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Abstract. For integers s,k with s � 0 and k � 0 , we define a class of lower triangular Toeplitz

matrices U
(s,k)

n of type (s,k) , whose non-zero entries are the classical Horadam numbers

U (a,b)
i . In this paper, we derive a convolution formula containing the Horadam numbers. Us-

ing this formula, we obtain several combinatorial identities involving the Horadam numbers and
the generalized Fibonacci numbers. In addition, we derive the inverse of the lower triangular

Toeplitz matrix U
(0,k)

n and the Moore-Penrose inverse of the strictly lower triangular Toeplitz

matrix U
(s,k)

n (s < 0) by utilizing only the Horadam numbers.

1. Introduction

Let C m×n be the set of m×n complex matrices, for every A ∈C m×n , the Moore-
Penrose inverse of matrix A is the unique n×m matrix A † with the following four
properties:

A A †A = A , A †A A † = A †, (A A †)∗ = A A †, (A †A )∗ = A †A ,

where A ∗ denotes the conjugate transpose of A .
The Moore-Penrose inverse, also called pseudoinverse, is one fundamental con-

cept in matrix theory, and there are several methods for its computation [6, 3]. The
most commonly implemented method in programming languages is the Singular Value
Decomposition (SVD) method, that is implemented, for example, in the “pinv” func-
tion from Matlab. This method although is very accurate, but time consuming when
the matrix is large. There also exist several other well-known means including the Gre-
ville’s algorithm, the full rank QR factorization by Gram-Schmidt orthonormalization
(GSO), and iterative methods of various orders [6].

Up to now, many kinds of generalizations of the Fibonacci and Lucas sequences
have been described and studied in the literature [4, 5, 15, 13]. In this paper, we aim
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to use the classical Horadam sequence {U (a,b)
n }n∈N for the generalization, which is

defined as [13],

U (a,b)
n = AU (a,b)

n−1 +BU (a,b)
n−2 , U (a,b)

0 = a, U (a,b)
1 = b, (1)

where a,b ∈ R and A2 + 4B > 0. Obviously, if we choose A = B = 1 in (1), then we
obtain the well-known generalized Fibonacci sequence {Gn}n∈N [14].

For the Horadam sequence {U (a,b)
n }n∈N , the following generalization of the Bi-

net’s formula for the Fibonacci number holds [13],

U (a,b)
n = c1αn + c2β n, (2)

where

c1 =
a(A2 +4B)+ (2b−aA)

√
A2 +4B

2(A2 +4B)
, c2 =

a(A2 +4B)− (2b−aA)
√

A2 +4B
2(A2 +4B)

,

α =
A+

√
A2 +4B
2

, β =
A−√

A2 +4B
2

.

The Toeplitz matrices belong to a family of special matrices of great interests,
they are arised in scientific computing and engineering such as image processing, time
series analysis and the control theory [2, 7]. In recent years, the investigation of some
special Toeplitz matrices attracts much attention. Akbulak and Bozkurt [1] found lower
and upper bounds for the spectral norms of Toeplitz matrices with entries the classical
Fibonacci and Lucas numbers. Shen [11] generalized the results of [1]. Lee et al. [8, 9]
gave the inverse and Cholesky factorization of the n× n Fibonacci matrix Fn = [ fi, j]
(i, j = 1,2, · · · ,n) whose entries are defined as

fi, j =

{
Fi− j+1, if i− j +1 � 0,

0, if i− j +1 < 0.
(3)

They also studied the relations between the Pascal matrix and the Fibonacci matrix.
Analogous to the Fibonacci matrix, the Lucas matrix Ln = [li, j] (i, j = 1,2, · · · ,n) of
the order n is defined as

li, j =

{
Li− j+1, if i− j � 0,

0, if i− j < 0.
(4)

The authors in [16] investigated the inverse of the matrix Ln and the relations
between the Lucas matrix and the generalized Pascal matrices.

Obviously, the matrices given in expressions (3) and (4) are lower triangular Toeplitz

matrices. Further, Stanimirović et al. [13] defined an n×n Toeplitz matrix U
(a,b,s)

n =
[u(a,b,s)

i, j ] (i, j = 1,2, · · · ,n) of type s , where

u(a,b,s)
i, j =

{
U (a,b)

i− j+1, if i− j + s � 0,

0, if i− j + s < 0.
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When A = B = 1, the matrix U
(a,b,s)

n is the generalized Fibonacci matrix F
(a,b,s)
n

of type s , they [13] also derived the inverse of the matrix U
(a,b,0)

n , and considered

correlations between the matrix U
(a,b,0)

n and the generalized Pascal matrices of the
first and the second kinds. In addition, Shen and He [12] presented an explicit formula

for the Moore-Penrose inverse of the matrix U
(a,b,−1)

n , which generalized the main
results from [10].

We organize this paper as follows. In Section 2, A convolution formula containing

the Horadam numbers U (a,b)
i is given. Using this formula, we get several combinatorial

identities involving the Horadam numbers and the generalized Fibonacci numbers. In

Section 3, we define a class of lower triangular Toeplitz matrices U
(s,k)

n of type (s,k) ,
whose non-zero elements are the Horadam numbers. Afterwards, we derive the inverse
of the lower triangular Toeplitz matrix U

(0,k)
n and the Moore-Penrose inverse of the

strictly lower triangular Toeplitz matrix U
(s,k)

n (s < 0) , which are only related to the
Horadam numbers. As the special cases of our main result, we obtain several results
from [12, 13, 14] as corollaries.

2. Combinatorial identities based on the convolution

In this section, we first introduce the notion of the convolution, then obtain a con-
volution formula containing the Horadam numbers U (a,b)

i . Using this convolution for-
mula, we obtain some known combinatorial identities involving the Horadam numbers
and the generalized Fibonacci numbers from [13, 14].

Let u = {u1,u2, · · · ,un} and v = {v1,v2, · · · ,vn} be two lists with n elements, then
the convolution ∗ of u and v is

u ∗ v =
n

∑
i=1

uivn−i+1.

In the next theorem, we present a convolution formula of a list containing the

Horadam numbers U (a,b)
i with corresponding powers of −BU

(a,b)
m

U(a,b)
m+1

, where m � 0 and

U (a,b)
m+1 �= 0. For convenience, we use the following notation

Con(r,m) :=
{
U (a,b)

m+1 , · · · ,U (a,b)
m+r−1

}
∗
{

1,
−BU (a,b)

m

U (a,b)
m+1

, · · · ,
(−BU (a,b)

m

U (a,b)
m+1

)r−2
}

.

THEOREM 2.1. Let m, r be two integers with m � 0 and r � 2 , and {U (a,b)
n }n∈N

be the Horadam sequence. If B �= 0, U (a,b)
m+1 �= 0 and α,β �= −BU

(a,b)
m

U
(a,b)
m+1

, then we have

Con(r,m) = U (a,b)
m+1 · U

(a,b)
m U (a,b)

m+r −U (a,b)
m+1 U (a,b)

m+r−1

U (a,b)
m U (a,b)

m+2 − [U (a,b)
m+1 ]2

. (5)
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Proof. Obviously (5) is right if U (a,b)
m = 0. So we consider the case U (a,b)

m �= 0

in the sequel. Since α,β �= −BU
(a,b)
m

U(a,b)
m+1

, then applying (2) and simple transformations, we

obtain

Con(r,m) =
r−2

∑
l=0

U (a,b)
l+m+1

(
−BU (a,b)

m

U (a,b)
m+1

)r−l−2

=
r−2

∑
l=0

(c1α l+m+1 + c2β l+m+1)

(
−BU (a,b)

m

U (a,b)
m+1

)r−l−2

= c1αm+1

[
−BU (a,b)

m

U (a,b)
m+1

]r−2
r−2

∑
l=0

(
−αU (a,b)

m+1

BU (a,b)
m

)l

+c2β m+1

[
−BU (a,b)

m

U (a,b)
m+1

]r−2
r−2

∑
l=0

(
−βU (a,b)

m+1

BU (a,b)
m

)l

= BU (a,b)
m

[
−BU (a,b)

m

U (a,b)
m+1

]r−2

⎛
⎜⎜⎜⎝c1αm+1

1−
[
−αU(a,b)

m+1

BU(a,b)
m

]r−1

BU (a,b)
m + αU (a,b)

m+1

+ c2β m+1
1−
[
−βU(a,b)

m+1

BU(a,b)
m

]r−1

BU (a,b)
m + βU (a,b)

m+1

⎞
⎟⎟⎟⎠

=
c1

[
(−1)r−2αm+1 · (BU(a,b)

m )r−1

(U(a,b)
m+1 )r−2

+ αm+rU (a,b)
m+1

]
(BU (a,b)

m + βU (a,b)
m+1 )

(BU (a,b)
m + αU (a,b)

m+1 )(BU (a,b)
m + βU (a,b)

m+1 )

+
c2

[
(−1)r−2β m+1 · (BU

(a,b)
m )r−1

(U(a,b)
m+1 )r−2

+ β m+rU (a,b)
m+1

]
(BU (a,b)

m + αU (a,b)
m+1 )

(BU (a,b)
m + αU (a,b)

m+1 )(BU (a,b)
m + βU (a,b)

m+1 )
.

From αβ = −B , α + β = A , we get

(
BU (a,b)

m + αU (a,b)
m+1

)(
BU (a,b)

m + βU (a,b)
m+1

)
= B

(
U (a,b)

m U (a,b)
m+2 − [U (a,b)

m+1 ]2
)

.

The numerator of Con(r,m) can be transformed after simple algebraic transforma-
tions in the form

(−1)r−2c1αm+1
(

(BU (a,b)
m )r

(U (a,b)
m+1 )r−2

+β
(BU (a,b)

m )r−1

(U (a,b)
m+1 )r−3

)
+c1αm+r

(
BU (a,b)

m+1 U (a,b)
m +β [U (a,b)

m+1 ]2
)

+(−1)r−2c2β m+1
(

(BU (a,b)
m )r

(U (a,b)
m+1 )r−2

+α
(BU (a,b)

m )r−1

(U (a,b)
m+1 )r−3

)
+c2β m+r

(
BU (a,b)

m+1 U (a,b)
m +α[U (a,b)

m+1 ]2
)

.
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Applying Binet’s formula (2), then we obtain

Con(r,m) =
1

B(U (a,b)
m U (a,b)

m+2 − [U (a,b)
m+1 ]2)

×
[
(−1)r−2

(
U (a,b)

m+1
(BU (a,b)

m )r

(U (a,b)
m+1 )r−2

−BU (a,b)
m · (BU (a,b)

m )r−1

(U (a,b)
m+1 )r−3

)

+BU (a,b)
m+r U (a,b)

m+1 U (a,b)
m −BU (a,b)

m+r−1[U
(a,b)
m+1 ]2

]

= U (a,b)
m+1 ·U

(a,b)
m U (a,b)

m+r −U (a,b)
m+1U (a,b)

m+r−1

U (a,b)
m U (a,b)

m+2 − [U (a,b)
m+1 ]2

.

Thus, the proof is completed. �
If we take m = 0 in Theorem 2.1, then we obtain

COROLLARY 2.2. [13] For the Horadam sequence {U (a,b)
n }n∈N satisfying b �= 0 ,

α,β �= −aB
b , and for two arbitrary integers i, j satisfying i � j +2 , we have

(a2B+abA−b2)
i

∑
k= j+2

(−1)k− j a
k− j−2Bk− j−1

bk− j+1 U (a,b)
i−k+1 =

aB
b2 U (a,b)

i− j − B
b
U (a,b)

i− j−1. (6)

Proof. Obviously, (6) is valid for B = 0. In the case B �= 0, we select m = 0 in
Theorem 2.1, then it follows that

r

∑
l=2

U (a,b)
l−1

(−aB
b

)r−l

=
b
(
aU (a,b)

r −bU (a,b)
r−1

)
a2B+abA−b2 .

If r = i− j , then together with some simple transformations, the result can be
derived by applying identity

r

∑
l=2

U (a,b)
l−1

(−aB
b

)r−l

=
i

∑
k= j+2

U (a,b)
i−k+1

(−aB
b

)k− j−2

.

So we complete the proof. �
If we take A = B = 1 in Theorem 2.1, then we obtain the following combinatorial

identity involving the generalized Fibonacci numbers Gi .

COROLLARY 2.3. [14] Let m, r be two integers with m � 0 and r � 2 , and
{Gn}n∈N be the generalized Fibonacci sequence. If Gm+1 �= 0 and α,β �= −Gm

Gm+1
, then

we have

r

∑
l=2

Gl+m−1

(−Gm

Gm+1

)r−l

= Gm+1 · GmGm+r −Gm+1Gm+r−1

GmGm+2 − (Gm+1)2 .
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3. Inverse and Moore-Penrose inverse of matrices U
(s,k)

n

In this section, we will study a class of lower triangular Toeplitz matrices U
(s,k)

n

of type (s,k) , whose non-zero entries are the Horadam numbers satisfying U (a,b)
k+1 �= 0.

DEFINITION 3.1. Let s, k be two integers with s � 0 and k � 0, and {U (a,b)
n }n∈N

be the Horadam sequence satisfying U (a,b)
k+1 �= 0. The n× n matrix U

(s,k)
n = [u(s,k)

i, j ]
(i, j = 1,2, · · · ,n) of type (s,k) is defined as

u(s,k)
i, j =

{
U (a,b)

i− j+s+k+1, if i− j + s � 0,

0, if i− j + s < 0.

Obviously, if A = B = 1, the matrix U
(s,k)

n is just the generalized Fibonacci matrix

G
(s,k)
n of type (s,k) reported in [14]. If s = 0, we use notation U

(k)
n := U

(0,k)
n . Bearing

this in mind together with the specific structure of this matrix, U
(s,k)

n can be rewritten
as the following block form

U
(s,k)

n =

(
O(−s)×(n+s) O(−s)×(−s)

U
(k)

n+s O(n+s)×(−s)

)
,

where Op×q denotes the p×q zero matrix, and

U
(k)

n+s =

⎛
⎜⎜⎜⎜⎝

U (a,b)
k+1 0 · · · 0

U (a,b)
k+2 U (a,b)

k+1 · · · 0
...

...
. . .

...

U (a,b)
k+n+s U (a,b)

k+n+s−1 · · · U (a,b)
k+1

⎞
⎟⎟⎟⎟⎠ . (7)

LEMMA 3.2. Let r be an arbitrary positive integer, {U (a,b)
n }n∈N be the Horadam

sequence with U (a,b)
k+1 �= 0 . If α = −BU

(a,b)
k

U(a,b)
k+1

or β = −BU
(a,b)
k

U(a,b)
k+1

, then we have

U (a,b)
k+1 U (a,b)

r+k+1−U (a,b)
k+2 U (a,b)

r+k = 0. (8)

Proof. Obviously (8) is valid for B = 0. In the rest we consider B �= 0. If α =
−BU

(a,b)
k

U(a,b)
k+1

, then we have

A+
√

A2 +4B
2

=
−BU (a,b)

k

U (a,b)
k+1

,

After applying simple algebraic transformations, we get

1 =
B(U (a,b)

k )2

(U (a,b)
k+1 )2

+
AU (a,b)

k

U (a,b)
k+1

=
U (a,b)

k (BU (a,b)
k +AU (a,b)

k+1 )

(U (a,b)
k+1 )2

=
U (a,b)

k U (a,b)
k+2

(U (a,b)
k+1 )2

.



INVERSE AND MOORE-PENROSE INVERSE OF TOEPLITZ MATRICES 935

Hence U (a,b)
k U (a,b)

k+2 = (U (a,b)
k+1 )2 .

On the other hand, since α + β = A and α −β =
√

A2 +4B , we obtain

c1 =
a
2

+
2b−aA

2
√

A2 +4B
=

a
2

+
2b−a(α + β )

2(α −β )
=

b−aβ
α −β

,

c2 =
a
2
− 2b−aA

2
√

A2 +4B
=

a
2
− 2b−a(α + β )

2(α −β )
=

aα −b
α −β

.

By applying Binet’s formula (2), one has

U (a,b)
k U (a,b)

k+2 −
(
U (a,b)

k+1

)2
= c1c2(αβ )k(α −β )2 = (−B)k(a2B+abA−b2).

Therefore it follows that

U (a,b)
k+1 U (a,b)

r+k+1−U (a,b)
k+2 U (a,b)

r+k = c1c2(αβ )k+1(α −β )(αr−1−β r−1)

=
(−B)k+1(a2B+abA−b2)√

A2 +4B
(αr−1 −β r−1) = 0.

Similarly, we can verify the validity of (8) for β = −BU
(a,b)
k

U(a,b)
k+1

. Thus the proof is com-

pleted. �

THEOREM 3.3. Let {U (a,b)
n }n∈N be the Horadam sequence satisfying U (a,b)

k+1 �= 0 .

Then the inverse of the matrix U
(k)

n is the matrix Rn = [ri, j]n×n defined by

ri, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)kBk+1(a2B+abA−b2)

(U(a,b)
k+1 )3

(
−BU

(a,b)
k

U
(a,b)
k+1

)i− j−2

, if i > j +1,

− U
(a,b)
k+2

(U(a,b)
k+1 )2

, if i = j +1,

1

U
(a,b)
k+1

, if i = j,

0, otherwise,

where k is an arbitrary integer satisfying 0 � k < n.

Proof. Let us denote U
(k)

n = [u(k)
i, j ] , and Hn = [hi, j] as the matrix product U

(k)
n Rn .

Clearly hi, j = 0 for i < j .
For the case i = j , we get

hi, j = u(k)
i,i ri,i = U (a,b)

k+1 · 1

U (a,b)
k+1

= 1.

For i = j +1, we have

hi, j = u(k)
j+1, jr j, j +u(k)

j+1, j+1r j+1, j

= U (a,b)
k+2 · 1

U (a,b)
k+1

+U (a,b)
k+1 ·

[
− U (a,b)

k+2

(U (a,b)
k+1 )2

]

= 0.
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For i > j +1, we obtain

hi, j = u(k)
i, j r j, j +u(k)

i, j+1r j+1, j +
i− j

∑
l=2

u(k)
i,i−l+2ri−l+2, j

=
u(k)

i, j

U (a,b)
k+1

− U (a,b)
k+2

(U (a,b)
k+1 )2

u(k)
i, j+1

+
(−1)kBk+1(a2B+abA−b2)

(U (a,b)
k+1 )3

i− j

∑
l=2

u(k)
i,i−l+2

(−BU (a,b)
k

U (a,b)
k+1

)i− j−l

.

Let r = i− j . Then we have u(k)
i, j = U (a,b)

k+r+1 and u(k)
i, j+1 = U (a,b)

k+r , hence

hi, j =
U (a,b)

k+r+1

U (a,b)
k+1

− U (a,b)
k+2

(U (a,b)
k+1 )2

U (a,b)
k+r

+
(−1)kBk+1(a2B+abA−b2)

(U (a,b)
k+1 )3

r

∑
l=2

U (a,b)
l+k−1

(−BU (a,b)
k

U (a,b)
k+1

)r−l

=
U (a,b)

k+1 U (a,b)
k+r+1 −U (a,b)

k+2 U (a,b)
k+r

(U (a,b)
k+1 )2

+
(−1)kBk+1(a2B+abA−b2)

(U (a,b)
k+1 )3

Con(r,k).

Obviously hi, j = 0 for B = 0. If α = −BU
(a,b)
k

U(a,b)
k+1

or β = −BU
(a,b)
k

U(a,b)
k+1

, by applying (8), one

can verify hi, j = 0.

If B �= 0 and α,β �= −BU(a,b)
k

U
(a,b)
k+1

, using the result of Theorem 2.1, we obtain

hi, j =
U (a,b)

k+1 U (a,b)
k+r+1−U (a,b)

k+2 U (a,b)
k+r

(U (a,b)
k+1 )2

+
(−1)kBk+1(a2B+abA−b2)

(U (a,b)
k+1 )3

·
(

U (a,b)
k+1 [U (a,b)

k U (a,b)
k+r −U (a,b)

k+1 U (a,b)
k+r−1]

U (a,b)
k U (a,b)

k+2 − [U (a,b)
k+1 ]2

)

=
U (a,b)

k+1 U (a,b)
k+r+1−U (a,b)

k+2 U (a,b)
k+r

(U (a,b)
k+1 )2

+
B(U (a,b)

k U (a,b)
k+r −U (a,b)

k+1 U (a,b)
k+r−1)

(U (a,b)
k+1 )2

=
U (a,b)

k+1 (U (a,b)
k+r+1 −BU (a,b)

k+r−1)−U (a,b)
k+r (U (a,b)

k+2 −BU (a,b)
k )

(U (a,b)
k+1 )2

= 0.

So we prove that Hn is the n×n identity matrix. Similarly, one can verify RnU
(k)

n is
also the identity matrix. Thus, the proof is completed. �
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If we take k = 0 in Theorem 3.3, we obtain the inverse of the nonsingular matrix

U
(a,b,0)

n .

COROLLARY 3.4. [13] Let {U (a,b)
n }n∈N be the Horadam sequence satisfying b �=

0 . Then the inverse of the matrix U
(a,b,0)

n is the matrix Xn = [xi, j]n×n defined by

xi, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−1)i− j · a2B+abA−b2

bi− j+1 ai− j−2Bi− j−1, if i > j +1,

− aB+bA
b2 , if i = j +1,

1
b , if i = j,

0, otherwise.

If we take A = B = 1 in Theorem 3.3, we get the inverse of the matrix G
(k)
n

involving the generalized Fibonacci numbers.

COROLLARY 3.5. [14] Let {Gn}n∈N be the generalized Fibonacci sequence sat-

isfying Gk+1 �= 0 . Then the inverse of the matrix G
(k)
n is the matrix Yn = [yi, j]n×n

defined by

yi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k(a2+ab−b2)
(Gk+1)3

(
−Gk
Gk+1

)i− j−2

, if i > j +1,

− Gk+2
(Gk+1)2

, if i = j +1,

1
Gk+1

, if i = j,

0, otherwise,

where k is an arbitrary integer satisfying 0 � k < n.

At last, we derive the Moore-Penrose inverse for the singular matrix U
(s,k)

n (s < 0)
given by Definition 3.1.

THEOREM 3.6. Let s < 0 , k � 0 be arbitrary integers, and {U (a,b)
n }n∈N be the

Horadam sequence satisfying U (a,b)
k+1 �= 0 . Then the Moore-Penrose inverse of the matrix

U
(s,k)

n is the n×n block matrix Qn given by

Qn =
(

O(n+s)×(−s) Rn+s

O(−s)×(−s) O(−s)×(n+s)

)
,

where Rn+s = [ri, j] is an (n+ s)× (n+ s) matrix given by

ri, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)kBk+1(a2B+abA−b2)

(U(a,b)
k+1 )3

(
−BU

(a,b)
k

U(a,b)
k+1

)i− j−2

, if i > j +1,

− U
(a,b)
k+2

(U(a,b)
k+1 )2

, if i = j +1,

1

U(a,b)
k+1

, if i = j,

0, otherwise.
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Proof. Since the matrix U
(s,k)

n can be expressed as

U
(s,k)

n =

(
O(−s)×(n+s) O(−s)×(−s)

U
(k)

n+s O(n+s)×(−s)

)
,

where U
(k)

n+s is given by (7). Hence the Moore-Penrose inverse of the matrix U
(s,k)

n has
the following representation

[U (s,k)
n ]† =

(
O(n+s)×(−s) [U (k)

n+s]
−1

O(−s)×(−s) O(−s)×(n+s)

)
.

Thus, we get the desired result by using the result of Theorem 3.3. �
If we take s = −1, k = 1 in Theorem 3.6, we obtain the Moore-Penrose inverse

of the matrix U
(a,b,−1)

n .

COROLLARY 3.7. [12] Let {U (a,b)
n }n∈N be the Horadam sequence satisfying

aB+ bA �= 0 . Then the Moore-Penrose inverse of the matrix U
(a,b,−1)

n is the matrix
Vn = [vi, j]n×n defined by

vi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(−bB)i− j−1 · B2(a2B+abA−b2)
(aB+bA)i− j+2 , if i > j, i �= n, j �= 1,

− aAB+(A2+B)b
(aB+bA)2 , if i = j, i /∈ {1,n},

1
aB+bA , if i+1 = j,

0, otherwise.

If we take A = B = 1 in Theorem 3.6, we get the Moore-Penrose inverse of the

singular matrix G
(s,k)
n (s < 0) .

COROLLARY 3.8. [14] Let s < 0 , k � 0 be arbitrary integers, and {Gn}n∈N be
the generalized Fibonacci sequence satisfying Gk+1 �= 0 . Then the Moore-Penrose of

the matrix G
(s,k)
n is the n×n block matrix Wn given by

Wn =
(

O(n+s)×(−s) Yn+s

O(−s)×(−s) O(−s)×(n+s)

)
,

where Yn+s = [yi, j] is an (n+ s)× (n+ s) matrix defined by

yi, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k(a2+ab−b2)
(Gk+1)3

(
−Gk
Gk+1

)i− j−2

, if i > j +1,

− Gk+2
(Gk+1)2

, if i = j +1,

1
Gk+1

, if i = j,

0, otherwise.
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