any sequence of unit vectors (xn) such

that limn→∞ |〈Axn,xn〉| = w(A) = ‖A‖ . Then limn→∞ ‖Axn‖ = ‖A‖ and

lim
n→∞

√
|〈Axn,xn〉|2 +‖Axn‖4 =

√
(w(A))2 +‖A‖4.

As rDW (A) �
√

(w(A))2 +‖A‖4 , equality follows. �
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