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(Communicated by Y.-T. Poon)

Abstract. It is well known that the generalized Cesàro matrices of order one are hyponormal
operators on �2 , and it is also known that the Cesàro matrix of order two is hyponormal. Here
the relatively new concept of supraposinormality is used to show that the generalized Cesàro
matrices of order two are both posinormal and coposinormal, and that “most” of them are also
hyponormal. A conjecture is propounded that would extend the hyponormality result.

1. Introduction

The concept of supraposinormality for operators on a Hilbert space H was recently
introduced and investigated in [8]. The operator A ∈ B(H) , the set of bounded linear
operators on H , is supraposinormal if there exist positive operators P and Q ∈ B(H)
such that

AQA∗ = A∗PA,

where at least one of P , Q has dense range. The ordered pair (Q,P) is referred to
as an interrupter pair associated with A . A posinormal operator is a particular case
of a supraposinormal with Q = I , and a coposinormal operator is a particular case of
a supraposinormal with P = I . The following theorem contains some key facts about
supraposinormal operators.

THEOREM 1.1. Suppose A ∈ B(H) satisfies AQA∗ = A∗PA for positive opera-
tors P,Q ∈ B(H) .

(a) If Q has dense range, then A is supraposinormal and Ker(A) ⊆ Ker(A∗) , where
Ker(A) = { f ∈ H : A f = 0} .

(b) If P has dense range, then A is supraposinormal and Ker(A∗) ⊆ Ker(A) .

(c) If Q is invertible, then the supraposinormal operator A is posinormal.
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(d) If P is invertible, then the supraposinormal operator A is coposinormal.

(e) If P and Q are both invertible, then A is both posinormal and coposinormal with
Ker(A) = Ker(A∗) and Ran(A) = Ran(A∗) , where Ran(A) = {g∈H : g = A f for
some f ∈ H} .

Proof. See [8]. �
Recall that the operator A ∈ B(H) is hyponormal if

< (A∗A−AA∗) f , f >� 0

for all f ∈ H .

THEOREM 1.2. If A is supraposinormal operator on H with AQA∗ = A∗PA and

Q � I � P � 0,

then A is hyponormal.

Proof. Assume the hypothesis is satisfied. Then

〈(A∗A−AA∗) f , f 〉 = 〈(A∗A−A∗PA+AQA∗−AA∗) f , f 〉

= 〈(I−P)A f ,A f 〉+ 〈(Q− I)A∗ f ,A∗ f 〉 � 0

for all f in H , so A is hyponormal. �
In a pair of 1921 papers [2], [3] Hausdorff studied the class of lower triangular

matrices whose entries are

hi j =
(

i
j

)
Δi− jμ j, 0 � j � i,

where {μn} is a real or complex sequence, and Δ is the forward difference operator
defined by

Δμk = μk − μk+1, Δn+1μk = Δ(Δnμk).

Almost forty years later, Endl [1] and Jakimovski [4] independently defined a general-
ization of the Hausdorff matrices as follows. For each α � 0, H(α) is a lower triangular
matrix with entries

h(α)
i j =

(
i+ α
i− j

)
Δi− jμ j, 0 � j � i. (1.1)

The case α = 0 results in the original Hausdorff matrices.
If we use

μ j =
∫ 1

0
t j+αdχ(t) where χ(t) = 1− (1− t)β
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in (1.1) with α,β � 0, we obtain the generalizedCesàro matrices of order β , (C(α),β ) ,
given by

(C(α),β )i j =
(

i+ α
i− j

)∫ 1

0
t j+α(1− t)i− jβ (1− t)β−1dt (1.2)

=
Γ(i+ α +1)

Γ(i− j +1)Γ( j + α +1)
· β Γ( j + α +1)Γ(i− j + β )

Γ(i+ α + β +1).

For fixed α � 0 and β = 1, one obtains the generalized Cesàro matrices of order
one, (C(α),1) , with entries

(C(α),1)i j =

{
1

i+1+α for 0 � j � i

0 for j > i.

We note that (C(α),1) ∈B(�2) for all α > −1, not just for α � 0. The next proof first
appeared in [7, Theorem 2.4].

PROPOSITION 1.3. (C(α),1) is posinormal and coposinormal for all α > −1 ,
and (C(α),1) is hyponormal for all α � 0 .

Proof. If Q :≡ diag{1+α,1,1,1, . . . .} and P :≡ diag{ n+1+α
n+2+α : n = 0,1,2,3, . . . .} ,

it can be verified that

(C(α),1)Q(C(α),1)∗ = (C(α),1)∗P(C(α),1)

with both P and Q invertible for all α > −1, so it follows from Theorem 1.1 that
(C(α),1) is both posinormal and coposinormal for those values of α . Since Q � I � P
for all α � 0, it follows from Theorem 1.2 that (C(α),1) is hyponormal for those
α . �

It should be noted that earlier proofs of hyponormality for this operator (see [6],
[10]) were much more computational, so it seems natural and desirable to look for
opportunities to apply the supraposinormality approach to other operators. With that in
mind, we turn to display (1.2) when β = 2 and obtain

(C(α),2)i j =

{
2(i+1− j)

(i+1+α)(i+2+α) for 0 � j � i

0 for j > i,

the entries of the generalized Cesàro matrices of order two. Note again that these op-
erators are in B(�2) for all α > −1 (not just for α � 0). Comparison of the entries
verifies that the Cesàro matrix (C(0),2) of order two (take α = 0) is precisely the matrix
studied in [9], where it was shown, using the relationship

(C(0),2)(C(0),2)∗ = (C(0),2)∗ diag
{ (n+1)(n+2)

(n+3)(n+4)
: n = 0,1,2,3, . . . .

}
(C(0),2),
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that (C(0),2) is a hyponormal operator on �2 . (We note that the hyponormality of C(2)
also follows from [11, Theorem 2].) In view of the relationship displayed above, to-
gether with inspection of the result obtained for (C(α),1) in Proposition 1.3, we decide
to make an adjustment in the interrupter to allow for α and call the result P , compute
(C(α),2)∗P(C(α),2) , and then try to find a diagonal or “nearly” diagonal operator Q
such that

(C(α),2)Q(C(α),2)∗ = (C(α),2)∗P(C(α),2)

in the hope that Theorem 1.2 will apply. That approach has led to the main results
presented in the next section.

Some of the calculations in the following sections have been aided by the Sage-
math software system [12].

2. Main results

Suppose α > −1. Under consideration here will be the matrix M :≡ (C(α),2)
whose entries are given by

mi j =

{
2(i+1− j)

(i+1+α)(i+2+α) for 0 � j � i

0 for j > i.

It is worth noting that the range of M contains all the en ’s from the standard orthonormal
basis for �2 since

M
[1
2
(n+1+ α)(n+2+ α)(en−2en+1 + en+2)

]
= en.

THEOREM 2.1. The operator M ∈ B(�2) is supraposinormal for α > −1 .

Proof. In view of the considerations mentioned in the introduction, we first take

P :≡ diag
{(n+1+ α)(n+2+α)

(n+3+ α)(n+4+α)
: n � 0

}
,

and then compute M∗PM . For j � i , the ( i , j ) th entry of M∗PM is

∞

∑
k=0

4( j +1− i+ k)(k+1)
( j +1+ k+ α)( j +2+ k+α)( j +3+ k+α)( j +4+ k+α)

.

The series is telescoping, as can be seen by rewriting the summand as

s(k)− s(k+1)

where

s(k) :≡ ak2 +bk+ c
( j +1+ k+ α)( j +2+ k+α)( j +3+ k+α)
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with

a = 4, b = 2(3 j +5− i+2α), and c =
2
3
(3 j +3− i+2α)( j +3+α).

Consequently, for j � i , the ( i , j ) th entry of M∗PM in simplified form is

s(0) =
2(3 j +3− i+2α)

3( j +1+ α)( j +2+ α)
.

The computations for i > j are similar.
Suppose that Q = [qi j] is given by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(3+2α)(1+α)(2+α)
6 −α(1+α)(2+α)

3 0 0 0 . . .

−α(1+α)(2+α)
3

(3−α+2α2)(2+α)
6 0 0 0 . . .

0 0 1 0 0 . . .
0 0 0 1 0 . . .
0 0 0 0 1 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; that is,

q00 = (3+2α)(1+α)(2+α)
6 , q10 = q01 =−α(1+α)(2+α)

3 , q11 = (3−α+2α2)(2+α)
6 , qii = 1 for

all i = j � 2, and qi j = 0 otherwise. If X :≡ QM∗ , then X = [xi j] has entries

xi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[3( j+1)+2α ](1+α)(2+α)
3( j+1+α)( j+2+α) for i = 0

[3 j(1−α)−2α(1+α)](2+α)
3( j+1+α)( j+2+α) for i = 1
2( j+1−i)

( j+1+α)( j+2+α) for j � i � 2

0 for i � 2, j < i.

For j � i � 2, the ( i , j ) th entry of MQM∗ = MX is

2(i+1)
(i+1+ α)(i+2+ α)

· (3 j +3+2α)(1+ α)(2+ α)
3( j +1+ α)( j +2+ α)

+
2i

(i+1+ α)(i+2+ α)
· (3 j−3 jα −2α −2α2)(2+ α)

3( j +1+ α)( j +2+ α)

+
i−1

∑
k=1

2(i− k)
(i+1+ α)(i+2+ α)

· 2( j− k)
( j +1+ α)( j +2+ α)

=
2(3 j +3− i+2α)

3( j +1+ α)( j +2+ α)
.

The cases j � i = 0 and j � i = 1 are left to the reader. The computations for i � j are
similar, so it follows that M∗PM = MQM∗ . It is clear that P has dense range, so M is
supraposinormal. �
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COROLLARY 2.2. The operator M is both posinormal and coposinormal for
α > −1 .

Proof. Since

det

(
(3+2α)(1+α)(2+α)

6 −α(1+α)(2+α)
3

−α(1+α)(2+α)
3

(3−α+2α2)(2+α)
6

)
=

(1+ α)(2+ α)2(3+ α)
12

,

it is clear that Q is invertible for α > −1. Since P is also clearly invertible for α >
−1, it follows from Theorem 1.1 that M is both posinormal and coposinormal when
α > −1. �

COROLLARY 2.3. If n is a positive integer and α > −1 , then Mn is both posi-
normal and coposinormal.

Proof. This follows from Corollary 2.2 and [5, Corollary 1 (b)]. �

COROLLARY 2.4. The operator M ∈ B(�2) is hyponormal for α ∈ {0}∪ [1,∞) .

Proof. It is clear that I � P for all α � 0. If Z0 is the first finite section of Q− I
and Z1 is the second, then

det(Z0) =
α(13+9α +2α2)

6

and

det(Z1) =
α2(α −1)(1+ α)

12
,

so Q � I for α � 1 or α = 0. It follows from Theorem 1.2 that M is hyponormal for
α ∈ {0}∪ [1,∞) . �

While it seems plausible that M is also hyponormal for 0 < α < 1, that question
remains open for now. The next section propounds a conjecture regarding that case.

3. Conjecture concerning the exceptional case: 0 < α < 1

This lemma is included to provide support for the conjecture to follow. Whereas
the computations of the previous section centered on the supraposinormality of M , the
computations in this section center on its posinormality.

LEMMA 3.1. If M is the generalized Cesàro matrix of order 2 for fixed α > −1
and B :≡ [bi j]i, j�0 is the matrix defined by

bi j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2( j +1−3i−2α)
( j +3+ α)( j +4+ α)

for j > i−2

( j +1+ α)( j +2+ α)
( j +3+ α)( j +4+ α)

for j = i−2

0 for j < i−2,
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then

(a) B is a bounded linear operator on �2 ,

(b) BM = M∗ , and

(c) the interrupter P = B∗B = [pi j] has entries given by

pi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i4 +2(5+2α)i3 +(35+26α +6α2)i2

(i+3+ α)2(i+4+ α)2 +

(50+50α +34α2 +4α3)i+ α4 +6α3 +45α2 +28α +24
(i+3+ α)2(i+4+ α)2 for i = j;

− 2α(11+(5−α)(i+ j)+2i j−5α+2α2)
(i+3+ α)(i+4+ α)( j +3+α)( j +4+α)

for i 	= j.

Proof.

(a) First note that for i � j , bi j ∈ [−4/( j + 4+ α),2/( j + 4+ α)] for all i , so the
upper triangular part T of matrix B is a bounded operator on �2 . If U denotes
the unilateral shift, W1 is the weighted shift with weight sequence{ 4(n+1+ α)

(n+3+ α)(n+4+α)
: n � 0

}
and W2 is the weighted shift with weight sequence{(n+1+ α)(n+2+α)

(n+3+ α)(n+4+α)
: n � 0

}
,

then
B = T −W1 +UW2,

so B ∈ B(�2) .

(b) For j � i , the (i, j) th entry in the product matrix BM is given by

∞

∑
k=0

4(k+1)( j +1−3i+ k−2α)
( j +1+ k+ α)( j +2+ k+α)( j +3+ k+α)( j +4+ k+α)

.

The summand in the series can be expressed as

s(k)− s(k+1)

where

s(k) =
4k2 +(10+6 j−6i)k+2( j +1− i)( j +3+α)
( j +1+ k+ α)( j +2+ k+α)( j +3+ k+α)

.

The series is telescoping and converges to

s(0) =
2( j +1− i)

( j +1+ α)( j +2+ α)
,
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which is exactly the (i, j) th entry of M∗ for j � i .

For j < i , the (i, j) th entry of BM is given by

(i−1+ α)(i+ α)
(i+1+ α)(i+2+ α)

· 2(i− j−1)
(i−1+ α)(i+ α)

+
−4(i+ α)

(i+2+ α)(i+3+ α)
· 2(i− j)
(i+ α)(i+1+ α)

(3.1)

+
∞

∑
k=0

4(i+1− j + k)(k+1−2i−2α)
(i+1+ k+ α)(i+2+ k+α)(i+3+ k+α)(i+4+ k+α)

.

The summand in the infinite series can be expressed as

s(k)− s(k+1)

where

s(k) =
4k2 +(10+2i−2 j)k+ c

(i+1+ k+ α)(i+2+ k+ α)(i+3+ k+α)
,

with
c = 6+(4−2α)i− (2−2α) j +2i j−2i2+2α,

so the series is telescoping and converges to

s(0) =
6+(4−2α)i− (2−2α) j +2i j−2i2+2α

(i+1+ α)(i+2+ α)(i+3+α)
.

It is then straightforward to return to display (3.1) and show that the (i, j) th

entry of BM for j < i is

2(i− j−1)
(i+1+ α)(i+2+ α)

− 8(i− j)
(i+1+ α)(i+2+ α)(i+3+α)

+ s(0) = 0,

which is precisely the (i, j) th entry of M∗ for j < i .

(c) For i = j , the (i, j) th entry in the product matrix B∗B is given by

i+1

∑
k=0

4(i+1−3k−2α)2

(i+3+ α)2(i+4+ α)2 +
(i+1+ α)2(i+2+ α)2

(i+3+ α)2(i+4+ α)2

=
i4 +2(5+2α)i3 +(35+26α +6α2)i2 +(50+50α +34α2 +4α3)i

(i+3+ α)2(i+4+ α)2

+
α4 +6α3 +45α2 +28α +24

(i+3+ α)2(i+4+ α)2 .
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For j � i+1, the (i, j) th entry of B∗B is given by

i+1

∑
k=0

2(i+1−3k−2α)
(i+3+ α)(i+4+ α)

· 2( j +1−3k−2α)
( j +3+ α)( j +4+ α)

+
(α + i+1)(α + i+2)
(i+3+ α)(i+4+ α)

· 2( j−3i−5−2α)
( j +3+ α)( j +4+ α)

=
−2α(11+(5−α)(i+ j)+2i j−5α +2α2)
(i+3+ α)(i+4+ α)( j +3+α)( j +4+α)

.

For i � j +1, the computations are similar to those above. �

Since P serves as an interrupter for the posinormal operator M , we may apply
Theorem 1.2 with Q = I and conclude that M is hyponormal if I −P is a positive
operator, and that will occur if all of its finite sections Sn are positive. Using Lemma
3.1(c) , it is straightforward to show that the first finite section of I−P has determinant

det(S0) =
120+140α +28α2 +8α3

(3+ α)2(4+ α)2 ,

the second finite section has determinant

det(S1) =
16(2100+4340α +2901α2 +1004α3 +234α4 +38α5 +3α6)

(3+ α)2(4+ α)4(5+ α)2 ,

the third finite section has determinant

det(S2) =
16(1134000+3175200α +3319710α2+1884493α3+686703α4)

(3+ α)2(4+ α)4(5+ α)4(6+ α)2

+
16(178049α5+34359α6 +4742α7 +408α8 +16α9)

(3+ α)2(4+ α)4(5+ α)4(6+ α)2 ,

and the fourth finite section has determinant

det(S3) =
16(1047816000+3582532800α +4875510240α2+3747078072α3)

(3+ α)2(4+ α)4(5+ α)4(6+ α)4(7+ α)2

+
16(1885128129α4+675769080α5+182338742α6+38146384α7)

(3+ α)2(4+ α)4(5+ α)4(6+ α)4(7+ α)2

+
16(6184561α8+750976α9 +63688α10 +3328α11 +80α12)

(3+ α)2(4+ α)4(5+ α)4(6+ α)4(7+ α)2 .

These calculations were assisted by [12]. Clearly each of these determinants is positive
for all α � 0, so we close with the following conjecture.

CONJECTURE 3.2. The operator M ∈ B(�2) is also hyponormal for α ∈ (0,1) .

This conjecture would extend Corollary 2.4 and thereby assert the hyponormality
of the generalized Cesàro matrices of order two for all α � 0.
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Math. Soc. 23 (2010), no. 3, 425–433.
[8] H. C. RHALY JR., A superclass of the posinormal operators, New York J. Math. 20 (2014), 497–506.

This paper is available via http://nyjm.albany.edu/j/2014/20-28.html.
[9] H. C. RHALY JR., The Nörlund operator on �2 generated by the sequence of positive integers is

hyponormal, Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 5, 737–742.
[10] B. E. RHOADES, Generalized Hausdorff matrices bounded on �p and c , Acta Sci. Math. (Szeged) 43

(1981), 333–345.
[11] N. K SHARMA, Hausdorff Operators, Acta Sci Math. (Szeged) 35 (1973), 165–167.
[12] W. A. STEIN ET AL., Sage Mathematics Software (Version 6.10), The Sage Developers, 2015,

http://www.sagemath.org.

(Received March 5, 2017) H. C. Rhaly Jr.
1081 Buckley Drive, Jackson

Mississippi 39206, USA
e-mail: rhaly@member.ams.org

Operators and Matrices
www.ele-math.com
oam@ele-math.com


