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ESTIMATES ON SINGULAR VALUES OF

FUNCTIONS OF PERTURBED OPERATORS

QINBO LIU

Abstract. This is a conitunation of [1] and [2]. We prove that if function f belongs to the class

Λω
def= { f : ω f (δ ) � const ω(δ )} for an arbitrary modulus of continuity ω , then s j( f (A)−

f (B)) � c ·ω∗
(
(1+ j)−

1
p ‖A−B‖Sl

p

) · ‖ f‖Λω for arbitrary self-adjoint operators A , B and all

1 � j � l , where ω∗(x)
def= x

∫ ∞
x

ω(t)
t2

dt (x > 0) . The result is then generalized for contractions,
maximal dissipative operators, normal operators and n -tuples of commuting self-adjoint opera-
tors.
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