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ON DECOMPOSITION OF OPERATORS

HAVING Γ3 AS A SPECTRAL SET

SOURAV PAL

Abstract. The symmetrized polydisc of dimension three is the set

Γ3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| � 1 , i = 1,2,3} ⊆ C
3 .

A triple of commuting operators for which Γ3 is a spectral set is called a Γ3 -contraction. We
show that every Γ3 -contraction admits a decomposition into a Γ3 -unitary and a completely non-
unitary Γ3 -contraction. This decomposition parallels the canonical decomposition of a contrac-
tion into a unitary and a completely non-unitary contraction. We also find new characterizations
for the set Γ3 and Γ3 -contractions.
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