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Abstract. For a unit-norm frame F = { fi}k
i=1 in R

n , a scaling is a vector c = (c(1), . . . ,c(k)) ∈
R

k
�0 such that {√c(i) fi}k

i=1 is a Parseval frame in R
n . If such a scaling exists, F is said to be

scalable. A scaling c is a minimal scaling if { fi : c(i) > 0} has no proper scalable subframe.
In this paper, we provide an algorithm to find all possible contact points for the John’s decom-
position of the identity by applying the b-rule algorithm to a linear system which is associated
with a scalable frame. We also give an estimate of the number of minimal scalings of a scalable
frame. We provide a characterization of when minimal scalings are affinely dependent. Using
this characterization, we can conclude that all strict scalings c = (c(1), . . . ,c(k)) ∈ R

k
>0 of F

have the same structural property. That is, the collections of all tight subframes of strictly scaled
frames are the same up to a permutation of the frame elements. We also present the uniqueness
of orthogonal partitioning property of any set of minimal scalings, which provides all possible
tight subframes of a given scaled frame.
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