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GENERALIZED LIE DERIVATIONS OF

UNITAL ALGEBRAS WITH IDEMPOTENTS

DOMINIK BENKOVIČ

(Communicated by L. Molnár)

Abstract. Let A be a unital algebra with a nontrivial idempotent e over a unital commutative
ring R . We show that under suitable assumptions every generalized Lie n -derivation F : A →
A is of the form F(x) = λx+ Δ(x) , where λ ∈ Z(A ) and Δ is a Lie n -derivation of A . As
an application, we give a description of generalized Lie n -derivations on classical examples of
unital algebras with idempotents: triangular algebras, matrix algebras, nest algebras and algebras
of all bounded linear operators.

1. Introduction

Throughout this paper, let R be a commutative ring with unity and let A be a uni-
tal algebra over R . Let us assume that A has an idempotent e �= 0,1 and let f denote
the idempotent 1− e . In this case A can be represented in the Peirce decomposition
form A = eA e + eA f + fA e + fA f where eA e and fA f are subalgebras with
unitary elements e and f , respectively, eA f is an (eA e, fA f )-bimodule and fA e
is an ( fA f ,eA e)-bimodule. We will assume that A satisfies

exe · eA f = {0} = fA e · exe implies exe = 0, (1)

eA f · f x f = {0} = f x f · fA e implies f x f = 0,

for all x ∈ A . Examples of unital algebras with nontrivial idempotents having the
property (1) are triangular algebras, matrix algebras, and prime (and hence in particular
simple) algebras with nontrivial idempotents.

By [x,y] = xy−yx we denote the commutator or the Lie product of elements x,y∈
A . Set p1 (x) = x and

pn (x1,x2, . . . ,xn) = [pn−1 (x1,x2, . . . ,xn−1) ,xn] for all integers n � 2.

Thus, p2 (x1,x2) = [x1,x2] , p3 (x1,x2,x3) = [[x1,x2] ,x3] , etc. Let n � 2 be an integer.
A linear map D : A → A is called a Lie n-derivation if

D(pn (x1,x2, . . . ,xn)) =
n

∑
i=1

pn (x1, . . . ,xi−1,D(xi) ,xi+1, . . . ,xn) (2)
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for all x1,x2, . . . ,xn ∈ A . In particular, a Lie 2-derivation is a Lie derivation and a
Lie 3-derivation is a Lie triple derivation. A linear map F : A → A is said to be a
generalized Lie n-derivation if there exists a Lie n -derivation D : A → A such that

F (pn (x1,x2, . . . ,xn)) = pn (F(x1),x2, . . . ,xn)+
n

∑
i=2

pn (x1, . . . ,D(xi) , . . . ,xn) (3)

for all x1,x2, . . . ,xn ∈ A . In particular, a generalized Lie 2-derivation is a linear map
F that satisfies

F([x1,x2]) = [F(x1),x2]+ [x1,D(x2)] for all x1,x2 ∈ A ,

where D is a Lie derivation of A . A generalized Lie 2-derivation is a generalized
derivation for the Lie product. Namely, a linear map F : A → A is a generalized
derivation with an associated derivation D of A if F(x1x2) = F(x1)x2 +x1D(x2) for all
x1,x2 ∈ A . Let us mention that a generalized Lie 2-derivation should not be mistaken
for the notion of generalized Lie derivation. Namely, a linear map F : A → A is a
generalized Lie derivation if there exists a derivation D : A → A such that

F ([x1,x2]) = F (x1)x2−F (x2)x1 + x1D(x2)− x2D(x1) for all x1,x2 ∈ A . (4)

Note, that any Lie n -derivation is an example of a generalized Lie n -derivation
(set F = D in (3)). On the other hand any multiplier x �→ λx where λ ∈ Z(A ) is an
example of a generalized Lie n -derivation (set F(x) = λx for all x ∈ A and D = 0
in (3)). These types of maps and their sums are standard examples of generalized Lie
n -derivations. We expect that in several settings these maps are basically the only
examples of generalized Lie n -derivations.

The main purpose of the paper is to describe generalized Lie n -derivations of
unital algebras with idempotents, which satisfy (1). In the main result of the paper,
Theorem 2.3, we show that under certain mild assumptions every generalized Lie n -
derivation F : A → A is of the form

F(x) = λx+ Δ(x) for all x ∈ A ,

where λ ∈ Z(A ) and Δ is a Lie n -derivation of A . As an application, we give a de-
scription of generalized Lie n -derivations on classical examples of unital algebras with
idempotents: triangular algebras (Corollary 3.2), matrix algebras (Corollary 3.1), upper
triangular matrix algebras (Corollary 3.3), nest algebras (Corollary 3.4) and algebras of
all bounded linear operators (Corollary 3.6). We shall use some known results about
the form of Lie n -derivations on unital algebras with idempotents that were obtained in
papers [3, 4, 6, 13, 14]. Let us mention that in different papers [5, 8, 9, 10, 11, 12, 15]
Lie derivations and Lie triple derivations on triangular algebras were studied from dif-
ferent perspectives. The main motivation for our study actually comes from papers
[1, 2, 7]. Ashraf and Jabeen [1] recently described the form of nonlinear generalized
Lie 3-derivation on triangular algebras. In papers [2, 7] generalized Lie derivations,
maps satisfying (4), of triangular algebras were studied.
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In this paper we present a new approach, which elegantly reduces the problem of
describing a generalized Lie n -derivation to problem of describing a Lie n -derivation.
It turns out, that if F : A → A is a generalized Lie n -derivation associated with a Lie
n -derivation D , then a linear map H = F −D satisfies

H (pn (x1,x2, . . . ,xn)) = pn (H(x1),x2, . . . ,xn) (5)

for all x1,x2, . . . ,xn ∈ A . Therefore, it suffices to consider linear maps with prop-
erty (5). Note that H is actually a generalized Lie n -derivation whose associated Lie
n -derivation is the zero map. Under suitable assumptions on unital algebra A (see
Proposition 2.2) any such generalized Lie n -derivation is of the form H(x) = λx+γ(x)
for all x ∈ A , where λ ∈ Z(A ) and γ : A → Z (A ) is a linear map that vanishes on
pn (A , . . . ,A ) .

2. Preliminaries and the main theorem

Let A be a unital algebra with nontrivial idempotents e and f = 1− e , which
satisfies (1). For convenience we shall use the following notations a = eae ∈ eA e ,
m = em f ∈ eA f , t = f te ∈ fA e and b = f b f ∈ fA f . Thus, every element x ∈ A
can be represented in the form

x = eae+ em f + f te+ f b f = a+m+ t +b.

From [3, Proposition 2.1] it follows that the center of A is equal to

Z (A ) = {a+b∈ eA e+ fA f |am = mb,ta = bt for all m ∈ eA f ,t ∈ fA e} .

Furthermore, there exists a unique algebra isomorphism τ : Z (A )e → Z (A ) f , such
that am = mτ (a) and ta = τ (a)t for all m ∈ eA f ,t ∈ fA e and for any a ∈ Z (A )e .
It is not difficult to see:

REMARK 2.1. Let A be a unital algebra with a nontrivial idempotent e and f =
1− e . For any x ∈ A and for any integer n � 2 we have

pn (x,e, . . . ,e) = (−1)n−1 ex f + f xe and

pn (x, f , . . . , f ) = ex f +(−1)n−1 f xe.

In particular, [x,e] = −ex f + f xe and [x, f ] = ex f − f xe .

In this section we will prove the main result, Theorem 2.3. As we mentioned in
the introduction, the problem of a description of a generalized Lie n -derivations can be
reduced to a description of a map satisfying (5). Let us begin with the solution of this
problem.

PROPOSITION 2.2. Let A be a unital algebra with a nontrivial idempotent e
satisfying (1). Let us assume that Z (eA e) = Z (A )e and Z ( fA f ) = Z (A ) f . If a
linear map H : A → A satisfies

H (pn (x1,x2, . . . ,xn)) = pn (H(x1),x2, . . . ,xn) (6)
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for all x1,x2, . . . ,xn ∈ A , then

H(x) = λx+ γ(x) for all x ∈ A ,

where λ ∈ Z(A ) and γ : A → Z (A ) is a linear map such that γ(pn (A , . . . ,A )) = 0.

Proof. Let us prove first, that

H(e) = eH(e)e+ fH(e) f ∈ eA e+ fA f and (7)

H( f ) = eH( f )e+ fH( f ) f ∈ eA e+ fA f . (8)

We can write
H (pn (e, f , . . . , f )) = H (pn−1 ([e, f ], . . . , f )) = 0

and according to Remark 2.1 it holds

pn (H(e), f , . . . , f ) = eH(e) f +(−1)n−1 fH(e)e.

Hence, eH(e) f +(−1)n−1 fH(e)e = 0 and so eH(e) f = 0 = fH(e)e . Therefore, H(e)
is of the form (7). We prove similarly that H( f ) is of the form (8).

Further, let us prove that

fH(e) f ∈ Z (A ) f and (9)

eH( f )e ∈ Z (A )e. (10)

If n = 2 then
0 = H([e,b]) = [H(e),b] = [ fH(e) f ,b]

for all b ∈ fA f . Hence fH(e) f ∈ Z ( fA f ) . With assumption Z ( fA f ) = Z (A ) f
we see that (9) holds true. Similarly, one can prove (10). Let n � 3 and let b ∈ fA f ,
m ∈ eA f and t ∈ fA e be arbitrary elements. We can write

H (pn (e,b,m, f , . . . , f )) = H (pn−1 ([e,b],m, f , . . . , f )) = 0

and

pn (H(e),b,m, f , . . . , f ) = pn−2([[H(e),b],m], f , . . . , f )
= pn−2([[ fH(e) f ,b],m], f , . . . , f )
= −m[ fH(e) f ,b].

Hence, eA f · [ fH(e) f ,b] = {0}. Analogously, we can show

H (pn (e,b,t,e, . . . ,e)) = H (pn−1 ([e,b],t,e, . . . ,e)) = 0

and
pn (H(e),b,t,e, . . . ,e) = pn−2([[H(e),b],t],e, . . . ,e) = [ fH(e) f ,b]t.
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Hence, [ fH(e) f ,b] · fA e = {0} . Because the algebra A satisfies (1), it follows
[ fH(e) f ,b] = 0 for all b∈ fA f . Hence, fH(e) f ∈ Z ( fA f ) = Z (A ) f and (9) holds
true. Similarly, one can prove (10).

Let us denote α = eH(e)e− τ−1( fH(e) f ) ∈ eA e , β = fH( f ) f − τ(eH( f )e) ∈
fA f , and λ = α + β ∈ eA e+ fA f . Let us prove that λ ∈ Z(A ) . For this purpose
we describe images H(m) and H(t), where m∈ eA f and t ∈ fA e arbitrary elements.
The first conclusion is

[H(e),m] = eH(e)em−mfH(e) f = (eH(e)e− τ−1( fH(e) f ))m = αm,

[H( f ),m] = eH( f )em−mfH( f ) f = m(τ(eH( f )e− fH( f ) f ) = −mβ .

Considering this, we can write

H(m) = H([e,m]) = H (pn (e,m, f , . . . , f ))
= pn (H(e),m, f , . . . , f ) = pn−1 ([H(e),m] , f , . . . , f )
= pn−1 (αm, f , . . . , f ) = αm

and

H(m) = −H([ f ,m]) = −H (pn ( f ,m, f , . . . , f ))
= −pn (H( f ),m, f , . . . , f ) = −pn−1 ([H( f ),m] , f , . . . , f )
= −pn−1 (−mβ , f , . . . , f ) = mβ .

Hence
H(m) = αm = mβ for all m ∈ eA f . (11)

Analogously, one can prove that

H(t) = β t = tα for all t ∈ fA e. (12)

From equalities (11) and (12) we conclude, that λ = α + β ∈ Z(A ) .
Let a linear map γ : A →A be defined by γ(x) = H(x)−λx for all x∈A . Then

γ also satisfies (6). Namely, it holds true that

γ (pn (x1,x2, . . . ,xn)) = H (pn (x1,x2, . . . ,xn))−λ pn (x1,x2, . . . ,xn)
= pn (H(x1),x2, . . . ,xn)− pn (λx1,x2, . . . ,xn)
= pn (H(x1)−λx1,x2, . . . ,xn)
= pn (γ(x1),x2, . . . ,xn)

for all x1,x2, . . . ,xn ∈ A . Next, we prove that γ maps into the center of A .
According to (11) and (12), we see that

γ(m) = H(m)−λm = αm− (α + β )m = 0,

γ(t) = H(t)−λ t = β t− (α + β )t = 0
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for all m ∈ eA f , t ∈ fA e . Let us fix a ∈ eA e . Then the following equalities,

γ (pn (a, f , . . . , f )) = γ (pn−1 ([a, f ], . . . , f )) = 0,

pn (γ(a), f , . . . , f ) = eγ(a) f +(−1)n−1 f γ(a)e,

imply eγ(a) f + (−1)n−1 f γ(a)e = 0. Hence, eγ(a) f = 0 = f γ(a)e and so γ(a) =
eγ(a)e+ f γ(a) f ∈ eA e+ fA f . Let m ∈ eA f be an arbitrary element. Then am ∈
eA f and γ(am) = 0. Therefore, we may write

0 = γ(am) = γ([a,m]) = γ (pn (a,m, f , . . . , f ))
= pn (γ(a),m, f , . . . , f ) = pn−1 ([γ(a),m] , f , . . . , f )
= eγ(a)em−mf γ(a) f .

Hence,
eγ(a)e ·m = m · f γ(a) f for all m ∈ eA f . (13)

Similarly, let t ∈ fA e be an arbitrary element. Because ta ∈ fA e , we have

0 = −γ(ta) = γ([a,t]) = γ (pn (a,t,e, . . . ,e))
= pn (γ(a),t,e, . . . ,e) = pn−1 ([γ(a), t] ,e, . . . ,e)
= f γ(a) f t − teγ(a)e.

Thus,
f γ(a) f · t = t · eγ(a)e for all t ∈ fA e. (14)

From (13) and (14) we conclude that γ(a) = eγ(a)e + f γ(a) f ∈ Z(A ) for all a ∈
eA e . Similarly one can prove, that γ(b) = eγ(b)e+ f γ(b) f ∈ Z(A ) for all b ∈ fA f .
Therefore γ maps into the center of A . From γ(A ) ⊆ Z(A ) , it follows

γ (pn (x1,x2, . . . ,xn)) = pn (γ(x1),x2, . . . ,xn) = pn−1 ([γ(x1),x2], . . . ,xn) = 0

for all x1,x2, . . . ,xn ∈ A . Therefore γ(pn (A , . . . ,A )) = 0 and the proposition is
proved. �

The main result of the paper states:

THEOREM 2.3. Let A be a unital algebra with a nontrivial idempotent e satis-
fying (1). Let us assume that

(i) Z (eA e) = Z (A )e,
(ii) Z ( fA f ) = Z (A ) f .
Then any generalized Lie n-derivation F : A → A is of the form F(x) = λx+

Δ(x) for all x ∈ A , where λ ∈ Z(A ) and Δ : A → A is a Lie n-derivation.

Proof. Let F : A → A be a generalized Lie n -derivation with an associated Lie
n -derivation D . According to the definition

F (pn (x1,x2, . . . ,xn)) = pn (F(x1),x2, . . . ,xn)+
n

∑
i=2

pn (x1, . . . ,D(xi) , . . . ,xn) ,

D(pn (x1,x2, . . . ,xn)) = pn (D(x1),x2, . . . ,xn)+
n

∑
i=2

pn (x1, . . . ,D(xi) , . . . ,xn)
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for all x1,x2, . . . ,xn ∈ A . Let us denote H = F −D . If we subtract upper equalities we
see that a linear map H satisfies

H (pn (x1,x2, . . . ,xn)) = pn (H(x1),x2, . . . ,xn)

for all x1,x2, . . . ,xn ∈A . Since all assumptions from Proposition 2.2 are fulfilled there
exists λ ∈ Z(A ) and a linear map γ : A → Z (A ) that vanishes on pn (A , . . . ,A ) such
that H(x) = λx+ γ(x) for all x ∈ A . Then F(x) = λx+D(x)+ γ(x) for all x ∈ A .
Note that γ is a Lie n -derivation and hence Δ = D+ γ is also a Lie n -derivation. Thus,
we get the desired result F(x) = λx+ Δ(x) for x ∈ A . �

In general, there exist generalized Lie n -derivations, which are not the sums of
a multiplier x �→ λx , λ ∈ Z(A ) , and a Lie n -derivation. We will construct such an
example on a triangular algebra, which does not satisfy assumption (ii) of Theorem
2.3. Thus, this example justifies the assumptions of our main theorem.

EXAMPLE. Let R [X ] be the algebra of all polynomials with coefficients from a
commutative ring R with unity. Let A = R [X ]/(X2) . We construct a triangular algebra

A =
(

R A
A

)
=

{(
r0 t0 + t1X

s0 + s1X

)
; r,t0,t1,s0,s1 ∈ R

}
.

Let

e =
(

1 0
0

)
and f =

(
0 0

1

)
.

Note that Z (A ) = R1 . Since A is commutative it follows that Z ( fA f ) = fA f �=
R f = Z (A ) f . Hence A does not satisfy assumption (ii) of Theorem 2.3.

Let us define a linear map F : A → A as

F :

(
r0 t0 + t1X

s0 + s1X

)
�→

(
0 t0X

(s0 − r0)X

)

for all r, t0, t1,s0,s1 ∈ R . Let

x =
(

r0 t0 + t1X
s0 + s1X

)
and y =

(
r′0 t ′0 + t ′1X

s′0 + s′1X

)

be an arbitrary elements of A . By a straightforward computation one can prove that

F([x,y]) = [F(x),y] =
(

0 (r0t ′0 + t0s′0 − r′0t0− t ′0s0)X
0

)
.

Hence, F is a generalized Lie 2-derivation with the associated map D = 0. Now,
assume that there exists λ ∈ Z(A ) = R1 and a Lie derivation Δ : A → A such that
F(x) = λx+ Δ(x) for all x ∈ A . Set

m =
(

0 1
0

)
.
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Then

Δ(e) = F(e)−λe =
(−λ 0

−X

)
, Δ(m) = F(m)−λm =

(
0 −λ +X

0

)
.

Since Δ is a Lie derivation, we get

Δ([e,m])− [Δ(e),m]− [e,Δ(m)] =
(

0 λ −X
0

)
�= 0,

a contradiction. Thus, F is not the sum of a multiplier and a Lie derivation. Note, that
F is actually a generalized Lie n -derivation for all n � 2.

3. Applications

In this section we apply Theorem 2.3 to the classical examples of unital algebras:
triangular algebras (upper triangular matrix algebras, nest algebras), matrix algebras
and algebras of bounded linear operators. Our main result reduces the description of a
generalized Lie n -derivation to the description of a Lie n -derivation. Lie n -derivations
of triangular rings were considered in [4] and on unital algebras with nontrivial idem-
potents in [13, 14].

Matrix algebras

Let A = Ms (A) , s � 2, be a matrix algebra, where A is a unital algebra. Let{
ei j|i, j = 1,2, . . . ,s

}
be the system of matrix units of A and let 1 be the identity of

A . Let us denote the idempotent e = e11 and f = 1− e. In this case

A =
(

A M1×(s−1) (A)
M(s−1)×1 (A) Ms−1 (A)

)

satisfies (1). Note that the subalgebra eA e is isomorphic to A and fA f is isomorphic
to the matrix algebra Mn−1 (A) . Clearly, (eA e, fA f ) -bimodule eA f ∼= M1×(s−1) (A)
is faithful as a left eA e-module and as a right fA f -module. Since Z(Ms(A)) =
Z(A)1 , it holds Z(A )e = Z(A)e = Z(eA e) and Z(A ) f = Z(A) f = Z( fA f ). Theorem
2.3 implies that any generalized Lie n -derivation F : A → A is of the form F(x) =
λx + Δ(x) for all x ∈ A , where λ ∈ Z(A) and Δ is a Lie n -derivation. Wang [13,
Corollary 3.1] proved that every Lie n -derivation Δ of Ms(A) , s � 3, has a standard
form Δ = d + γ , where d : A → A is a derivation and γ : A → Z(A)1 is a linear map
that vanishes on pn (A , . . . ,A ) . We get:

COROLLARY 3.1. Let A = Ms(A) , s � 3 , where A is a unital (n− 1)-torsion
free algebra. Then every generalized Lie n-derivation F : A → A is of the form
F(x) = λx+d(x)+ γ(x) , where λ ∈ Z(A) , d : A → A is a derivation and γ : A →
Z (A)1 is a linear map that vanishes on pn (A , . . . ,A ) .
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Let us mention, that on the matrix algebra M2(A) the problem of description of
Lie n -derivations remains open. From [3, Corollary 5.7] it follows that any Lie 2-
derivation of M2(A) is of a standard form. However, Corollary 3.1 holds for M2(A) ,
where A is a prime algebra since in this case any Lie n -derivation of M2 (A) has a
standard form (see [13, Corollary 3.2]).

Triangular algebras

In case A is a unital algebra with a nontrivial idempotent e such that fA e = {0} ,
and that the bimodule eA f is faithful as a left eA e-module and also as a right fA f -
module, the algebra A is a triangular algebra. When studying Lie n -derivations on
triangular algebras the following assumption is very useful

x ∈ A , [x,A ] ∈ Z (A ) =⇒ x ∈ Z (A ) . (15)

Note that (15) is equivalent to the requirement that [[x,A ] ,A ] = 0 implies [x,A ] =
0 and it is equivalent to the condition that there do not exist nonzero central inner
derivations of A . Some examples of algebras satisfying (15) are (see [3, page 143]):
any commutative algebra, any prime algebra (the algebra of bounded linear operators
B(X) over a complex Banach space X ), any triangular algebra and any unital algebra
A with a nontrivial idempotent e and property (1).

Using Theorem 2.3 and [4, Theorem 5.9] we get:

COROLLARY 3.2. Let A = eA e+ eA f + fA f be a (n−1)-torsion free trian-
gular algebra such that:

(i) Z (eA e) = Z (A )e,
(ii) Z ( fA f ) = Z (A ) f ,
(iii) eA e or fA f satisfies (15).
Then every generalized Lie n-derivation F : A → A is of the form F(x) = λx+

d(x)+ γ(x) for all x ∈ A , where λ ∈ Z(A ) , d : A →A is a derivation and γ : A →
Z (A ) is a linear map that vanishes on pn (A , . . . ,A ) .

Let A = Ts (A) , s � 2, be an upper triangular matrix algebra over a unital algebra
A . If we choose the idempotent e = e11 then A can be represented as a triangular
algebra of the form

A =
(

A M1×(s−1) (A)
Ts−1 (A)

)
.

Since Z(Ts(A)) = Z(A)1 , we have Z (eA e) = Z (A)e , Z ( fA f ) = Z (A) f and assump-
tions (i),(ii) of Corollary 3.2 hold true. If s � 3, then fA f ∼= Ts−1 (A) is a triangular
algebra and satisfies (15) and so assumption (iii) also holds true. Thus, Corollary 3.2
implies:

COROLLARY 3.3. Let A = Ts(A) , s � 3 , where A is a unital (n− 1)-torsion
free algebra. Then every generalized Lie n-derivation F : A → A is of the form
F(x) = λx+d(x)+ γ(x) for all x ∈ A , where λ ∈ Z(A) , d : A → A is a derivation
and γ : A → Z (A)1 is a linear map that vanishes on pn (A , . . . ,A ) .
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It should be mentioned that Corollary 3.3 does not hold if s = 2. However, Corol-
lary 3.3 holds for s = 2 if we assume that A satisfies (15).

A nest is a chain N of closed subspaces of a complex Hilbert space H containing
{0} and H which is closed under arbitrary intersections and closed linear span. The
nest algebra associated to N is the algebra

T (N ) = {T ∈ B (H) |T (N) ⊆ N for all N ∈ N } .

Let us assume that N is a nontrivial nest and N ∈N \{0,H} . Let e ∈ T (N ) denote
the orthogonal projection on the subspace N . Then T (N ) can be represented as a
triangular algebra T (N ) = eT (N )e+ eT (N ) f + f T (N ) f , where eT (N )e and
f T (N ) f are both nest algebras. Since the center of each nest algebra coincides with
C1 , it follows that assumptions (i),(ii) of Corollary 3.2 hold true. Further, assumption
(iii) holds true as well and hence, Corollary 3.2 yields:

COROLLARY 3.4. Let N be a nontrivial nest of a complex Hilbert space H ,
dimH � 2 . Then every generalized Lie n-derivation of a nest algebra T (N ) is of the
form F(x) = λx+d(x)+γ(x) for all x∈T (N ) , where λ ∈C , d : T (N )→T (N )
is a derivation and γ : T (N ) → C1 is a linear map that vanishes on pn(T (N ), . . . ,
T (N )) .

Let us mention, that Corollary 3.4 holds true also if N = {0,H} is a trivial nest.
In this case T (N ) = B(H) is the algebra of all bounded linear operators on H (see
Corollary 3.6).

Algebras of all bounded linear operators

Let X be a Banach space over C of dimension greater than 1. By B = B(X)
we denote the algebra of all bounded linear operators on X . B contains a nontrivial
idempotent e and hence can be presented in the form B = eBe+eB f + fBe+ fB f .
Since B is a prime algebra, B satisfies (1). Note that eBe , fB f are algebras of all
bounded linear operators and all B , eBe , fB f are central algebras over C . There-
fore, eZ (B)e = Z (eBe) = Ce and f Z (B) f = Z ( fB f ) = C f . Hence B meets as-
sumptions of Theorem 2.3 and we have:

COROLLARY 3.5. Let X be a complex Banach space over C , dimX � 2 . Then
every generalized Lie n-derivation F of B (X) is of the form F(x) = λx+Δ(x) for all
x ∈ B (X) , where λ ∈ C and Δ : B (X) → B (X) is a Lie n-derivation.

What can be said about Lie n -derivations of the algebra B? We know that B is a
prime algebra and B , eBe , fB f are central algebras over C . Thus, the assumptions
of the Wang’s result [13, Theorem 3.1] are fulfilled. Hence any Lie n -derivation Δ :
B →B has the standard form Δ = d+γ , where d is a derivation of B and γ : B →C1
is a linear map that vanishes on pn (B, . . . ,B) . This fact and Corollary 3.5 yields:

COROLLARY 3.6. Let X be a complex Banach space over C , dimX � 2 . Then
every generalized Lie n-derivation F : B (X) → B (X) is of the form F(x) = λx +
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d(x) + γ(x) for all x ∈ B (X) , where λ ∈ C , d is a derivation of B (X) and γ :
B (X) → C1 is a linear map that vanishes on pn (B (X) , . . . ,B (X)) .
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