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AN EXTENSION OF THE
CHEN-BEURLING-HELSON-LOWDENSLAGER THEOREM

HAIHUI FAN, DON HADWIN* AND WENJING L1U

(Communicated by I. M. Spitkovsky)

Abstract. Yanni Chen [3] extended the classical Beurling-Helson-Lowdenslager theorem for
Hardy spaces on the unit circle T defined in terms of continuous gauge norms on L that
dominate ||-[|;. We extend Chen’s result to a much larger class of continuous gauge norms. A
key ingredient is our result that if ¢ is a continuous normalized gauge norm on L™, then there
is a probability measure A, mutually absolutely continuous with respect to Lebesgue measure
on T, such that o > cl| ||, 5 forsome 0 <c¢ < L.

1. Introduction

Let T be the unit circle, i.e., T={A € C:|A| =1}, and let p be Haar mea-
sure (i.e., normalized arc length) on T. The classical and influential Beurling-Helson-
Lowdenslager theorem (see [1], [7]) states that if W is a closed H*(T, it ) -invariant sub-
space (or, equivalently, zW C W) of L? (T, ), then W = oH? for some ¢ € L=(T, ),
with |@| =1 ae.(u) or W = ygL*(T,u) for some Borel set ECT. If 0 W C
H?(T,u), then W = @H?*(T,u) for some ¢ € H*(T,u) with |@| =1 a.e. (u). Later,
the Beurling’s theorem was extended to LP(T, ) and HP(T,u) with 1 < p < oo, with
the assumption that W is weak*-closed when p = o (see [5], [6], [7], [8]). In [3],
Yanni Chen extended the Helson-Lowdenslager-Beurling theorem for all continuous
|| - ||1, -dominating normalized gauge norms on T.

In this paper we extend the Helson-Lowdenslager-Beurling theorem for a much
larger class of norms. We first extend Chen’s results to the case of ¢|| - |1, -dominating
continuous gauge norms. We then prove that for any continuous gauge norm ¢, there
is a probability measure A that is mutually absolutely continuous with respect to
such that o is c| - ||; 1 -dominating. We use this result to extend Chen’s theorem.
Our extension depends on Radon-Nikodym derivative dA /du. In particular, Chen’s
theorem extends exactly whenever log (dA /du) € L' (T, u).
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2. Continuous gauge norms on £

Suppose (2,X,V) is a probability space. A norm o on L”(Q, V) is a normalized
gauge norm if

L. a(l)=1,
2. a(|f|) = a(f) forevery f € L”(Q,Vv).

In addition we say « is continuous (v -continuous) if

Iim o =0,
V(E)—>O (XE)
that is, whenever {E,} is a sequence in X and v (E,) — 0, we have o (yg,) — 0.
We say that a normalized gauge norm o is c|| - |1, -dominating for some ¢ > 0 if

o(f) = c||fll1,v, forevery f € L™(Q, V).

It is easily to see the following fact that

(1) The common norm || - ||,y is a o norm for 1 < p < eo.

(2) If v and A are mutually absolutely continuous probability measures, then
L7(Q,v) = L7(Q,A) and a normalized gauge norm is v-continuous if and only if it is
A -continuous.

We can extend the normalized gauge norm « from L”(Q,V) to the set of all
measurable functions, and define o for all measurable functions f on Q by

o(f) = sup{a(s) : s is a simple function ,0 < s < | f|}.

It is clear that o(f) = o(|f]) still holds.
Define

ZL%(Q,v) ={f: fis ameasurable function on Q with o/(f) < =},

L%(Q,v) =L=(v)”, i.e., the a -closure of L™ (V) in £%.

Since L*(Q,v) with the norm o is dense in L¥(Q,v), they have the same
dual spaces. We prove in the next lemma that the normed dual (L%(Q,v),a)" =
(L= (Q,v), )" can be viewed as a vector subspace of L' (€, V). Suppose w € L' (Q, v),
we define the functional @, : L”(Q,v) — C by

0u()= | ruav.

LEMMA 2.1. Suppose (Q,X,V) is a probability space and o. is a continuous nor-
malized gauge norm on L*(Q,v). Then

(1) if ¢ : L*(Q,v) — C is an a-continuous linear functional, then there is a
w e LY(Q,V) such that ¢ = @,

(2) if ¢ is o-continuous on L= (Q, V), then
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(@) 1wl < llgwll = [[@n ]
(b) given @ in the dual of L*(Q,A), i.e., @ € (L*(Q,A)), there exists a w e
LY (Q, 1), such that

Ve L= (Q,0), (p(f):/wadJL and wL(Q2) C L (Q, ).

Proof. (1)If « is continuous, it follows that, whenever {E, } is a disjoint sequence
of measurable sets,

N
I\IIEILO{ (xU:—IE" - z xEk) = Al,ljl,a (xU/}”:NHEk) =0,
k=1

since limy_... v (U7_y. Ex) = 0. It follows that

p(E)=o(xe)
defines a measure p and p < v. It follows that if w=dp/dv, then

il = sup{‘/gwsdv

= sup{|o(s)| : s simple, [[s[.. <1} <[lo]-

s sis simple, [|s]|., < 1}

Hence w € L' (Q, V). Also, since, for every f € L=(Q, V)

[ (NI < llellec(f) <ol 1/

we see that @ is || - ||.-continuous on L=(€, V), so it follows that ¢ = ¢,, .
(2a) From (1) we will see [[w[|; , < |||

(2b) For any measurable set E C Q, and for all ¢ € (L*(1))*, define p(E) =
¢©(xe). we can prove p is a measure as in Theorem 2.2, and p < A. By Radon-
Nikodym theorem, there exists a function w € L'(2) such that, for every measurable
set ECQ, ¢(xe) =p(E) = JoxewdA. Thus Vf € L*(Q,1), ¢(f) = [ofwdr =
Jo fwgdu = [o fwlh|ldu = [ fwuhdu = [ fwhdu, where w = wu,|w| = |w|, here
weLY(Q,A) and g,h asin Theorem 2.2, so wh € L (1) . Therefore, ¢(f) = [o fWhdu
forall f e L¥(Q,1).

Suppose f € L*(Q,A), f=ulf|, lul=1. |f|] € L*(Q,1). There exists an in-
creasing positive sequence s, such that s, — |f] a.e. (1), thus us, — u|f| a.e. (u).
Yw € LY(Q,A), w = v|w|, where |[v| =1, so we have Vs, — V|f| ae. (i), where
v is the conjugate of v and a(vs, —¥|f|) — 0. Thus @(vs,) — @(¥|f]). On the
other hand, we also have @ (Vs,) = [o Vsp,wdA — [oV|flwdA = [o|f]|w|dA by mono-
tone convergence theorem. Thus [, |f||w|dA = [ |f|[vwdA = @(V|f]) < oo, therefore
fwe LY (Q,1),ie., wL*(Q,A) CLY(Q,1), where w € L'(Q,1). O

THEOREM 2.2. Suppose (Q,%,V) is a probability space, o, is a continuous nor-
malized gauge norm on L*(Q,v) and € > 0. Then there exists a constant ¢ with
1 — & < ¢ < 1 and a probability measure A on X that is mutually absolutely continu-
ous with respect to v such that o is c|| - ||| 5 -dominating.
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Proof. Let M = {v (h™'((0,))) : h € L'(Q,v),h > 0, ¢y is o -continuous}. It
follows from Lemma 2.1 that M # @. Choose {h,} in L'(Q, V) such that h, >0, @,
is o -continuous, and such that

v (7, ((0,20))) — supM.

Let

i 1
=2 |<PhnH
Since |||y < [ @n, |, we see that ||Ao[, , < 1. Also

o 1 1
o= 2 3 g, 1

n=1

s0 @y, is o-bounded and ||@y, || < 1. On the other hand A, ! ((0,5)) C Iy " ((0,0))
for n > 1, so we have

v (' ((0,%0))) = supM.

Let E=Q\hy "' ((0,%)) and assume, via contradiction, that v (E) > 0. Then o (yg) >
0. Hence, by the Hahn-Banach theorem, there is a g € L! (Q,Vv) such that H(ng =1
and

o (xe) = @e (xe) = /ngEdv = Poxr (XE) < Plglye (XE) -
It follows that v ((|g\xE)_1 (07oo)> =1 >0, and that if &} = ho+ |g| x£ . then
supM > v (1" ((0,00))) = v (h ((0,0))) +1 = supM + 1.
This contradiction shows that v (E) = 0, so we can assume that &g (®) > 0 a.e. (V).

By replacing hg with ho/ [ hodv, we can assume that [ hodv = 1.
If we define a probability measure A : £ — [0,1] by

_ / hodv,
E

then A is a measure, L < v and v < A since 0 < iy a.e. (v). Also, we have for
every f € L7 (Q,v),

72 = [ 17142 = [ 1710 = 1, (17D < [lgu | ()
Since @y, (1) =1, we know ||@y,|| > 1. Hence, 0 < co =1/ ||@,|| < 1, and we see

that o is cql| - [|; 5 -dominating on E. If we apply the Hahn-Banach theorem as above
with E = Q, we can find a nonnegative function k € L' (Q, v) such that

H«pku=1=a<1>:¢k<1>:/gk1dv.
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For 0 <r <1 let by = (1 —1t)k+thy. Then @y, = (1 —1) Qx +1¢y,. Thus
Tim flgn | = lloel = 1

Choose 7 so that [|@ ]| <1/(1—¢€),s0 1—e <c=1/]|g,| <1. If we define a
probability measure A, : £ — [0,1] by

1 (E) = [ v,

we see that A, < uv and since h; > thy > 0, we see v < A;. As above we see, for
every f € L”(Q,u) we have

cllf

1
e <o [ 171mav o (1) < ().

A
Therefore, o is || - ||; 5, -dominating on Q. [

If we take Q = T, Theorem 2.2 holds for the probability space (Q,v) = (T, u).
The L?-version of the Helson-Lowdenslager theorem also holds, in a sense, on the
circle T when u is replaced with a mutually absolutely continuous probability measure

A. Here the role of H? (T,A) is replaced with <1/g717> HP (T,u). This result is well-
known, we include a proof for completeness as the following corollary.

COROLLARY 2.3. Suppose A is a probability measure on T and u < A and
A << U. Let g=dA/du and suppose 1 < p < oo. Suppose W is a closed subspace of

LP(T,A), and zW C W. Then gTI’W = xeL'(T,u) for some Borel subset E of T or
1
g?W = @HP(T, 1) for some unimodular function .

Proof. Define U:LP(T,A) — LP(T, ) by Uf:fgl_l’ ,for feLP(T,A). Clearly
U is a surjective isometry, since

U= [ [re?| du= [ 177 sdu= [ 177 d2=17lpa

Define

Mz,ll :LP(TJJ) B LP(T,[,L) by MZ,ﬂf = Zf
and

M ; :LP(T,A) — LP(T,A) by M, f =zf.
Then

1 1 1
UMz,lf = U(Zf) =grzf=z87f= Mz,ug”f :Mz,uUf7
so UM, ; = M, ,U. It follows that W is a closed z-invariant subspace of L”(T,A) if

1
and only if g?W = U(W) is a z-invariant closed linear subspace of LP(T,u). The
conclusion now follows from the classical Beurling theorem for L? (T, u). O
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3. Continuous gauge norms on the unit circle

Suppose o is a continuous normalized gauge norm on L™ (T, u), suppose that
¢ >0 and A is a probability measure on T such that A < u and u < A and such that
a is c| ||, 4 -dominating. We let g = dA /du and g > 0. We consider two cases

(1) [|loggldp < e,

(2) [ [logg|dp = oo.

We define L7 (T,A) to be the ||-||, 1 -closure of L*(T,A4) and define H”(T,4)
to be || - ||, 1 -closure of the polynomials for 1 < p < eo. Denote L™(T,u) = L”(u),
LP(T,p) = LP(u) and HP(T,u) = H? ().

LEMMA 3.1. The following are true:
(1) [|logg|du < o < there is an outer function h € H' (1) with |h| =g,
(2) [ lloggldp == & H'(2) =L (1),

Proof. Clearly H' () is a closed z-invariant subspace of L! (1). Thus, by corol-
lary 2.3, either gH' (1) = @H" (u) for some unimodular ¢ or gH' (1) = ygL' (1) for
some Borel set £ C T.

For (1), if gH'(A) = @H' (1) for some unimodular ¢, and 0 < g € gH'(A), then
0 # @g € H'(u) which implies logg = log|@g| € L' (u). It is a standard fact that if
g >0 and logg are in L'(u), then there exists an outer function & € H'(u) with the
same modulus as g, (i.e., |h| = g). Therefore, (1) is proved by Lemma 3.2 in [3].

For (2), since gH'(1) = @H'(u) if and only if [[logg|du < . Suppose
[ Nlogg|du = . Then gH' (1) = yeL' (u). We have g = ygf for some f € L'(u),
which implies yz = 1 since g > 0. Thus gH' (1) = L' (u) = gL' (1), which implies
H'(2) = L'(A). Conversely, if H'(1) = L'(), then gH' (1) = gL' (1) = L' (u) =
xrL' (1), which means gH' (1) # oH' (), ie., [|logg|du =o. O

There is an important characterization of outer functions in H' (u).

LEMMA 3.2. A function f is an outer function in H' (1) if and only there is a
real harmonic function u with harmonic conjugate u such that

(1) ueL'(u),

(2) f = e,

(3) feL (u).

Through the remainder of following sections we assume

1. « is a continuous normalized gauge norm on L™ (1) .

2. and that ¢ >0 and A is a probability measure on T such that A <y and u < A
and such that o is c| - [|; 5 -dominating.

3. h€ H'(u) is an outer function, 1 is unimodular and Mh = g = dA /dpu.
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Since A and u are mutually absolutely continuous we have L=(u) = L”(1),
L%(u) =L*(A) and H*(u) = H*(A), we will use L™ to denote L=(u) and L”(A),
use L” to denote L% () and L¥(A), use H* to denote H* () and H*(A). It follows
that L* L, H* do not depend on A or u. However, this notation slightly conflicts
with the classical notation for L' (1) = LI'lte or H' (u) = HI'l# | so we will add the
measure to the notation when we are talking about L” or H?.

THEOREM 3.3. We have hL' (1) = L' (u) and hH' (1) = H' (u).

Proof. We know from our assumption (3) that AL (1) = gnL' (1) = gL' (1) =
L' (u). By Lemma 3.1(1), we have gH' (1) = nH' (u), so

hH' (A)=ngH' (A)=nnH' (W)=H'(n). O

COROLLARY 3.4. gH' (1) = yH' (1) for some unimodular y < [ |logg|du <

Proof. Assume gH'(A) = yH'(u), Since 1 € H'(1),g € gH' (1), 3¢ € H'(u)
such that g = y¢. Since ¢ € H'(u),¢ = wh, where v is an inner function and & is
an outer function. Thus, [r|logg|du = [plog|g|ldu = [plog|h|ldu < e, since h is an
outer function.

Assume [r|logg|du < e, g and logg € L'(i),g > 0. Thus there exists an outer
function 7 € H'(u), such that |h| = |g| = g,|h| = ¢h,|¢| = 1,g = nh, Define V :
L'(A) — L'(u) by Vf = hf, as in Theorem 3.3, we have hH'(1) = H'(u), so
gH'(A) =nhH'(A) =nH'(u). Let y=n, then gH'(A) = yH' (). O

We now get a Helson-Lowdenslager theorem when o = || - ||, 2 and logg €

L' (u).

COROLLARY 3.5. Suppose 1 < p <oo. If W is a closed subspace of LP (L) and
W C W, then either W = yHP (L) for some unimodular function y, or W = ygLP(A)
for some Borel subset E of T.

The following theorem shows the relation between H*, H' (1) and L*. This result
parallels a result of Y. Chen [3], which is a key ingredient in her proof of her general
Beurling theorem. However, her result was for H! (u) instead of H' (1).

THEOREM 3.6. H* = H'(A)NL*.

Proof. Since o is continuous c|| - [|; 5 -dominating, o -convergence implies
|| - || 1,1 -convergence, thus

Hoc :FOC - FHHIA :Hl(x).

Also,

H*=H=(A)" cT=% = L".
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Thus H* C H'(A) N LY.
Since o -convergence implies || - ||; 3 -convergence, H'(2)N L% is an o -closed

subspace of L%. Suppose ¢ € (L%)* such that |H™ = 0. It follows from Lemma 2.1
that there is a w € L' (1) such that wL* C L' (1) and such that, for every f € L%,

0(f) = [ rmwdr = [ pwhd.
Since wL* C L' (1), we know that whL* C L' (u). Since ¢|g~ =0, we have
Afmmu=¢&®=0

for every integer n > 0. Thus iw € HJ (1).
Now suppose f € H'(A)NL*. Then hf € H' (1t). We know that every function
in H' (1) has a unique inner-outer factorization. Thus we can write

hf =vh
with y; inner and & outer. Moreover, since hw € HO1 (1), we can write
(hw) (2) = 212 (2) ha (2)

with 7 inner and A, outer. By Lemma 3.2, we can find real harmonic functions
u,uy,uy € L' (1) such that

h=e i =Mt and hy = et

Thus P
hfw = hfhw/h = ,)/26(u1+u2—u)+z(u1+u2—u) cH! (”) )

It follows from Lemma 3.2 that
0 (/) = [ hfwdy = (hfw) (0) =0.

Hence every continuous linear functional on L% that annihilates H* also annihilates
H' (1)NL*. It follows from the Hahn-Banach theorem that H' (A)NL* c H*. O

The following result is a factorization theorem for LY.

THEOREM 3.7. If ke L™, k'e L%, thenthereisa unimodular function u € L™
and an outer function s € H* such that k = us and s~' € H*.

Proof. Recall that an outer function is uniquely determined by its absolute bound-
ary values, which are necessarily absolutely log integrable. Since k~' € L* C L'(1),
we know that ||k[|., > 0. Thus log|k| < log||k||., € R. Moreover, k' € L* C L'(4)
implies hk~! € L! (u), so

log|h| —log|k| =log (|nk~'|) < |nk"|.
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Hence
log |h| — |hk~"| < log|k| < log|lk].. ,

and since log|h|, |[hk™'| and log||k||,, are in L' (i), we see that log|k| € L' (u).
Therefore, by the first statement of Lemma 3.1, there is an outer function s € H 1 (1)
such that |s| = |k|. It follows that s € H*. Hence there is a unimodular function « such
that k = us.

We also know that

|log|nk™" || = [log (|A]) —log|k|| < [log (|A])|+ [log k|| € L' (1),

so there exists an outer function f € H'(u) such that |k~ 'h| = |f|. Thus sf is outer in
H'(u) and |h| = |sf|, so h = e'sf for some real number 7. Since H'(u) =hH' (1),
we see that there exists a function f; € H'(A) such that af; = f =h(e "s7!). It
follows that s™! = ¢ fj € H' (A). Also, |s~'| = |k~!|, so 57! € L*. It follows from
Theorem 3.6 that s~! € HY(A)NL* =H*. O

LEMMA 3.8. If M is a closed subspace of L* and zM C M, then H*M C M.

Proof. Suppose @ € (L%)* and ¢|y = 0. It follows from Lemma 2.1 that there is
aw e L' (1) such that wL* C L' (1) such that, for every f € L*

0(f) = [ fwnar = [ funau.
Suppose f € M. Then, for every integer n > 0, we have 7" f € M, so
0= / 7' fwhdu.
T
Since fwh € hL' (1) =L' (u), it follows that fwh € H} (). Thusif k € H*, we have
0= / kfwhdy = ¢ (kf) .
T

Hence every @ € (L%)* that annihilates M must annihilate H=M . It follows from the
Hahn-Banach theorem that HM C M. O

Welet B={f €L”:|f|l~ <1} denote the closed unit ball in L=(1).

LEMMA 3.9. Let o be a continuous norm on L= (1), then

(1) The o -topology, the | - |55 -topology, and the topology of convergence in 2. -
measure coincide on B,

(2)B={feL”(A) | flle <1} is a-closed.

Proof. For (1), since a is cl| - ||, ; -dominating, o-convergence implies || - || ; -
convergence, and || - [|; 5 -convergence implies convergence in measure. Suppose { f;}
is asequencein B, f, — f inmeasureand € > 0. If E, = {z € T: |f(z) — fu(2)| > §}.
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then lim, .. A(E,) = 0. Since « is continuous, we have lim,_. 0:(xg,) = 0, which
implies that

O‘(fn _f) = a((f_f")%En + (f_fn)XT\En)
<a((f—fu)xe,) + a((f_fn)XT\En)

<al((If = e+ 5 <Nf = fullor(xs,) +5
2a(xEn)+§.

Hence o(f, — f) — 0 as n — . Therefore o -convergence is equivalent to conver-
gence in measure on B. Since a was arbitrary, letting & = || - || 4 , we see that [|-|| 3 -
convergence is also equivalent to convergence in measure. Therefore, the o -topology
and the || - [|5 5 -topology coincide on B.

For (2), suppose {f,} is a sequence in B, f € L% and o(f, — f) — 0. Since
11 < La(f). it follows that ||f, — f||;.4 — O, which implies that f, — f in A-
measure. Then there is a subsequence {f, } such that f,, — f ae. (A). Hence
feB. O

The following theorem and its corollary relate the closed invariant subspaces of
L* to the weak*-closed invariant subspaces of L*.

THEOREM 3.10. Let W be an o -closed linear subspace of L* and M be a
weak*-closed linear subspace of L*(A) such that zM C M and zW CW. Then

(1) M=M*NL=(1),

(2) WNL=(A) is weak*-closed in L™ (1),

3)W=wnL=)".

Proof. For (1), it is clear that M C M NL”(A). Assume, via contradiction, that
weM*NL(A) and w ¢ M. Since M is weak*-closed, there is an F € L'(A) such
that [p FwdA #0, but [ FrdA =0 forevery r € M. Since k = ﬁ eL~(A), ke

L'(1), it follows from Theorem 3.7, that there is an s € H*(A),s~! € H'(A) and a
unimodular function u such that k = us. Choose a sequence {s,} in H”(A) such

that |[s, —s'[[; 4 — 0. Since sF = ukF = ”|F|+1 € L=(A), we can conclude that

[snsF — F||y 2 = |lsnsF — s~ 'sF |15 < |[sn — s~ {|1.4]|sF |- — 0. For each n € N. For
every r € M, from Lemma 3.8, we know that s,sr € H*(A)M C M. Hence

/rsnstl :/snerdl =0,VreM.
T T

Suppose r € M”. Then there is a sequence {r,,} in M such that o/(r,, —r) — 0
as m — oo. For each n € N, it follows from s,sF € H”(A)L*(A) that
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\/rs,,st?L /rms,,stM /\ — Im)SpsF|dA
< lsusFle | Ir=rnld = lsusF o=l 2

< |$n$F |00t (r — 1) — 0.

m—0JT

/ rspsFdA = lim | rpsasFdA =0, Vre M°.
T
In particular, w € M* N L= (1) implies that
/snstdl = / wspsFdA = 0.
T T

Hence,

07é|/Fde < lim\/Fw—s,,stdM—l—lim\/snstdM
T n—eo ! J n—e! J
+0=0.

< lim ||F —s,
n—oo

We get a contradiction. Hence M = M“ NL=(1).

For (2), to prove W NL”(A) is weak*-closed in L*(A), using the Krein-Smulian
theorem, we only need to show that WNL™(1)NB, i.e., WNB, is weak*-closed. By
Lemma 3.9, WNB is o-closed. Since o is c||- [/ 4 -dominating, it follows from the
Lemma 3.9, WNB is ||-|l,1 closed. The fact that W NB is convex implies W NI is
closed in the weak topology on L*(A). If {f; } isanetin WNB and f; — f weak* in
L=(2), then, forevery w € L' (1), [ (f — f)wdA — 0. Since L*>(1) CLY(X), f, — f
weakly in L?(1), so f € WNB. Hence W NB is weak*-closed in L=(1).

For (3), since W is a-closed in LY, it is clear that W D WﬂLw(l)a, suppose
feW andlet k= IfI% Then k € L*(A), k! € L%. 1t follows from Theorem 3.7
that there is an s € H (1), s~ € H* and an unimodular function u such that k = us,
so sf =Tuks = u|f|+1 € L”(A). There is a sequence {s,} in H*(A) such that a(s, —
s~1) — 0. For each n € N, it follows from Lemma 3.8 that s,sf € H*(A)H*(A)W C
W and s,sf € H*(A)L~(A) C L~(A), which implies that {s,sf} is a sequence in
WNL=(A), alspsf — f) < c(sp—s~V)||sf]|le — 0. Thus £ € WNL=(A)" . Therefore
w=wnL~(2)". O

COROLLARY 3.11. A weak*-closed linear subspace M of L (L) satisfies zM C
M if and only if M = @H*(A) for some unimodular function @ or M = ygL= (1), for
some Borel subset E of T.

Proof. If M = @H*(A) for some unimodular function ¢ or M = ygL* (1), for
some Borel subset E of T, clearly, a weak*-closed linear subspace M of L*(1)

with zM C M. Conversely, since zM C M, and we have Mlea - 37l lkn Hence
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by Beurling-Helson-Lowdenslager theorem for || - ||, 5, we consider either Ml =
@H?*(A) for some unimodular function ¢, then M = M NL*(A) = @H*(A) N
L=(M\); or Ml = xeL?(A), for some Borel subset E of T, in this case, M =
M4 AL (A) = yel2(A)NL7(A) = geL=(A), e, M= xeL™(X). O

Now we obtain our main theorem, which extends the Chen-Beurling Helson-
Lowdenslager theorem.

THEOREM 3.12. Suppose | is Haar measure on T and o is a continuous nor-
malized gauge norm on L= (W). Suppose also that ¢ > 0 and A is a probability mea-
sure that is mutually absolutely continuous with respect to |L such that o is c|||| AT
dominating and log|dA /du| € L' (1) . Then a closed linear subspace W of L*(u) sat-
isfies zZW C W if and only if either W = @H* (1) for some unimodular function @, or
W = xeL*(1), for some Borel subset E of T. If 0# W C H*(u), then W = @H* ()
for some inner function @.

Proof. Recall that L=(u) = L*(A), L*(u) = L*(A) and H*(u) = H*(A).The
only if part is obvious. Let M = WNL*(A), and in Theorem 2.2, we have proved
that there exists a measure A such that A < and g < A and there exists ¢ > 0,
VfeL?(u)=L"(A), a(f) > c|/flli .- ie. o isa continuous c|| - |; 5 -dominating
normalized gauge norm on L=(A). It follows from the (2) in Theorem 3.10 that M is
weak* closed in L”(A). Since zW C W, it is easy to check that zM C M. Then by
Corollary 3.11, we can conclude that either M = @H*=(A) for some unimodular func-
tion @ or M = ygL”(A), for some Borel subset E of T. By the (3) in Theorem 3.10,
if M=@H*(1), W=WnL=(A)" =M* =9H=(%)" = pH* = ¢H*(), for some
unimodular function @. If M = ygL”(1), W = WﬂLw(l)a =M* = EL""()L)a =
xeL* = yeL*(u), for some Borel subset E of T. The proof is completed. [

4. Which o’s have a good A ?

In the preceding section we proved a version of Beurling’s theorem for L% when
there is a probability measure A on T that is mutually absolutely continuous with
respect to 4, such that o is c|| - [|; 5 -dominating and dA/du is log-integrable with
respect to (. How do we tell when such a good A exists. Suppose p is a probability
measure on T that is mutually absolutely continuous with respect to ( such that

/Tlog (dp/du)du = —ee.
Here are some useful examples.

EXAMPLE 4.1. Let & = 5 (|| |li g+ ll1,p). Then o is a continuous gauge
norm. If we let A; = p and A, =y we see that o > %lk for k=1,2 and

o ifk=1
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Hence there is both a bad choice of A and a good choice.
EXAMPLE 4.2. Suppose p is as in the preceding example and let o = || - |1 p.

Suppose A is a probability measure that is mutually absolutely continuous with respect
to u and
I

It follows that dA /dp < ¢ a.e., and thus

1,p = 0 =>cl| - ||; 1 for some constant c.

[ 1og(ar/du)an = [ og(d/dp)du+ [ log(dp/dp)dp <loge + (~e=) =~
T T T

In this case there is no good A .

5. A special case

Suppose A is any probability measure that is mutually absolutely continuous with

respect to p and o = || -[|, 4 for some p with 1 < p <eo. Assume 4 is bad, i.e.,

Jr |log % ‘ dL = . In this case, we define a bijective isometry mapping U : LP(1) —

1
LP(u) by Uf =g7 f. Let HP(A) be the a -closure of all polynomials, then H” (1) is a

closed subspace of LP(A) and zHP(A) C HP(A). Therefore, g%Hp(k) is a z-invariant
closed subspace of L”(u). By Beurling-Helson-Lowdenslager theorem, we have

1
gPHP (L) = xgL?(u) for some Borel set E C T, or H” (1), where |@| = 1.

If g HP(1) = xeLP (1), then HP(A) = LP(X), in this case, 9HP (1) = pLP (1), where

lo|=1.1f My = gﬁH”(u), then My is a proper z-invariant closed subspace of L” (1),

and My # yeL?(A). Therefore, Beurling-Helson-Lowdenslager theorem is not true for
this case. However, we have the following theorem

THEOREM 5.1. Suppose A is any probability measure that is mutually absolutely
continuous with respect to . and ot = || - ||, 5 for some p with 1 < p < eo. Also assume

Jr ’log % ‘ du =oo. If M is a closed subspace of L*(A), then zM C M if and only if
(1) M = oMy for some unimodular function @, where My = g+/pH1’([.1), or
(2) M = xgL*(A) for some Borel subset E of T.
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