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ESTIMATES ON SINGULAR VALUES OF

FUNCTIONS OF PERTURBED OPERATORS

QINBO LIU

(Communicated by V. V. Peller)

Abstract. This is a conitunation of [1] and [2]. We prove that if function f belongs to the class

Λω
def= { f : ω f (δ ) � const ω(δ )} for an arbitrary modulus of continuity ω , then s j( f (A)−

f (B)) � c ·ω∗
(
(1+ j)−

1
p ‖A−B‖Sl

p

) · ‖ f‖Λω for arbitrary self-adjoint operators A , B and all

1 � j � l , where ω∗(x)
def= x

∫ ∞
x

ω(t)
t2

dt (x > 0) . The result is then generalized for contractions,
maximal dissipative operators, normal operators and n -tuples of commuting self-adjoint opera-
tors.

1. Introduction

In this note we study the behavior of functions of operators under perturbations.
We are going to find estimates for the singular values sn( f (A)− f (B)) , where both A
and B are arbitrary self-adjoint or unitary operators. These results are based on the
methods developed in [1] and [3] for estimates of operator norms ‖ f (A)− f (B)‖ , in
these papers the authors proved if f belongs to the Hölder class Λα(R) with 0< α < 1,
then ‖ f (A)− f (B)‖ � const ‖ f‖Λα ‖A− B‖α for all pairs of self-adjoint or unitary
operators A and B . The authors also generalized their results to the class Λω , and
obtained estimate ‖ f (A)− f (B)‖ � const ‖ f‖Λω ω∗‖A−B‖ .

In [2], it was shown that for functions f in the Hölder class Λα(R) with 0 < α < 1
and if 1 < p < ∞ , the operator f (A)− f (B) belongs to Sp/α , whenever A and B are
arbitrary self-adjoint operators such that A−B ∈ Sp . In particular, it was proved that
if 0 < α < 1, then there exists a constant c > 0 such that for every l � 0, p ∈ [1,∞) ,
f ∈ Λα(R) , and for arbitrary self-adjoint operators A and B on Hilbert space with
bounded A−B , the following inequality holds for every j � l :

s j( f (A)− f (B)) � c ‖ f‖Λα (R)(1+ j)−
α
p ‖A−B‖α

Sl
p

(see (3.1) for definition).

In section §3, we generalize this estimate to the class Λω and also obtain some lower-
bound estimates for rank one perturbations which also extend the results in [2]. In
section §4, similar estimates are given without proofs in case of contractions, maximal
dissipative operators, normal operators and n -tuples of commuting self-adjoint opera-
tors.

Necessary information on Space Λω is given in section §2. We refer the reader to
[1] for more detailed information.
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2. Space Λω

Let ω be a modulus of continuity, i.e., ω is a nondecreasing continuous function
on [0,∞) such that ω(0) = 0, ω(x) > 0 for x > 0, and

ω(x+ y) � ω(x)+ ω(y), x,y ∈ [0,∞).

We denote by Λω (R) the space of functions on R such that

‖ f‖Λω (R)
def= sup

x�=y

| f (x)− f (y)|
ω(|x− y|) .

The space Λω(T) on the unit circle can be defined in a similar way.
We continue with the class Λω of functions on T first. Let w be an infinitely

differentiable function on R such that

w � 0, supp w ⊂
[1
2
,2

]
, and w(x) = 1−w

(x
2

)
for x ∈ [1,2]. (2.1)

Define a C∞ function v on R by

v(x) = 1 for x ∈ [−1,1] and v(x) = w(|x|) if |x| � 1. (2.2)

Define trigonometric polynomials Wn , W �
n and Vn by

Wn(z) = ∑
k∈Z

w
( k

2n

)
zk, n � 1, W0(z) = z +1+ z, and W �

n (z) = Wn(z), n � 0

and

Vn(z) = ∑
k∈Z

v
( k

2n

)
zk, n � 1.

Vn is called de la Vallée Poussin type kernel.
If f is a distribution on T , we define fn , n � 0 by

fn = f ∗Wn + f ∗W �
n , n � 1, and f0 = f ∗W0,

Then f = ∑n�0 fn and f − f ∗Vn = ∑∞
k=n+1 fn .

Now we proceed to the real line case. We use the same functions w , v as in (2.1),
(2.2), and define functions Wn , W �

n and Vn on R by

FWn(x) = w
( x

2n

)
, FW �

n (x) = FWn(−x), n ∈ Z

and
FVn(x) = v

( x
2n

)
, n ∈ Z,

where F is the Fourier transform:

(F f )(t) =
∫

R

f (x)e−ixt dx, f ∈ L1.
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Vn is also called de la Vallée Poussin type kernel.
If f is a tempered distribution on R , we define fn by

fn = f ∗Wn + f ∗W �
n , n ∈ Z.

We will use the same notation Λω , Wn , W �
n and Vn on R and on T in the follow-

ing discussion.
In [1], it is proved that there exists a constant c such that for an arbitrary modulus

of continuity ω and for an arbitrary function f in Λω , the following inequalities hold
for all n ∈ Z , in R case, or for all n � 0, in T case:

‖ f − f ∗Vn‖L∞ � cω(2−n)‖ f‖Λω (2.3)

‖ f ∗Wn‖L∞ � cω(2−n)‖ f‖Λω , ‖ f ∗W �
n‖L∞ � cω(2−n)‖ f‖Λω (2.4)

Let S ′(R) be the space of all tempered distributions on R . Denote by S ′
+(R)

the set of all f ∈ S ′(R) such that supp F f ⊂ [0,∞) . Put
(
Λω(R)

)
+

def= Λω(R)∩
S ′

+(R) and C+
def= {z ∈ C : Im z > 0} . Then a function in Λω (R) belongs to the space(

Λω(R)
)
+ if and only if it has a (unique) continuous extension to the closed upper

half-plance clos C+ that is analytic in the open upper half-plane C+ with at most a
polynomial growth rate at infinity.

3. Estimates on singular values of functions of perturbed
self-adjoint and unitary operators

Recall that if T is a bounded linear operator on Hilbert space, then the singular
values s j(T ) , j � 0, are defined by

s j(T ) = inf{‖T −R‖ : rankR � j}.
For l � 0 and p � 1, we consider the norm Sl

p (see [9]) defined by

‖T‖Sl
p

def=
( l

∑
j=0

(s j(T ))p) 1
p . (3.1)

It is shown in [13] and [2] that if f is an entire function of exponential type at most σ
that is bounded on R , and A , B are self-adjoint operators with bounded A−B , then

‖ f (A)− f (B)‖ � const σ‖ f‖L∞‖A−B‖, (3.2)

and
‖ f (A)− f (B)‖Sl

p
� const σ‖ f‖L∞‖A−B‖Sl

p
. (3.3)

For the proof and more details, see [1], [2], [8], [10], [11] and [13].
Given a modulus of continuity ω , define functions ω∗ and ω� by

ω∗(x) = x
∫ ∞

x

ω(t)
t2

dt, x > 0
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and

ω�(x) = x
∫ ∞

x

ω(t)
t2

dt +
∫ x

0

ω(t)
t

dt, x > 0.

In this paper, we assume that ω� is finite valued whenever it is used.
For example, if we define ω by

ω(x) = xα , x > 0, 0 < α < 1,

then ω�(x) � const ω(x) .
It is well known (see [6], Ch.3, Theorem 13.30) that if ω is a modulus of continu-

ity, then the Hilbert transform maps Λω into itself if and only if ω�(x) � const ω(x) .

THEOREM 3.1. There exists a constant c > 0 such that for every modulus of con-
tinuity ω , every f in Λω (R) and for arbitrary self-adjoint operators A and B, the
following inequality holds for all l and for all j , 1 � j � l :

s j( f (A)− f (B)) � c ·ω∗
(
(1+ j)−

1
p ‖A−B‖Sl

p

) · ‖ f‖Λω . (3.4)

Proof. A and B can be taken as bounded operators (see [3], Lemma 4.4), then
we may further assume f is bounded. Let RN = ∑N

n=−∞( fn(A)− fn(B)) , QN = ( f −
f ∗VN)(A)− ( f − f ∗VN)(B) . Here fn and the de la Vallée Poussı́n type kernel VN

are defined as in §2. Then f (A)− f (B) = RN +QN , with convergence in the uniform
operator topology as shown in [1]. Note that for any integer m ∈ Z , functions fm and
f − f ∗Vm are entire functions of exponential type at most 2m+1. Thus it follows from
(3.2), (3.3), (2.3), and (2.4) that

‖QN‖ � c ·ω(2−N) · ‖ f‖Λω ,

and

‖RN‖Sl
p
�

N

∑
n=−∞

‖ fn(A)− fn(B)‖Sl
p

� c ·
N

∑
n=−∞

(
2n · ‖ fn‖L∞

) · ‖A−B‖Sl
p

� c ·2N ·ω∗(2−N) · ‖A−B‖Sl
p
· ‖ f‖Λω (see [1])

Then

s j( f (A)− f (B)) � s j(RN)+‖QN‖ � (1+ j)−1/p · ‖RN‖Sl
p
+‖QN‖

� c · [(1+ j)−
1
p ·2N ·ω∗(2−N)‖A−B‖Sl

p
+ ω(2−N)

] · ‖ f‖Λω

Take N such that 1 � (1+ j)−
1
p ·2N · ‖A−B‖Sl

p
� 2 and use the fact that ω(t) � ω∗(t)

for any t > 0, we get (3.4). �
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THEOREM 3.2. There exists a constant c > 0 such that for every modulus of con-
tinuity ω , every f in Λω(T) and for arbitrary unitary operators U and V , the follow-
ing inequality holds for all l and for all j , 1 � j � l :

s j( f (U)− f (V )) � c ·ω∗
(
(1+ j)−

1
p ‖U −V‖Sl

p

) · ‖ f‖Λω . (3.5)

Proof. If (1 + j)−
1
p · ‖U −V‖Sl

p
� 2, the proof is similar to Theorem 3.1 with

RN = ∑N
n=0( fn(U)− fn(U)) ; if (1+ j)−

1
p · ‖U −V‖Sl

p
> 2, then

s j( f (U)− f (V )) � ‖ f (U)− f (V )‖ � c ·ω∗(‖U−V‖) · ‖ f‖Λω � c ·ω∗(2) · ‖ f‖Λω . �

COROLLARY 3.3. Let ω be a modulus of continuity such that

ω∗(x) � const ω(x), x � 0.

Then for an arbitrary function f ∈ Λω(R) and for arbitrary self-adjoint operators A
and B, the following inequality holds for all l and for all j , 1 � j � l :

s j( f (A)− f (B)) � const ω
(
(1+ j)−

1
p ‖A−B‖Sl

p

)‖ f‖Λω .

Let H , H be the Hankel operators defined in [2].

THEOREM 3.4. Let ω be a modulus of continuity on T . There exist unitary op-
erators U , V and a real function h in Λω�

((T )) such that

rank(U −V) = 1 and sm(h(U)−h(V)) � ω
(
(1+m)−1).

Proof. Consider the operators U and V on space L2(T) with respect to the nor-
malized Lebesgue measure on T defined by (see [2])

U f = z f and V f = z f −2( f , 1)z , f ∈ L2.

For f ∈C(T) , we have

(
( f (U)− f (V ))z j,zk) = −2

⎧⎪⎨
⎪⎩

f̂ ( j− k), if j � 0, k < 0;

f̂ ( j− k), if j < 0, k � 0;

0, otherwise.

Define function g by

g(ζ ) =
∞

∑
n=1

ω(4−n)(ζ 4n
+ ζ

4n

), ζ ∈ T.

Then we have

‖g ∗Wn‖L∞ � const ω(2−n), ‖g ∗W �
n‖L∞ � const ω(2−n), n � 0.
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Let ξ , η be two arbitrarily different fixed points on T , choose N � 0 such that 1
2

� 2−N

|ξ−η| � 1, then

|g(ξ )−g(η)|�
N

∑
n=0

|gn(ξ )−gn(η)|+ |(g−g ∗VN)(ξ )− (g−g ∗VN)(η)|

�
N

∑
n=0

|gn(ξ )−gn(η)|+2
∞

∑
n=N+1

‖gn‖L∞

� const
N

∑
n=0

2n‖gn‖L∞ |ξ −η |+2
∞

∑
n=N+1

‖gn‖L∞

� const
N

∑
n=0

2nω(2−n)|ξ −η |+ const
∞

∑
n=N+1

ω(2−n)

� const ω∗(|ξ −η |)+ const
∫ 2−N

0

ω(t)
t

dt

� const ω�(|ξ −η |).
Consider the matrix Γg = {ĝ(− j− k)} j�1,k�0 = {ĝ( j + k)} j�1,k�0 .
Let n � 1. Define matrix Tn = {ĝ( j + k+4n−1 +1)}0� j,k�3·4n−1 , then

Tn =

⎡
⎢⎢⎢⎣

ω(4−n)
ω(4−n)

. .
.

ω(4−n)

⎤
⎥⎥⎥⎦ .

If R is any matrix with the same size of Tn such that rank(R) < 3 · 4n−1 , then ‖Tn −
R‖ � ω(4−n) . It follows that s j(Tn) � ω(4−n) for j < 3 · 4n−1 . For each Tn , there is
some orthogonal projection Pn such that Tn = PnΓgPn , hence s j(Γg) � s j(Tn) � ω(4−n)
for all n and for all j , j < 3 ·4n−1 . Thus for all j � 0, we have

s j(Γg) � ω
( 3

16
· ( j +1)−1

)
� 3

32
·ω(

( j +1)−1).
To complete the proof, it suffices to take h = 32

3 g . �

COROLLARY 3.5. Let ω be a modulus of continuity such that

ω�(x) � const ω(x), 0 � x � 2.

There exist unitary operators U , V and a real function h in Λω(T ) such that

rank(U −V) = 1 and sm(h(U)−h(V)) � ω
(
(1+m)−1).

THEOREM 3.6. Let ω be a modulus of continuity on T and f be a continuous
function on T . If for all unitary operators U and V , we have

sn( f (U)− f (V )) � const ω
(
(1+n)−

1
p ‖U −V‖Sp

)
, for all n � 0 ,

then f ∈ Λω(T).



ESTIMATES ON SINGULAR VALUES OF FUNCTIONS OF PERTURBED OPERATORS 113

Proof. Let ζ ,η ∈ T , we can select commuting unitary operators U and V such
that s0(U−V ) = s1(U−V ) = . . . = sn(U−V ) = |ζ −η | and sk(U−V ) = 0, k � n+1.

Then sn( f (U)− f (V )) = | f (ζ )− f (η)| , ‖U −V‖Sp = (1+n)
1
p · |ζ −η | . �

THEOREM 3.7. Let ω be a modulus of continuity on R and f be a continuous
function on R . If for all self-adjoint operators A and B, we have

sn( f (A)− f (B)) � const ω
(
(1+n)−

1
p ‖A−B‖Sp

)
, for all n � 0,

then f ∈ Λω(R).

Proof. Similar to Theorem 3.6. �

THEOREM 3.8. Let ω be a modulus of continuity over R . There exist self-adjoint
operators A, B, and a real function f in Λω�

(R) such that

rank(A−B) = 1 and sm( f (A)− f (B)) � ω
(
(1+m)−1), for all m � 0.

Proof. WLOG, we assume ω(t) = ω(2) , for all t � 2, that is, ω can be regarded
as a modulus of continuity on T.

We then choose a function (see [2], Lemma 9.6) ρ ∈ C∞(T) such that ρ(ζ ) +
ρ(iζ ) = 1, ρ(ζ ) = ρ(ζ ) for all ζ ∈ T , and ρ vanishes in a neighborhood of the set
{−1,1}. Note that ρ ∈ Λω(T), since ω(st) � s

2 ω(t), for all t � 0 and s , 0 < s < 1.

Define function g1 by

g1(ζ ) =
∞

∑
n=1

ω(4−n)(ζ 4n
+ ζ

4n

), ζ ∈ T.

Then g1 ∈ Λω�
(T). If g0

def= Cρg1 for a sufficient large number C , then g0 ∈ Λω�
(T),

vanishes in a neighborhood of the set {−1,1} and g0(ζ ) = g0(ζ ) for all ζ ∈ T , and
sm(Hg0) � ω

(
(1+m)−1

)
for all m � 0.

Define ϕ(x) = (x2 +1)−1 (as in [2], Theorem 9.9), then there exists a compactly
supported real bounded function f such that f (ϕ(x)) = g0( x−i

x+i ) and a simple calcula-
tion shows that f belongs to Λω�

(R). Denote L2
e(R) the subspace of even functions

in L2(R) . Consider operators A and B on L2
e(R) defined by A(g) = H−1MϕH(g) and

B(g) = ϕg, here H is the Hilbert transform defined on L2(R) (see [2]) and Mϕ is the
multiplication by ϕ . Then rank(A−B) = 1, and we have

sm( f (B)− f (A)) �
√

2sm(H f◦ϕ ) =
√

2sm(Hg0) �
√

2ω
(
(1+m)−1). �
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4. Estimates for other types of operators

The following estimates are given without proofs in case of contractions, maximal
dissipative operators, normal operators and n -tuples of commuting self-adjoint opera-
tors.

THEOREM 4.1. There exists a constant c > 0 such that for every modulus of con-
tinuity ω , every f in

(
Λω(R)

)
+ and for arbitrary contractions T and R on Hilbert

space, the following inequality holds for all l and for all j , 1 � j � l :

s j( f (T )− f (R)) � c ω∗
(
(1+ j)−

1
p ‖T −R‖Sl

p

)‖ f‖Λω .

To prove this result, the following result is important (see [1], [2] and [12]):
There exists a constant c such that for arbitrary trigonometric polynomial f of

degree n and for arbitrary contractions T and R on Hilbert space,

‖( f (T )− f (R)‖Sp � c n‖ f‖L∞‖T −R‖Sp.

Denote F the Fourier transform on L1(Rn) , n � 1 by:

(F f )(t) =
∫

R�

f (x)e−i(x,t)dx,

where
x = (x1, . . . ,xn), t = (t1, . . . ,tn), (x,t) def= x1t1 + . . .+ xntn.

THEOREM 4.2. There exists a constant c > 0 such that for every modulus of con-
tinuity ω , every f in

(
Λω (R)

)
+ and for arbitrary maximal dissipative operators L

and M with bounded difference, the following inequality holds for all l and for all j ,
1 � j � l :

s j( f (L)− f (M)) � c ω∗
(
(1+ j)−

1
p ‖L−M‖Sl

p

)‖ f‖Λω .

To prove this result, the following result is important (see [4]):
There exists a constant c > 0 such that for every function f in H∞(C+) with

supp F f ⊂ [0,σ ] , σ > 0, and for arbitrary maximal dissipative operators L and M
with bounded difference,

‖ f (L)− f (M)‖Sp � c σ‖ f‖L∞‖L−M‖Sp.

THEOREM 4.3. There exists a constant c > 0 such that for every modulus of con-
tinuity ω , every f in Λω(R2) and for arbitrary normal operators N1 and N2 , the
following inequality holds for all l and for all j , 1 � j � l :

s j( f (N1)− f (N2)) � c ω∗
(
(1+ j)−

1
p ‖N1−N2‖Sl

p

)‖ f‖Λω .
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To prove this result, the following result is important (see [5]):
There exists a constant c > 0 such that for every bounded continuous function f

on R2 with
supp F f ⊂ {ζ ∈ C : |ζ | � σ}, σ > 0,

and for arbitrary normal operators N1 and N2 ,

‖( f (N1)− f (N2)‖Sp � c σ‖ f‖L∞‖N1−N2‖Sp .

THEOREM 4.4. Let n be a positive integer and p � 1 . There exists a positive
number cn such that for every modulus of continuity ω , every f in Λω(Rn) and for
arbitrary n-tuples of commuting self-adjoint operators (A1, . . . ,An) and (B1, . . . ,Bn) ,
the following inequality holds for all l and for all j , 1 � j � l :

s j( f (A1, . . . ,An)− f (B1, . . . ,Bn)) � cn max
1� j�n

ω∗
(
(1+ j)−

1
p ‖Aj −Bj‖Sl

p

)‖ f‖Λω .

To prove this result, the following result is important (see [7]):
There exists a constant cn > 0 such that for every bounded continuous function f

on Rn with
supp F f ⊂ {ξ ∈ R

n : |ξ | � σ}, σ > 0,

and for arbitrary n -tuples of commuting self-adjoint operators (A1, . . . ,An) and (B1, . . . ,
Bn) ,

‖ f (A1, . . . ,An)− f (B1, . . . ,Bn)‖Sp � cn σ‖ f‖L∞ max
1� j�n

‖Aj −Bj‖Sp .
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