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RECYCLING GIVENS ROTATIONS FOR THE

EFFICIENT APPROXIMATION OF PSEUDOSPECTRA

OF BAND–DOMINATED OPERATORS

MARKO LINDNER AND TORGE SCHMIDT

Abstract. We study spectra and pseudospectra of certain bounded linear operators on �2(Z) .
The operators are generally non-normal, and their matrix representation has a characteristic off-
diagonal decay. Based on a result of Chandler-Wilde, Chonchaiya and Lindner for tridiagonal
infinite matrices, we demonstrate an efficient algorithm for the computation of upper and lower
bounds on the pseudospectrum of operators that are merely norm limits of band matrices – the so-
called band-dominated operators. After approximation by a band matrix and fixing a parameter
n ∈ N , one looks at n consecutive columns {k + 1, . . . ,k + n} , k ∈ Z , of the corresponding
matrix and computes the smallest singular value of that section via QR factorization. We here
propose a QR factorization by a sequence of Givens rotations in such a way that a large part of
the computation can be reused for the factorization of the next submatrix – when k is replaced
by k + 1 . The computational cost for the next factorization(s) is O(nd) as opposed to a naive
implementation with O(nd2) , where d is the bandwidth. So our algorithm pays off for large
bands, which is attractive when approximating band-dominated operators with a full (i.e. not
banded) matrix.
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