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Abstract. For a unit-norm frame F = { fi}k
i=1 in Rn , a scaling is a vector c = (c(1), . . . ,c(k)) ∈

Rk
�0 such that {√c(i) fi}k

i=1 is a Parseval frame in Rn . If such a scaling exists, F is said to be
scalable. A scaling c is a minimal scaling if { fi : c(i) > 0} has no proper scalable subframe.
In this paper, we provide an algorithm to find all possible contact points for the John’s decom-
position of the identity by applying the b-rule algorithm to a linear system which is associated
with a scalable frame. We also give an estimate of the number of minimal scalings of a scalable
frame. We provide a characterization of when minimal scalings are affinely dependent. Using
this characterization, we can conclude that all strict scalings c = (c(1), . . . ,c(k)) ∈ Rk

>0 of F
have the same structural property. That is, the collections of all tight subframes of strictly scaled
frames are the same up to a permutation of the frame elements. We also present the uniqueness
of orthogonal partitioning property of any set of minimal scalings, which provides all possible
tight subframes of a given scaled frame.

1. Introduction

A frame in Rn is a spanning set, and a tight frame { fi }k
i=1 with k � n is a frame

which provides an orthonormal basis-like representation, i.e., there exists a positive
constant λ such that for any f in Rn,

f = λ
k

∑
i=1

〈 f , fi〉 fi. (1)

If λ = 1 in (1) then { fi }k
i=1 is said to be a Parseval frame. Many early applications of

tight frames were in signal processing. However, nowadays the theory and applications
of tight frames have gone beyond pure and applied mathematics to other areas such as
engineering, computer science, and medicine. Applications of tight frames are growing
because tight frames are redundant systems that have simple reconstruction properties
mentioned above and provide optimal numerical stability. Tight frames can capture
signal characteristics and are flexible for achieving better approximation and other de-
sirable features. One of the active areas of research is the construction of tight frames.
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Various methods of constructing tight frames have been developed for specific types
of frames, including unit-norm tight frames, equiangular tight frames, tight frames of
vectors having a given sequence of norms, tight fusion frames, sparse equal norm tight
frames using spectral tetris, etc [3, 17, 6, 5, 13]. In the last couple of years the theme
of scalable frames have been developed as a method of constructing tight frames from
general frames by manipulating the length of frame vectors. Scalable frames maintain
erasure resilience and sparse expansion properties of frames [15, 4, 14, 9, 8]. In this pa-
per, we further explore scalable frames. It is known that the set of all scalings of a frame
forms a convex polytope whose vertices correspond to the minimal scalings. In this pa-
per, we give a method to find a subset of contact points which provides a decomposition
of the identity, and an estimate for the number of minimal scalings of a scalable frame.
We provide a characterization of when minimal scalings are affinely dependent. Using
this characterization, we can conclude that all strict scalings c = (c(1), . . . ,c(k)) ∈ Rk

>0
of F have same tight subframes. We also present the uniqueness of orthogonal parti-
tioning property of any set of minimal scalings, which provides all possible tight sub-
frames of a given scaled frame.

2. Preliminaries

In this section we recall basic properties of tight frames and scalable frames in
Rn . We present a few results that will be used later in the paper. For basic facts about
scalable frames we refer to [15, 4, 14, 9, 8, 7].

DEFINITION 2.1. A sequence { fi}k
i=1 ⊆Rn , is a frame for Rn with frame bounds

0 < A � B < ∞ if for all f ∈ Rn ,

A|| f ||2 �
k

∑
i=1

|〈 f , fi〉|2 � B|| f ||2. (2)

Throughout this paper, we assume that frame elements are nonzero vectors. Often
it is useful to express frames both as sequences as well as matrices. Therefore we abuse
notation and denote a frame F = { fi}k

i=1 as a n× k matrix F whose k column vectors
are fi , i = 1, . . . ,k .

A unit-norm frame is a frame such that each vector in the frame has norm one. A
frame { fi}i∈I is said to be λ -tight if λ = A = B in (2) and is said to be Parseval if
A = B = 1.

We note that a frame F is a Parseval frame if and only if

FFt = In. (3)

Let {vi}i∈I be a set of vectors in Rk . The set of all convex combinations of {vi}i∈I

is called the convex hull of {vi}i∈I and is defined as

conv{vi}i∈I :=

{
∑
i∈I

αivi : αi � 0,∑
i∈I

αi = 1

}
.
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We also note that a polytope in Rk is a convex hull of finitely many points in Rk and
the relative interior of conv{vi}i∈I , denoted (conv{vi}i∈I)◦ , is defined as

(conv{vi}i∈I)◦ :=

{
∑
i∈I

αivi : αi > 0,∑
i∈I

αi = 1

}
. (4)

A face of a convex polytope is any intersection of the polytope with a half space
such that none of the relative interior points of the polytope lie on the boundary of the
half space. If a polytope is k -dimensional, its facets are the (k−1)-dimensional faces,
its edges are the 1-dimensional faces, and its vertices are the 0-dimensional faces.

The affine hull of {vi}i∈I is defined to be

aff{vi}i∈I :=

{
∑
i∈I

αivi : ∑
i∈I

αi = 1

}
.

The set {vi}i∈I is affinely dependent if there exists i ∈ I such that vi ∈ aff{v j} j∈I\{i} .
This is equivalent to the existence of αi , i ∈ I not all zeros such that both ∑i∈I αivi = 0
and ∑i∈I αi = 0.

Let w = (w(1), . . . ,w(k))∈Rk . The support of w , denoted by supp(w) , is defined
as {i : w(i) �= 0} .

Let F = { fi}k
i=1 be a unit-norm frame in Rn . We call

c = (c(1), . . . ,c(k)) ∈ Rk
�0

a scaling of F if the scaled frame {√c(i) fi}k
i=1 is a Parseval frame for Rn . We denote

the scaled frame by cF . If a scaling exists, then the unit-norm frame F is said to be
scalable. If c is a scaling with supp(c) = {1, . . . ,k} , then c is called a strict scaling
and the unit-norm frame F is said to be strictly scalable. A scaling c is a minimal
scaling if { fi : c(i) > 0} has no proper scalable subframe. We denote the set of all
scalings and the set of all minimal scaling of a scalable frame F by C (F) and M (F) ,
respectively.

For any vector f ∈ Rn , we define the diagram vector associated with f , denoted
f̃ , by

f̃ :=
1√

n−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 2(1)− f 2(2)
...

f 2(n−1)− f 2(n)√
2n f (1) f (2)

...√
2n f (n−1) f (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn(n−1),

where the difference of squares f 2(i)− f 2( j) and the product f (i) f ( j) occur exactly
once for i < j, i = 1,2, · · · ,n−1. The diagram vectors give us the following character-
ization of a tight frame.
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THEOREM 2.1. ([10, 9]) Let { fi}k
i=1 be a sequence of vectors in Rn , not all of

which are zero. Then { fi}k
i=1 is a tight frame if and only if ∑k

i=1 f̃i = 0 .

We use the diagram vectors of a given unit-norm frame to characterize scalable
frames.

THEOREM 2.2. ([9], Proposition 3.6) Let { fi}k
i=1 be a unit-norm frame for Rn

and c = (c(1), · · · ,c(k)) be a vector in Rk
�0 . Let G̃ :=

(〈
f̃ j, f̃i

〉)k
i, j=1 be the Gramian

associated to the diagram vectors
{

f̃i
}k

i=1 . Then cF is a Parseval frame for Rn if and
only if the vector c belongs to the null space of G̃ and c(1)+ . . .+ c(k) = n.

We note that the condition c(1)+ . . .+ c(k) = n in the above theorem is added to
Proposition 3.6 in [9] in order for cF to be a Parseval frame.

3. Minimal scalings

A connection between frames and the existence of John’s decomposition of the
identity have been studied earlier, [8, 18]. In this paper, we provide a method to find
all possible contact points for the John’s decomposition of the identity by applying
the b-rule algorithm to a linear system which is associated with a scalable frame from
Theorem 2.2. We also give an estimate of the number of minimal scalings of a scalable
frame.

Given a scalable frame F the authors of [4] showed that the set of all scalings
C (F) is a convex polytope whose vertices correspond to the finite set of minimal scal-
ings M (F) .

THEOREM 3.1. ([4]) Let F = { fi}k
i=1 be a unit-norm frame in Rn . Then we have

C (F) = conv(M (F)) .

From (3) the polytope

C (F) =

{
(c(1), . . . ,c(k)) ∈ Rk

�0 :
k

∑
i=1

c(i) fi f
∗
i = In

}
.

This is called the scalability polytope of F .

THEOREM 3.2. Let F be a scalable frame for Rn and let v ∈ C (F) . Then

|supp(v)| � n(n+1)
2

if and only if v ∈ M (F).

Proof. If |supp(v)| � n(n+1)
2 , then by Corollary 2.2 in [4],

{ fi f
∗
i : i ∈ supp(v)}
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is linearly independent. That is, { fi : i ∈ supp(v)} is scalable with the unique scaling
v which implies that v ∈ M (F) .

If v ∈ M (F) , then { fi f ∗i : i ∈ supp(v)} is linearly independent by Theorem 3.5

in [4]. Since the dimension of n× n real symmetric matrices is n(n+1)
2 , we conclude

that |supp(v)| � n(n+1)
2 . �

We now turn our attention to the linear system to find all minimal scalings of a
given scalable frame. This linear system provide us a method to find a subset of the
set of contact points for John’s decomposition of the identity and an estimate for the
size |M (F)| of minimal scalings. In the following, we provide an estimation of the
number of minimal scalings of a scalable frame using the Gramian associated to the
diagram vectors of the frame vectors. Let F = { fi}k

i=1 be a unit-norm frame in Rn . Let

G̃ :=
(〈

f̃ j, f̃i
〉)k

i, j=1 be the Gramian associated to the diagram vectors
{

f̃i
}k

i=1 . From
Theorem 2.2, we have a second description of C (F) :

C (F) =

{
(c(1), . . . ,c(k)) ∈ Rk

�0 :
k

∑
i=1

c(i) fi f
∗
i = In

}

=

{
(x(1), . . . ,x(k)) ∈ Rk

�0 :

{
G̃x = 0

x(1)+ . . .+ x(k) = n

}

The second characterization of the set of scalings is obtained by solving a linear
system, which allows us to adopt a relatively fast algorithm to find the set of minimal
scalings [1, 4]. Specifically, by applying the b-rule algorithm (a modification of the
simplex algorithm to find solutions in Rk

�0 ) [1] to the linear system

{
G̃x = 0

x(1)+ . . .+ x(k) = n
, (5)

we obtain the set of minimal scalings M (F) .

THEOREM 3.3. Let F = { fi}k
i=1 be a unit-norm frame in Rn and let G̃ be the

Gramian associated to the diagram vectors
{

f̃i
}k

i=1 . Then we have

|M (F)| �
(

k
rank(G̃)+1

)
. (6)

Proof. Note that the system of equations (5) can be reduced to a system of rank(G̃)

+ 1 equations. When the b-rule algorithm is applied to

(
k

rank(G̃)+1

)
systems of

equations to find the minimal scalings, it follows that

|M (F)| �
(

k
rank(G̃)+1

)
. �
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We note that when F is an orthonormal basis, we obtain the equality in (6).
The following is a well-known characterization of the unique ellipsoid of maxi-

mum volume in a convex body in Rn , called the John’s ellipsoid theorem.

THEOREM 3.4. ([12]) Let E ⊂ Rn be compact, convex, symmetric in the origin
0 , and with Bn ⊂ E . Then the following claims are equivalent:

(i) Bn is the unique ellipsoid of maximum volume in E .

(ii) There are fi ∈ Bn∩bd(E) and ci > 0 , i =1, . . . , k, where n � k � 1
2n(n+1) , such

that

In =
k

∑
i=1

ci fi ⊗ fi. (7)

Here, Bn is the solid unit ball in Rn and bd(E) stands for the boundary of E .

We call Equation (7) as the John’s decomposition of the identity and the elements
of Bn ∩ bd(E) as the contact points. The relation between the measure of scalable
frames and John’s ellipsoid theorem is studied in [8]. Some subsets of the set of con-
tact points can be useful in understanding the orthogonal structure under action of a
given linear operator [18]. In the following, we study the connection between a mini-
mal scaling of a scalable frame and subsets of the set of contact points for the John’s
decomposition of the identity. The relation of a scalable frame and John’s ellipsoid
theorem are obtained by rewriting (7) as the following equation:

f =
k

∑
i=1

〈 f ,√ci fi〉√ci fi, for any f ∈ Rn.

This allows us to consider the subset of contact points in (7) as a frame in Rn . If
F = bd(E)∩Bn is finite, using the system of equations (5) together with Theorem 3.2,
we obtain all subsets of the set of the contact points for the John’s decomposition of
the identity since the b-rule algorithm finds all entry-wise nonnegative vectors that are
solutions to (5). This is stated in the following theorem.

THEOREM 3.5. Let E ⊂ Rn be compact, convex, symmetric in the origin 0 . Let
F = bd(E)∩Bn be a finite set of contact points. If Bn is the unique ellipsoid of maxi-
mum volume in E , then the frame vectors corresponding to any minimal scaling of F
is a subset of the set of contact points in John’s decomposition of the identity.

As an example, in R2 , let us consider the following contact points

F =

[
cos10 − 1

2 − 1
2 −cos10 1

2
1
2

sin10
√

3
2 −

√
3

2 −sin10 −
√

3
2

√
3

2

]
.

Then

f1 =
[
cos10
sin10

]
, f2 =

[
− 1

2√
3

2

]
, f3 =

[
− 1

2

−
√

3
2

]
,
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f1
f4

f6

f3

f2

f5

Figure 1: Convex body with a set of contact points

together with

c1 =
2

3cos2 10− sin2 10
,

c2 =
2
√

3
3

√
3cos2 10−√

3sin2 10+2cos10sin10

3cos2 10− sin2 10
,

c3 =
2
√

3
3

√
3cos2 10−√

3sin2 10−2cos10sin10

3cos2 10− sin2 10

satisfy the second statement of Theorem 3.4. We note that |M (F)| = 16 and all of the
minimal scalings satisfy John’s decomposition of the identity.

4. Structural properties of scalable frames

In subsection §4.1, we study some properties of general polytopes, which provide a
characterization of affine dependency of minimal scalings in subsection §4.2. We show
that if minimal scalings are affinely independent, all strict scalings of a frame have the
same structural property. That is, the collections of all tight subframes of strictly scaled
frames are the same up to a permutation of the frame elements.

4.1. General polytopes

PROPOSITION 4.1. Let {vi}i∈I be the set of vertices for a polytope. Then {vi}i∈I

is affinely dependent if and only if

(conv{v j} j∈J1)
◦ ∩ (conv{v j} j∈J2)

◦ �= /0

for some disjoint subsets J1,J2 ⊆ I.
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Proof. (⇐) Let ∑ j∈J1 α jv j = ∑ j∈J2 α jv j , where α j > 0, ∑ j∈J1 α j = ∑ j∈J2 α j =
1. Then ∑ j∈J1 α jv j − ∑ j∈J2 α jv j = 0 and ∑ j∈J1 α j − ∑ j∈J2 α j = 0. We conclude
{vi}i∈J1∪J2 is affinely dependent and hence {vi}i∈I is affinely dependent.

(⇒) Since {vi}i∈I is affinely dependent, there exists i ∈ I such that vi ∈
aff{v j} j∈I\{i} . We write vi = ∑ j∈J1 α jv j +∑ j∈J2 α jv j , where α j is positive for j ∈ J1 ,
negative for j ∈ J2 , and J1∪· J2 ⊆ I \ { i} . Since ∑ j∈J1

⋃· J2 α j = 1, J1 �= /0 . Since vi is
a vertex of the polytope, J2 �= /0 . Let r = ∑ j∈J1 α j , then

w =
1
r ∑

j∈J1

α jv j ∈ (conv{v j} j∈J1)
◦

and

w =
1
r

(
vi + ∑

j∈J2

(−α j)v j

)
∈ (conv{v j} j∈J2∪{i})

◦.

This completes the proof. �

PROPOSITION 4.2. Let {vi}i∈I be the set of vertices for a polytope and let
conv{v j} j∈J be a nontrivial face. If ∑i∈I αivi ∈ conv{v j} j∈J , then αi = 0 for i ∈ I \ J .

Proof. Let H = {x ∈ Rk : 〈c,x〉 = b, b ∈ R, c ∈ Rk \ {0}} be the supporting
hyperplane containing conv{v j} j∈J . We write ∑i∈I αivi = ∑i∈J αivi +∑i∈I\J αivi . Sup-
pose that αi0 �= 0 for some i0 ∈ I\J . Since ∑i∈J αivi ∈ H and ∑i∈I\J αivi /∈ H ,

〈
c,

(
∑
i∈J

αivi

)〉
= b and

〈
c,

(
∑

i∈I\J
αivi

)〉
< b.

This implies that ∑i∈I αivi /∈ H . This completes the proof. �

COROLLARY 4.3. Let {vi}i∈I be the set of vertices for a polytope. Let J1,J2 form
a partition of I such that

(conv{v j} j∈J1)
◦ ∩ (conv{v j} j∈J2)

◦ �= /0.

Then conv{v j} j∈J1 and conv{v j} j∈J2 are not faces of the polytope.

If we have non negativity in each entry of the vertices of a polytope in Rk , we
obtain the affine dependency of vertices from the relation of supports of the vertices.

4.2. Properties of the minimal scalings

In this section, we provide a characterization of when the minimal scalings are
affinely dependent. Using this characterization, we can conclude that all strict scalings
of a given frame have the same tight subframes up to a permutation. We also present the
uniqueness of orthogonal partitioning property of any set of minimal scalings, which
provides all possible tight subframes of a given scaled frame.
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LEMMA 4.4. Let {vi}i∈I be the set of minimal scalings of a scalable frame F .
Suppose w = ∑i∈I αivi is an affine combination of {vi}i∈I and w has all nonnegative
entries. Then w ∈ C (F) .

Proof. Let F = { fi }k
i=1 . Recall that

C (F) = {c ∈ Rk : c(i) � 0,
k

∑
i=1

c(i) fi f
∗
i = In}.

Since v j = (v j(1), . . . ,v j(k)) is a minimal scaling of F , we have

k

∑
i=1

v j(i) fi f
∗
i = In.

Thus ∑k
i=1 w(i) fi f ∗i = ∑k

i=1(∑ j∈I α jv j)(i) fi f ∗i = ∑ j∈I α j ∑k
i=1 v j(i) fi f ∗i = ∑ j∈I α jIn = In

since ∑ j∈I α j = 1. Therefore, w ∈ C (F) . �

PROPOSITION 4.5. Let {vi}i∈I be the set of minimal scalings of a scalable frame.
If supp(vi0) ⊆ ∪ j∈I\{i0}supp(v j) for some i0 ∈ I , then vi0 ∈ aff{vi}i∈I\{i0} .

Proof. Let J = I \ {i0} and w = 1
|J| ∑ j∈J v j . Set

ε =
min{w(l) : w(l) > 0}

max{vi0(l) : vi0(l) > 0} .

If w(m)= 0 for some m = 1, · · · ,k , then vi0(m)= 0 since supp(vi0)⊆∪ j∈I\{i0}supp(v j) .
This implies that ((1+ ε)w− εvi0)(m) = 0. It is clear that if vi0(m) = 0, then ((1+
ε)w− εvi0)(m) � 0. For each m = 1, · · · ,k, such that vi0(m) �= 0, we also have

((1+ ε)w− εvi0)(m) � (1+ ε)w(m)− min{w(l) : w(l) > 0}
vi0(m)

vi0(m) � 0.

Since θ = (1+ ε)w− εvi0 is an affine combination of minimal scalings and θ (m) � 0
for m = 1, . . .k , we conclude from Lemma 4.4 that θ ∈ C (F) . Thus, we have θ =
∑i∈I αivi with αi � 0 and ∑i∈I αi = 1. It follow from the expansion that

vi0 = ∑
j∈J

(
(1+ ε)/|J|−α j

ε + αi0

)
v j and ∑

j∈J

(1+ ε)/|J|−α j

ε + αi0
= 1,

which completes the proof. �

REMARK 1. We remark that if {vi}i∈I is not the set of minimal scalings, then in
general Proposition 4.5 is not true. For example, let

v1 = (1,0), v2 = (0,1), v3 = (1,1)

be the vertices of a polytope. Then supp(v1) = {1} ⊂ {1,2} = supp(v2)∪ supp(v3) ,
but v1 /∈ aff{v2,v3 } .
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Since the minimal scalings of a scalable frame is the set of vertices of a polytope
and each entry of the vertices is non negative, from the propositions in section §4.1 and
Proposition 4.5, we have the following equivalent formulations of affine dependency of
minimal scalings:

THEOREM 4.6. Let {vi}i∈I be the set of minimal scalings of a scalable frame.
Then the following are equivalent:

1. The set of minimal scalings {vi}i∈I is affinely dependent.

2. There exists i ∈ I such that supp(vi) ⊆ ∪ j∈I\{i}supp(v j) .

3. There exist disjoint J1,J2 ⊆ I such that

(conv{v j} j∈J1)
◦ ∩ (conv{v j} j∈J2)

◦ �= /0.

4. There exist disjoint J1,J2 ⊆ I such that

∪ j∈J1supp(v j) = ∪ j∈J2supp(v j).

Proof. The relation 2 ⇒ 1 ⇒ 3 follows from Proposition 4.5 and Proposition 4.1.

3 ⇒ 4. Let w ∈ (conv{v j} j∈J1)
◦ ∩ (conv{v j} j∈J2)

◦ , then we have

supp(w) = ∪ j∈J1supp(v j) = ∪ j∈J2supp(v j).

4 ⇒ 2. Let i ∈ J1 , then we have

supp(vi) ⊂ ∪ j∈J1supp(v j) = ∪ j∈J2supp(v j) ⊂ ∪ j∈I\{ i}supp(v j). �

In the following, we present a series of relations between minimal scalings and
structural properties of a scaled frame. In order to state these results, we need the
notion of an empty cover of the factor poset of a frame found in [2, 7]. The factor poset
corresponds to tight subframes of F and the empty cover corresponds to the minimal
tight subframes of F .

DEFINITION 4.1. Let F = { fi }i∈I be a finite frame in Rn . We define its factor
poset F(F) ⊂ 2I to be the set

F(F) :=
{

J ⊂ I :
{

f j
}

j∈J is a tight frame for Rn
}
∪{ /0}

partially ordered by inclusion. We define the empty cover of F(F) , EC(F) , to be the
set of J ∈ F(F) which covers /0 , that is,

EC(F) :=
{
J ∈ F(F) : J �= /0 and �J′ ∈ F(F)

with /0 � J′ � J
}

.



MINIMAL SCALINGS AND STRUCTURAL PROPERTIES OF SCALABLE FRAMES 1067

For example, consider the following frame in R2 ,

F =
[
1 0 −1 0
0 1 0 −1

]
.

Then
F(F) = { /0,{1,2} ,{1,4} ,{2,3} ,{3,4} ,{1,2,3,4}} ,

EC(F) = {{1,2} ,{1,4} ,{2,3} ,{3,4}} .

The following theorem shows that F(F) can be obtained by taking disjoint union
of subsets of EC(F) .

THEOREM 4.7. ([2]) If F is a frame, then

F(F) =

{ ⋃
·

E∈S

E : S ⊆ EC(F)

}
.

A scaling of a unit-norm frame F is prime if the scaled frame cF does not con-
tain any proper, tight subframes and non-prime otherwise. The following theorem was
proved in [7].

THEOREM 4.8. ([7]) A scaling is non-prime if and only if it is a convex combina-
tion of minimal scalings which can be partitioned into two orthogonal subsets.

Motivated by Theorem 4.8, we study for a scalable frame F the connection be-
tween orthogonal partitioning of minimal scalings and the tight subframes of the scaled
frame cF . We define the smallest orthogonal partition of minimal scalings {vi}i∈I to
be a partition {{v j} j∈J1 , . . . ,{v j} j∈Ja

}
such that J1 ∪ . . . supJa = J ⊆ I and the subsets in the collection are mutually orthog-
onal (i.e.,

〈
vi,v j

〉
= 0 if i ∈ Jk, j ∈ Jl , and l �= k ). Moreover each subset cannot be

partitioned further into orthogonal subsets.
Suppose {v j} j∈J can be written as

{v j} j∈J = {v j} j∈J1 ∪ . . .∪{v j} j∈Ja (8)

= {v j} j∈K1 ∪ . . .∪{v j} j∈Kb , (9)

where each collection is a smallest orthogonal partition of {v j} j∈J for some J ⊂ I . If
J1 �= K1 , then without loss of generality assume that J1 \K1 �= /0 . Then we have

J1 = (J1 \K1)∪ (J1∩K1) .

This is a contradiction to the assumption that J1 cannot be partitioned into orthogonal
subsets. Thus J1 = K1 . This shows that the supports of the partition in (8) and (9) are
the same. Hence a = b . Therefore we can now state the following theorem (which also
appears in [11]).
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THEOREM 4.9. Let {vi}i∈I be the set of minimal scalings of a scalable frame.
The smallest orthogonal partition of any subset of {vi}i∈I is unique.

OBSERVATION 1. Let F be a scalable frame and {vi}i∈I be the set of minimal

scalings. Suppose E ∈ EC(F) . Define c ∈ Rk by c(i) =

{
1 if i ∈ E,

0 otherwise.
Then c ∈

C (F) and c = ∑ j∈J α jv j for some J ⊂ I . From this it follows that E = ∪ j∈Jsupp(v j) .

We now state the theorem about unique orthogonal partitioning property. State-
ment of Theorem 4.10 appears in [11]. Its proof is presented only in this paper.

THEOREM 4.10. Let {vi}i∈I be the set of minimal scalings of a scalable frame F
and let c be a scaling of F . Suppose c = ∑ j∈J α jv j such that J ⊆ I and α j > 0 with
∑ j∈J α j = 1 . Then {vi}i j∈J can be orthogonally partitioned as

c = ∑
i∈J1

αivi + . . .+ ∑
i∈Ja

αivi, (10)

where ∪i∈Jj supp(vi) for j = 1, . . . ,a are pairwise disjoint subsets of EC(cF) . If
EC(cF) is pairwise disjoint, then {v j} j∈J1 ∪· . . .∪· {v j} j∈Ja is the smallest orthogonal
partition of {vi}i∈J1∪· ...∪· Ja so that the orthogonal decomposition in (10) is unique.

Proof. Since cF is a Parseval frame supp(c) ∈ F(cF) . From Theorem 4.7,

supp(c) = E1∪· . . .∪· Ea, Ei ∈ EC(cF).

Note that the subframe
{√

c(i) fi
}

i∈Ej
, j = 1, . . .a , is only a tight subframe but not

Parseval in general. However, there exists λ j > 0 such that
{√

λ jc(i) fi
}

i∈Ej
, j =

1, . . .a is Parseval. For each j = 1, . . . ,a , set c j ∈ Rk
�0 by

c j(i) :=

{
λ jc(i) if i ∈ Ej

0 otherwise.

Then since c j is a scaling of F , c j = ∑i∈Jj
αivi for some αi > 0 and Jj ⊂ I . This

implies that c can be orthogonally partitioned as follows:

c =
a

∑
j=1

c j

λ j
=

1
λ j

a

∑
j=1

(
∑
i∈Jj

αivi

)
,

where ∪i∈Jj supp(vi) = Ej . We now suppose that EC(cF) is pairwise disjoint. Let
{v j} j∈K1 ∪· . . .∪· {v j} j∈Kb be the smallest orthogonal partition of {vi}i∈J1∪· ...∪· Ja . To show
that {v j} j∈K1 ∪· . . .∪· {v j} j∈Kb and {v j} j∈J1 ∪· . . .∪· {v j} j∈Ja are the same orthogonal
partition of {vi}i∈J1∪· ...∪· Ja , we redorder K1, . . . ,Kb and J1, . . . ,Ja such that for i < j

min{s : vs ∈ Ki } < min
{

s : vs ∈ Kj
}

and
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min{s : vs ∈ Ji } < min
{

s : vs ∈ Jj
}

.

Note that v1 ∈ {v j} j∈J1 ∩{v j} j∈K1 . We now show that {v j} j∈J1 = {v j} j∈K1 . Suppose
that {v j} j∈K1 � {v j} j∈J1 . Then

c1 = ∑
i∈J1\K1

αivi + ∑
i∈K1

αivi.

Since ∪i∈J1supp(vi) = E1 ∈ EC(cF) the above equation if true produces non empty
subsets of E1 in F(cF) , which is a contradiction. Similarly, {v j} j∈Ji ∩{v j} j∈Ki �= /0
implies that {v j} j∈Ji = {v j} j∈Ki for i = 1, . . . ,a . This shows a = b and the uniqueness
of the decomposition. �

From theorem 4.10 we note that if M (F) is the set of minimal scalings of a
scalable frame F , then for any c ∈ C (F) , we can obtain all tight subframes of cF
using Theorem 4.7. Theorem 4.8 also tells us the conditions for c under which the
set EC(cF) is { /0,{1, . . . ,k}} . Moreover, Theorem 4.10 gives conditions for c under
which the empty cover of cF is pairwise disjoint. That is, if we have two different
collection of subsets of minimal scalings for the orthogonal decomposition (10), then
EC(cF) is not pairwise disjoint. We note the orthogonal decomposition (10) is not
unique in general. For example, consider the following frame in R2 ,

F =
[
1 0 1 0 0 1
0 1 0 1 1 0

]
.

The minimal scalings are

v1 = (1,1,0,0,0,0), v6 = (0,1,0,0,0,1),
v2 = (0,0,1,1,0,0), v7 = (0,1,1,0,0,0),
v3 = (0,0,0,0,1,1), v8 = (1,0,0,0,1,0),
v4 = (0,0,0,1,0,1), v9 = (1,0,0,1,0,0).
v5 = (0,0,1,0,1,0),

Then the scaling c = 1
3 (1,1,1,1,1,1) has the following distinct orthogonal decompo-

sitions:

c =
(

1
3
v1

)
+
(

1
3
v2

)
+
(

1
3
v3

)

=
(

1
3
v1

)
+
(

1
3
v4

)
+
(

1
3
v5

)
.

The two different orthogonal decompositions of a scaling c guarantees that {vi}i∈J1∪· ...∪· Ja
is affinely dependent.

THEOREM 4.11. Let {vi}i∈I be the set of minimal scalings of a scalable frame F
and c be a scaling. If {vi}i∈I is affinely independent, then EC(cF) is pairwise disjoint.
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Proof. Suppose that EC(cF) is not pairwise disjoint. Then there are two different
sets E1, E2 ∈ EC(cF) such that E1∩E2 �= /0 . Let

∪ j∈J1supp(v j) = E1, ∪ j∈J2supp(v j) = E2.

Since E1 �= E2 , without loss of generality, we assume that 1 ∈ J1 and supp(v1) �
E2 so that 1 /∈ J2 . By Theorem 2.1, supp(c) \ E2 ∈ F(cF) so that supp(c) \ E2 =
∪ j∈Ssupp(v j) for some S ⊂ I . Thus supp(v1) � ∪ j∈Ssupp(v j) so that 1 /∈ S . But
(supp(c)\E2)∪⋃ j∈J2 supp(v j) = supp(c) which implies that

supp(v1) ⊆
⋃
j∈S

supp(v j)∪
⋃
j∈J2

supp(v j) ⊆ ∪ j∈I\{1}supp(v j).

Then by Theorem 4.6, {vi}i∈I is affinely dependent. �
Recall that c is a strict scaling c if supp(c) = {1, . . . ,k} . It is not necessary for

a strict scaling c to be a convex combination with contribution from all of the minimal
scalings {vi}i∈I . However, if {1, . . . ,k} is the union of the support of all minimal
scalings, a strict scaling c must have all positive coefficients in the convex combination
of minimal scalings.

PROPOSITION 4.12. Let {vi}i∈I be the set of minimal scalings of a scalable frame
F and c be a strict scaling. Suppose that {vi}i∈I are affinely independent. Then all the
coefficient of the convex combination of minimal scalings for c are positive.

Proof. Let c = ∑ j∈I α jv j . Suppose αi = 0 for some i∈ I . Then c = ∑ j∈I\{ i} α jv j .
Since c is a strict scaling,

supp(vi) ⊂ supp(c) = ∪ j∈I\{i}supp(v j),

which contradicts the assumption. �
We remark that when the sets in EC(F) are pairwise disjoint then {vi}i∈I are

affinely independent. If {vi}i∈I are affinely independent, then all strict scalings give
the same poset structure of the scaled frames.

THEOREM 4.13. Let {vi}i∈I be the set of minimal scalings of a scalable frame F
which are affinely independent. Then for any strict scalings c1 and c2 , we have

EC(c1F) = EC(c2F).

Furthermore, EC(c1F) is pairwise disjoint.

Proof. By Theorem 4.11 and Theorem 4.10, both EC(c1F) and EC(c2F) are
pairwise disjoint and the orthogonal decompositions

c1 = ∑
j∈J1

α jv j + . . .+ ∑
j∈Ja

α jv j,
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c2 = ∑
j∈K1

α jv j + . . .+ ∑
j∈Kb

α jv j

provide the smallest orthogonal partitions of {vi}i∈I . Since

EC(c1F) =
{∪ j∈Ji supp(v j) : i = 1, . . . ,a

}
,

EC(c2F) =
{∪ j∈Kisupp(v j) : i = 1, . . . ,b

}
,

and the smallest orthogonal partitions of {vi}i∈I is unique, we have

EC(c1F) = EC(c2F). �

The following conjecture asserts the existence of a “maximal” strict scaling whose
factor poset contains all possible factor posets of any strict scaling. A maximal strict
scaling might be useful to construct a frame in signal processing when we need more
representations in certain directions, for example in edge detection or noise detection
in image processing.

CONJECTURE 4.14. Let J ⊂ I such that ∪ j∈Jsupp(v j) = {1, . . . ,k} and �J0 � J
with ∪ j∈J0supp(v j) = {1, . . . ,k} . Let {v j} j∈J1 ∪· . . .∪· {v j} j∈Ja be the smallest orthog-
onal partition of {v j} j∈J . Then there exists a scaling c such that

EC(cF) =
{∪ j∈Ji supp(v j) : i = 1, . . . ,a

}
.

This conjecture is equivalent to determining whether or not the following is true:
if
⋃

j∈J1 supp(v j) = . . . =
⋃

j∈J� supp(v j) = {1, . . . ,k} , and for each Ji , there does not
exist J0 � Ji such that

⋃
j∈J0 supp(v j) =

⋃
j∈Ji supp(v j) , then (conv{v j} j∈J1)

◦ ∩ . . .∩
(conv{v j} j∈J�)

◦ �= /0 . Based on results in polytope theory (Helly’s Theorem, [16]), the
assumptions seem too weak for the result to be true. However, a counterexample or a
weaker result would be a substantial progress.

We end this section with the following observations related to the construction
of scalable frames. As a consequence we would like to point out that if a vector gets
repeated in a scalable frame { fi}k

i=1 , then the size of the minimal scalings |M (F)|
doubles.

OBSERVATION 2. Let { fi}i∈K be a unit-norm frame and K0 ⊂ K . If { fi}i∈K\K0

is scalable, then

C
({ fi}i∈K\K0

)
=
{

c|K\K0
: c ∈ C ({ fi}i∈K) ,c(i) = 0, i ∈ K0

}
.

OBSERVATION 3. Let M (F) be the set of minimal scalings of of a scalable frame
F = { fi}i∈K and let K0 ⊂ K . If { fi}i∈K\K0

is scalable, then the minimal scalings of
{ fi}i∈K\K0

is the set

{
v|K\K0

: v ∈ M (F),v(i) = 0, i ∈ K0
}

.
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OBSERVATION 4. Let M (F) be the set of minimal scalings of a scalable frame
F = { fi}k

i=1 and let fk+1 = fi for some i = 1, . . . ,k . Then the minimal scalings of
{ fi}k+1

i=1 is the set

{
(v(1), . . . ,v(k),0) or
(v(1), . . . ,v(i−1),0,v(i+1), . . . ,v(k),v(i)) : v ∈ M (F)

}
.
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