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BERNSTEIN FUNCTIONS OF SEVERAL SEMIGROUP GENERATORS
ON BANACH SPACES UNDER BOUNDED PERTURBATIONS, II

A. R. MIROTIN

(Communicated by V. V. Peller)

Abstract. The paper deals with multidimensional Bochner-Phillips functional calculus. In the
previous paper by the author bounded perturbations of Bernstein functions of several commut-
ing semigroup generators on Banach spaces where considered, conditions for Lipschitzness
and estimates for the norm of commutators of such functions where proved. Also in the one-
dimensional case the Frechet differentiability of Bernstein functions of semigroup generators on
Banach spaces where proved and a generalization of Livschits-Krein trace formula derived. The
aim of the present paper is to prove the Frechet differentiability of operator Bernstein functions
and the Livschits-Krein trace formula in the multidimensional setting.

1. Introduction

Yu. Daletskif and S. G. Krein pioneered the study of the problem of differentia-
bility of functions of self-adjoint operators in [8]. Differential calculus for functions of
several commuting Hermitian operators in Hilbert spaces was studied in [11]. For sur-
vey and bibliography of the theory that resulted see the article [1]. It should be stressed
that all these work deal with Hilbert spaces only. The case of Banach spaces was con-
sidered in [33], [18], and [17]. In particular, the last paper by the author was devoted
to Bernstein functions of several commuting semigroup generators on Banach spaces
(they constitute the subject matter of the so called multidimensional Bochner-Phillips
functional calculus). In [17] we gave inter alia conditions for their Lipschitzness and
showed that such functions are ¢ perturbations preserving where ¢ is an arbitrary
operator ideal, estimates for the norm of commutators were also obtained; in the one-
dimensional case Frechet-differentiability and a trace formula were proved. The aim of
the present paper is to prove the Frechet differentiability of operator Bernstein functions
and the Livschits-Krein trace formula in the multidimensional setting. (Apparently the
multidimensional Livschits-Krein trace formula established in the paper is also new for
Hilbert space operators.)

So this work could be considered as a contribution to the multidimensional Bochner-
Phillips functional calculus.
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As was mentioned in [17], the one-dimensional Bochner-Phillips functional cal-
culus is a substantial part of the theory of operator semigroups and finds important
applications in the theory of random processes (see, e.g., [19], [20]). The foundations
of multidimensional calculus were laid by the author in [21], [22], [23], [24], [25]. Be-
low we recall some notions and facts from [6], [21], [22], and [23], which we need for
formulating our results.

DEFINITION 1. [6] We say that a nonpositive function y € C*((—e;0)") be-
longs to the class Z; (or is a nonpositive Bernstein function of n variables) if all of
its first partial derivatives are absolutely monotone (a function in C**((—e0;0)") is said
to be absolutely monotone if it is nonnegative together with its partial derivatives of all
orders).

Obviously, v € .7, if and only if —y(—s) is a nonnegative Bernstein function of
n variables on (0,)", and .7, is a cone under the pointwise addition of functions and
multiplication by scalars. As is known [6] (see also [23], [26]), each function y € .7,
admits an integral representation of the form (here and in what follows, the dot denotes
inner product in R” and the expression s — —0 means that s; — —0,...,s, — —0)

y(s) =cotci s+ / (e =1du(v) (s€(—0)"), (*)
R\ {0}

where o = y(—0) :=lim;— o y(s), c1 = ()}, €RY, ¢f =limy;| . y(s)/s;, and
U is a positive measure on R’ \ {0} ; u are determined by .

A lot of examples of Bernstein function of one variable one can found in [34] (see
also [20], [26]).

Throughout the paper, Ty,,...,Ts, denote pairwise commuting one-parameter
Co semigroups (i.e., strongly continuous semigroups on R, ) on a complex Banach
space X with generators Ay, ..., A, respectively satisfying the condition || Ty, (¢)|| < Ma
(t >0, Ma = const) (sometimes we write 7} instead of Tj;). We denote the domain of
A; by D(A;) and set A = (Ay,...,A,). We put R(t,A;) := (t] —A;)~" for ¢ in p(A;),
the resolvent set for A;. Hereafter, by the commutation of operators Ay, ...,A, we mean
the commutation of the corresponding semigroups. By Gen(X) we denote the set of
all generators of uniformly bounded Cy semigroups on X and by Gen(X)", the set of
all n-tuples (Aj,...,A,) where A; € Gen(X). We put also M := max{M,, Mg} for
the pare A, B of n-tuples from Gen(X)". In the following £ (X) denotes the algebra
of linear bounded operators on X and 7, the identity operator on X. An operator-
valued function Ty (u) := Ty, (u1)...Tp,(uy) (u € R’}) is an n-parameter Cp semi-
group; therefore, the linear manifold D(A) := M’_;D(4;) is dense in X [10, Sec.
10.10].

DEFINITION 2. [23] The value of a function y € .7, of the form () at A =
(A1,...,A,) applied to x € D(A) is defined by

Y(A)x =cox+cp-Ax+ / (Tx(u) — Dxdu(u),
R3\{0}
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where ¢ -Ax := 2/:1 clAjx.

Given y € 9, and t > 0, the function g,(z) :=¢' ¥(@) is absolutely monotone on
(—o0;0)". It is also obvious that g;(z) < 1. By virtue of the multidimensional version
of the Bernstein-Widder Theorem (see, e.g., [6], [4]), there exists a unique bounded
positive measure v; on R’ , such that, for z € (—o0;0)", we have

g&(2) = /e“‘dv,(u).

R}
DEFINITION 3. In the notation introduced above, we set

a(A)x = / Ta (u)xdvi (u) (x € X)
KL

(the integral is understood in the sense of Bochner).

Obviously, ||g:(A)|| < M. The map g(A) : 1 — g(A) is a Cy semigroup. In
the one-dimensional case, it is called the semigroup subordinate to Ty. In [27] it was
noticed that the closure of the operator W(A) exists and is the generator of the Cp
semigroup g(A) (cf. [23].) It suggests the following final version of the definition of
the operator W(A).

DEFINITION 4. [23] By the value of a function y € 7, at an n-tuple A =
(Aq,...,A,) of commuting operators in Gen(X) we understand the generator of the
semigroup g(A), i.e., the closure of the operator defined in the Definition 2. This value
is denoted by y(A).

The functional calculus thus arising is called multidimensional Bochner-Phillips
calculus, or .7, -calculus.

In the sequel we assume for the sake of simplicity that ¢co = ¢; = 0 in the inte-
gral representation () of the function y € .9, (otherwise one should replace y/(s) by
y(s)—co—cp-s).

The notation and constraints introduced above are used in what follows without
additional explanations.

We shall use also the following results from [17].

THEOREM 1. [17, Theorem 1] Let v € 9,. Then for every commuting families
A= (Ay,...,A,), and B= (By,...,B,) from Gen(X)" such that the operators A; — B;
are bounded, D(A;) = D(B;) (i = 1,...,n) the operator y(A) — W(B) is also bounded
and

2e M
_ < _ n A —
i) - wiB)l < - 2y (301~ 51).

where ||A—B|| := (||A1 — Bi]|,-- -, ||An — Bn||)-
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Below we shall assume that a (two sided) operator ideal (7, ]-| ,) on X is

symmetrically normed in the sense that ||ASB]| 4 < < lIA[[lIS]I ,[[B]| for A,B € Z(X) and
S € _# . The following theorem shows that Bernstein functions are / perturbations
preserving.

THEOREM 2. [17, Theorem 4] Let (7, ||-|| ,) be an operator ideal on X and

v € 9, be such that g—l\’{ ls=—0 # oo forall i=1,...,n. For every commuting families
A=(Ay,...,A,) and B= (By,...,By) from Gen(X)" suchthat Ai—B; € ¢ ,D(A;) =
D(B;) (i=1,...,n) the operator y(A) — y(B) belongsto 7, too, and

lv) - v, < M"“z& 1A~ Bl
=—0

2. Differentiability

DEFINITION 5. (Cf. [17].) Let (J7,[|-| ,) be an operator ideal on X, y €
Iy, A be the n-tuple of pairwise commuting operators from Gen(X). We call the
bounded linear operator yy : #" — ¢ (transformator) the _# -Frechet derivative
of the operator function y at the point A, if for every n-tuple AA € #" such that
A;+ AA; € Gen(X) for all i and operators A; + AA; pairwise commute we have

lw(A+84) — y(4) -y (AA)]|, = o([1A4]| ) as AA], = zumuﬁo

Evidently, the Frechet derivative at the point A is unique.
Before we formulate our first result note that if dy/ds;|s—_¢ # o the derivative
dy/ds; of a function y € 9], equals to

e vidu(v) (s € (==,00")
RE\{0}

and the measure v;du(v) is finite. So for every n-tuple A of pairwise commuting
operators A; € Gen(X) the operator

algilA) — / Ta(v)vidu(v)

REA{0}

exists and belongs to .Z(X).

THEOREM 3. Let W € 9, and Vi @; := dy/dsi|s——o # . Then for every n-
tuple A of pairwise commuting operators A; € Gen(X) the £ (X)-Frechet derivative
for the operator function y at the point A exists and

n

HEEDY 8‘55”@ (1)
i=1 t

Sor every n-tuple C € £ (X)".
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Proof. The case n =1 was considered in [17]. Now let n > 2. For the proof we
need the following generalization of Theorem 5 from [26] on divided differences.

LEMMA 1. Let the function y € 9, has the integral representation (* ), and ®; =
dW/9si|s=—0 # oo (i=1,...,n). Then the function

S) =W (ST e sSi 158t 1 9Sit L seeesS, .
) l’/( ) W( 1 Siisln+711+l i+1 n) _ (Di7 lf S # Spals
@i(S,Sn11) := Ils) .
a—sl_—(Di, lfSi:Sn+1
(s=(s1,...,5,)) belongs to F,.1 and has the integral representation

(Pi(5a5n+l) _ / (eS-u+Sn+an+l _ l)d,u,-(u),
R {0}
where dui(u) is the image of the measure 1/2du(v)dw under the mapping uj =v; if
J# i,n+ la Ui = (Vi+w)/2’ Upt+1 = (V[ - W)/Z

Proof. Assume that s; # s,41. Then, putting §; := (S1,...,8i—1,8i41,---,51), We
get from () that

o ) ) SiVi __ oSn+1Vi A
V() = WS, Simly Sut 15 Si 1oy 8n) o — SV — ’esf"’fd‘u(v) .
Si = Sn+1 ., Si = Sn+1
R1\{0}

(2)

Since
Vi

PN 1 vitw Vi=W | A A
&S = 2 / <esilT+“"“’T+-‘f'v" - 1) dw+v;,

—v;

SV _ Snt1Vi
Si = Sn+1

formula (2) implies that
Vi
R O T
REA\{0} —vi

1 VW VW s
_ 5/‘ (e-\i PERRYES B e U R 1) de,u(V),
Q;

where Q; = {(v,w) :v e R} \ {0},w € [—vi,vi]}.
Making the change of variables uj =v; for j #i,n+1, uj= (vi+w)/2, uyr1 =
(vi —w)/2 in the last integral, we get

Oi(8,5011) = / (e omettnet — 1) dy(u), 3)
r1H\ (o)

where d;(u) is the image of the measure 1/2d(v)dw under the mapping u; = v; if
J# l7n+ la Ui = (Vi+w)/2’ Upt+1 = (V[ - W)/Z
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The case s; = s, follows from the first assertion of the lemma as s, 1 —s;. U

Now we claim that for every commuting Ay,...,A,+; € Gen(X), and for every i
such that A; — A, € Z(X) the following equality holds for x € D(A)

Oi(Ar, .. A1) (A — A1) x = W(Ar, . A)X— W(ALL AL A LA AR)X

_dy
ds;

For the proof first note that in view of Definition 2 and formula (3) for x € D(A) we
have

(Ai = Aps1)x. (4)
s=—0

Oi(Ar, .. A1) (A —Apgr)x = / (T (u1) -+ Toge1 (1) = 1) (A — A1 )xd i (u)
R\ {0}

(for simplicity we write Tj instead of 74, ). Let €; be as in the proof of Lemma 1. If
we put in the last integral v; = u;(j # i,n+1), vi = uj +up41, W= u; — up41, then
(v,w) runs over Q; and we get

Oi(Ar, .. A1) (Ai —Apgr)x

-3 [ f (5

)EH (Vigw) IT Tj(uj)—l> (Ai—Api1)xdw

R" \{0} —v; 1< j<n, j#i
lv' vi+w Vi— W
= [Tty [ 5 (M) e (M5 (i Avadwauts)
n I<j<n, j#i i
R\{O} Vi
_dy
s SZO(Az—AnH)X- )

Because of the following identity [17, p. 211] (x € D(A))

2/ (m)T”“<v; )V‘ = Aps)xdw = (Ti(ui) = Ty (ui))x,

formula (5) implies (4).
Now putting A,+1 —A; = AA; in the formula (3) (AA; € £(X)), we have for
x€D(A)
l[/(A17 . ,A,;l,Ai +AAi7Al‘+17 .. ,An)x— l[/(Ah . ,An)x

dy
85,‘

= (/)i(A17"‘7An7Ai+AAi)AAix+ AAi)C. (6)

s=—0

By Theorem 1 the operator

OC,'(AA,‘) = (Pi(AI; . ,An,A,‘ +AA,') — (p,'(Al, o ,An,A,‘)
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is bounded and

2e M
Jestaa] < - 25 0+ ot (<M 00 and) )

2e
e —
Thus the formula (6) entails the equality

1(n+ DM ;(0,...,0) =0 as ||AA;]| — 0.

W(A17~~~ VA1, Ai +AAL A, . ,An)x— l[/(Ah... ,An)x

= @i(Ay,...,Ap,A)) A Aix + g—sw AAix + 0i(AA;)AA;x. (7)
i ls=—0
Let us show that
_dy(A)  dy
o, A A= E B S| Y

To this end note that the Definition 2 implies in view of Lemma 1 that for x € D(A)
(p,'(Al, ce ,An,A,-)x
- / (T3 (1) o T (i) Tyt -t T (11 - - T (1) — Dxd ().
RN\ {0}
If we puthere v; =u; (j#i,n+1), vi=u;+upt1, w=u; — 11, as in the proof of

the formula (5), we get

OArs. . A A = / (T1(v1) .. Ta(v) —I)x%du(v)dw

Q
1 i
= / d,u(v)/(Tl(vl)...Tn(vn)—I)xdw
R0} v
Jy(A d
= / Ti(vi)... T (va)vidu(v) — / vidu(v) = lgi )x—&:{ X.
R1\{0} R\ {0} s==0

This completes the proof of formula (8). Since D(A) is dense in X, formula (7) implies
in view of (8) that (i =1,...,n)

Iy(A)

W(Alw .. 7Ai717Ai+AAi7Ai+la' .. 7An) - W(Alv' .. 7An) = Os:

AA; +o([|AA])).

It follows that

V(A+AA) — w(A) = W(A| +AAy,..., Ay +AA,) — WAL Ay +AAg, . Ay + AA,) + ...
—+ l//(Al,... ,AnI;An +AAn) — W(Al,Az,... ,An)

0
-y %(A17,.,7Ai7Ai+l +AAit1, .. Ap+ AAL)AA; + o(||AA]).
i=1 !
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To complete the proof it suffices to show that

d d
%(A17...,Ai,Ai+1+AA,-+1,...,A,,+AAH):%(Ah...,An)—kBi(AA), 9)
where ||Bi(AA)| — 0 as |[AA|| =0 (i=1,...,n).
But
Iy
X(Alv"'vAhAH*l+AAi+17"'7An +AAn)

= / Tay (V1) oo Ta; (Vi) Tary +aniy (Vie1) - - Taran, (Va)vid (v), (10)
RE\{0}

and it is known that ||y, +a4;(t) — Ta;(1)[| — 0 as [|[AA;]| — O (see, e.g., [10, Theo-
rem 13.5.8]). Since all semigroups 7j; are bounded and measures v ;du(v) are finite,
formula (9) follows from Lebesgue dominated convergence theorem [7, Ch. IV, Sub-
section 3.7, Corollary of Theorem 6]. This finishes the proof of Theorem 3. [

Note that the condition Vi dy/ds;|,__, # e is also necessary for the Frechet
differentiability of the function y at every point A (take A = (O,...,0)) but in the
case of exponentially stable semigroups the following corollary holds.

COROLLARY 1. Let y € Z,. Then for every n-tuple A of pairwise commuting
operators from Gen(X) such that Vi || Ty, (t)|| < Me® with ® <0, the £(X)-Frechet
derivative for the operator function Y at the point A exists and (1) holds.

Proof. To use Theorem 3 we need the condition Vi dy/dsi|,__q # °=. To bypass
it we apply Theorem 3 to the function y(s;+ ®,...,s, + ®) from .7, and to the n-tuple
(A1 —ol,...,Ay, — ©l) from Gen(X)". O

THEOREM 4. Let (7, ||| ) be a symmetrically normed operator ideal on X,
v €9, and Oy /dsi|,__y# o, 82y//¢9s?|S:70 #eo (i=1,...,n). For every n-tuple
A of pairwise commuting operators from Gen(X) the 7 -Frechet derivative for the
operator function  at the point A exists and (1) holds for every n-tuple C € _#".

Proof. As in the proof of previous theorem one can assume that n > 2. We proceed
as in the proof of Theorem 3 with AA; € 7, [|AA;]|  — 0. Then Theorem 2 implies
that the operator o;(AA;) belongs to ¢, too and for [[AA;]|  — 0 we have

; 10%y
0;(AA; <M AAl| 5 = M 2L AA; 0. (11
] s <br T8 sy =M IS sy =0 (1)
Indeed,
i — lim OQi(S1,- -1 8n41)
aan s=—0 ’ s——0 8Sn+1
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OY(S1yeeesSim 1St 1580t 1se58n
y V() = W1, Si 1y Sut 15 Sit 1y 55n)) — WSt '91.1.“ e )(Si_SnJrl)
= l1im .
s——0 (Sl‘ —Sn+1)2
But, by the Taylor’s formula (below & lies between (s, ..., 8 1,Su4158it15---55)
and s),
dy(s) 192y (&) 2
e Si L Sn L Sit Ly Sn) — = — )+ = —5)%.
VST, ey Sicty Sl Sit 155 5n) — W(s) I, (Sn+1— i) 2 0% (Sn+1— i)
Hence,
dy(s ad seesSi—15Sn4158i4-15-+-55n 82
3(Pi ( gs(,-s) — W laSSiH Pl )> (Sn+l _Si) - % ;{gg) (5n+1 - Si)
= lim 5 !
ISn+1 s——0 =0 (Sns1—8i)

Applying the Taylor’s formula to the first summand of the numerator in the right-hand
side we deduce from the last equality that

2’y

i

aSnJrl

1
s=—0 2 asl2

s=—0

and the formula (11) follows.
Now consider

P P
Bi(AA) = %(Ah...,Ai,A,-H + A A M) — (A AL

(see formula (9)). Since [10, Theorem 13.4.1]

=

TAj"rAAj(t) = z Sm (1),
m=0

where
t

So=Ts,,Sm(t) = / Ty (t — T)AA;Sy 1 (T)dT (m > 1),
0

we have for [|AAj]| , — 0

t
1 Tajan; (1) = Ta, (]| # < | 2 /IITA_,-(f—T)IIIISm—l(T)IIdT 1Al » — 0
m:l0

(the series in the right-hand side converges, as the proof of Theorem 13.4.1 in [10]
shows). So the formula (10) implies in view of Lebesgue dominated convergence the-
orem that ||[8;(AA)|| y — 0 as [|AAj|| , — 0. The remaining part of the proof is the
same as in Theorem 3. [

In context of Theorem 4 there is an analog of Corollary 1 for exponentially stable
semigroups, as well.
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COROLLARY 2. Let (7] | ,) be a symmetrically normed operator ideal on
X, y € ,. Then for every n-tuple A of pairwise commuting operators from Gen(X)
such that Vi || Ty, (1)|| < Me® with @ <0, the 7 -Frechet derivative for the operator
Sfunction  at the point A exists and (1) holds for every n-tuple C € _#".

The proof of this corollary is similar to the proof of corollary 1.

3. Trace formula

As is well known, the trace formula for a trace class perturbation of a self-adjoint
operator was proved in a special case in [13] and in the general case in [12]. A survey
of farther developments (in context of Hilbert spaces) and bibliography one can fined
in [5], [31], see also recent papers [32], [2], [14], [15], and [16].

In this section we introduce a spectral shift function and prove a Livschits-Krein
trace formula for a trace class perturbations of generators of Cp-semigroups on Ba-
nach space with approximation property if this semigroups are holomorphic in the right
half-plane and have a polynomial growth. Recall that if the Banach space X has the
approximation property there is a continuous linear functional tr of norm 1 (a trace) on
the operator ideal (&y,]| -||s,) of nuclear operators on X (see, e. g., [9, p. 64]). In the
following d*y denotes a multi-index derivative of a function v,

Cl :={zeC":Re(z;) >0, j=1,...,n}.

THEOREM 5. Let the Banach space X has the approximation property. Let A
and B be n-tuples of generators of pairwise commuting bounded Cy-semigroups Ty,
and Tg; respectively on X holomorphic in the half plane C.. and satisfying || Ta; ()|,
|5, (E)|| < M|C|™ for some mj € Zy (§ € Cy,j=1,....,n). If VjA;j—Bj €&

there exists a unique distribution Ma g supported in R such that for every y € 7,
with 82m+1u/}sz_0 #oo (m=(my,...,my)) we have

w(y() - wB) = [ (s )duw).
REN{0}

where (as above) | stands for the representing measure of W and (Na p(t),e ") de-
notes the Laplace transform of N g. In particular,

tr(Ta(v) = T(v)) = (Map(r),e"") (v € R} \{0}).
Proof. Consider the function
F(z):=Ta(z) = Tp(z) (z€Cl).

It is easy to verify that

Ta(z) — Tp(z) = (’ﬁ Ty, (Zi)) (Tu, (zn) — Tp,(zn))
i=1
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n—2
+ (H TA,—(Zi)> (T, (zn—1) — TB,_(z4-1))TB,(zn)
i—1

n

oo Ty (20)(Tay (22) = Ty (22)) [ [ T (20) + (T, (20) = T, () [ ] T (=) (12)
i=3 i=2
Theorem 2 implies that Ty, (z;) — Tp,(zi) € &1. So, F : C'. — & by formula (12).
But for all x € D(A),Re(z;) >0

(T ()~ T ()= [ 4 (T (e = )Ta,(5))ds
(0,z]
_ / T, (zi — 5) (A — Bi) T, (s)xds. (13)
(0,z]

Since for s € [0, z]
175, (zi — 5)(Ai = B) Ta,(5)l| s, < M*(|zi = s[s])"™ | Ai — Bill s,
<M (|zi— s+ |s)*" | Ai — Bils,
= M|z [|A; = Bi||s,, (14)
both sides in (13) are bounded, formula (13) holds for all x € X, and
I1Tp, (1) — T, (20) |, < MPJzi| ™ *!||Ai = Bills, -

Now it follows from (12) that

n
IF()lle, <M™! max 1Ai = Bille, [T Iz
i=1

Therefore if we put
f(z) :=uF(2),

then

n
|f(2)| < const ] |z:*" . (15)
i1

We clame that f is holomorphicin C’} . In view of Hartogs Theorem it suffices to
prove that f is separately holomorphic. To simplify the notation we shall show that f
is holomorphic in z;. Indeed, formula (12) yields that

F(z) = (Ta,(z1) — Tp,(21))S1(225 - - -y2n) + T, (21)S2(22, - - - 1 2n)
for some operators S1(z2,...,2,) € ZL(X) and Sy(z2,...,21) € 1.
Then for every z; € C and sufficiently small Az; we have
F(z1+Az1,20,...,20) — F(2)
= ((Ta, (z1 +Az1) = Tp, (21 + Az1)) — (Ta, (21) — T3, (21)))S1 (225 - - - 2n)
+ (T, (z1 +Az1) — Tp, (21))S2(22, - - - 2n)- (16)



456 A. R. MIROTIN

Formula (13) implies the equality

(Ta, (21 +Az1) — Tp, (21 + Az1)) — (Ta, (z1) — Tp, (z1))
= / TBl(Z+AZI_5)(A1—BI)TA1(5)dS_/TBI(ZI_5>(A1—BI)TA1(S)dS

[0,z14+Az;] [0,z1]
— [ Toa+da =91 BOTa ()ds— [ Ty (a1 = 5) (41 — BT, (9)ds
[0721] [O,Zl]
+ / Tp, (21 + A2y — s) (A — B1)Ty, (s)ds
[z1,21+Az]
21 21 21
= <TB| (E +A21> _TBI (E)) / TBI (E —S> (A1 —Bl)TAl(S)dS
[O,Zl]
+ / Tp, (21 + Azt —5)(A1 — B1) Ty, (s)ds.
[z1,214+Az1]

Taking into account formula (14) we have

| Ta, (21 +Az1) — Tp, (21 +Az1)) — (Ta, (z1) — T, (21) || &,

21 71 2 %1

< _ _ —_ —_
HTBI<2+AZ‘> TBI(z)HM 2

+M?|z1 + Az *™M||A; - Bi|s, |Az1] — 0 (Az1 — 0).

2m
|A1 = Bills, |z1]

Now, formula (16) shows that the map F : C". — &, and consequently the function
f, are continuous in z; (above we used the fact that holomorphic semigroups 7, and
T, are norm continuous on C_).

Moreover, since zj — F(z1,22,...,2,) is analytic in the half plane C with respect
to the operator norm, we have for every closed path C located at this half plane that

ff(ZhZzw-,Zn)dm = trf.F(Zl,ZL---,Zn)le =0.
c C

So by the Morera’s Theorem the function z; — f(z1,22,...,2,) is analytic in the right
half plane, as well. Now, since f is analytic in C| and satisfies (15), there is a unique
distribution 14 p supported in R, such that f(z) = (nap(t),e "), the Laplace trans-
form of Ma p (see, e.g., [28, Theorem 8.13.3]).

Since, by our hypothesis,

a2m+1w|S:70 — / ﬁu?’ﬂi+1d”(u) 7& oo

1\ {0} !
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and (15) holds, Definition 2 and Theorem 2 imply that

w(y(4) -~ w(B) = [ (Ta(u) ~ Talu)da(u)

R\ {0}
= [ fwdu = [ (us)e ) dut).
R\ {0} R7\{0}

Putting 4 = 8,, the Dirac measure centered at v, we get the last conclusion of the
theorem. [

COROLLARY 3. Under the conditions of theorem 5
NaB = L_ltr(TA — TB)7

where L™1 denotes the inverse of the n-dimensional Laplace transform in a distribu-
tional setting.

COROLLARY 4. Under the conditions of theorem 5 for A € C_ let R(A,A) :=
IT. R(A:,A;). Then R(A,A) —R(A,B) € &, and

tr(R(A,A) —R(A,B)) = / (A s(t), e e " du,
RY

the iterated Laplace transformation of Ma g (the Stieltjes transform ).
Proof. First note that C- C p(4;). Since

R(Ai,A;) /TA e ds (A eCyii=1,...,n),

we have
R(A,A)—R(A,B) = /(TA(M) — TB(u))e‘A'”du. (17)
R7
Theorem 2 with y(s) =e**—1, # =&, implies that Ty (u) — Tp(u) € &1 and
1Ta () = To(u) s, <M"Y wil|Ai— Bills, - (18)
i=1
It follows that
/HTA W) le e du < oo,

Therefore in view of (17) we get R(1,A) —R(A,B) € &; and

tr(R(A,A) —R(A,B)) = / (T (1) — Ty(u))e ™ “du — / Mas(e),e e " du

R R

by theorem 5. [l
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REMARK 1. For the n-dimensional Stieltjes transform of distributions see [28,
Ch.10], especially Theorem 10.8.1 therein, and [30].

REMARK 2. It was shown in [32] that Livschits-Krein trace formula holds for
arbitrary pairs of not necessarily bounded self-adjoint operators with trace class dif-
ference if and only if the corresponding function is operator Lipschitz. In [16], [15]
Livschits-Krein trace formulae (for operator Lipschitz functions) was extended to the
case of pairs of maximal dissipative (m-dissipative) operators and pairs of contractions
on Hilbert space. Since by [17, Corollary 2] (see also [34, Corollary 13.9]) every neg-
ative Bernstein function y in one variable such that y'(—0) #  is operator Lipschitz
in the class of generators of contractive Cp-semigroups (and, more generally, in any
class of generators of uniformly bounded Cj-semigroups with common upper bound
M), theorem 5 (in the case n = 1) and [17, Theorem 8] are consistent with results for
Hilbert space operators mentioned above.

It should me mentioned also that when n =1 and Ty and Ty are Hilbert space con-
tractive semigroups the result of previous corollary is closely related to [ 14, Theorem
3.14].

COROLLARY 5. Under the conditions of theorem 5 let bounded one-parameter
Co-semigroups 8i(A) = Ty(a)(t) and g:(B) = Tyg) (1) satisfy | Ty(a)(E), Ty ()l
<MLK for some k€ 7.y (§ € Cy ). Then

Ny(A),w(B) =L.y_1/(nA,B(f),e_"'tMVx(u), (19)
1

where L' denotes the inverse of the one-dimensional Laplace transform in a distribu-
tional setting with respect to s.

Proof. First note that bounded Cy-semigroups Ty,(4) and Ty,(p) are holomorphic
in the half plane C; by [3, Theorem 7.2]. Since w(A) — y(B) € &1, we have by
corollary 3 and theorem 5 that

My, p(e) = L 'tr(gs(A) — g5(B)) = L ' / (Ta () = Ta(u))dvs(u)
=L [ tr(Ty(u (u))dvs(u) = L; Nag(t),e ") dvs(u)
[ '/

(the first integral converges in the sense of Bochner in the & -normin view of (18)). [
REMARK 3. Since g(z) := ') = fR’i e"*dvy(u), formula (19) formally can be

written as
Nyay e =Ly (ap(r), eV ).
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COROLLARY 6. (Cf. [17, Theorem 8].) Let the Banach space X has the ap-
proximation property. Let A and B be generators of bounded Cy-semigroups Ty
and Tg respectively on X holomorphic in the half plane C and satisfying ||Tx(8)]|,
ITs(O)|| < M|E™ (meZy,§ €Cy). If A—B € G there exists a unique distribution
2m+1)

S=—

w(y() - wB) = [ (Easle)e udp(u).

(0,+ee)

Ea  supported in Ry such that for every y € J with l//( 0 # oo we have

In particular,
tr(Ta(v) — Tp(v)) = (Eap(t), e )v.

Proof. Put n =1 in theorem 5 and take for §A7B the antiderivative of 74 p sup-
portedin Ry. [J

To formulate our next corollaries we need some preparations. First note that the
function v, (s) :=logA —log(A —s) (A > 0) belongs to .77 [20, Example 3]. So, for
A € Gen(X),A >0 we can put

log(AI —A) := (logA)I — y;, (A).
Note also that for A,B € Gen(X),A > 0 such that A — B is nuclear the operator
log(11 — B) — log(AI — A) = y,(4) — v;.(B)
is nuclear by theorem 2.
DEFINITION 6. (Cf. [5, formula (3.25)]). Let the Banach space X has the ap-

proximation property. For A,B € Gen(X),A > 0 such that A — B is nuclear define the
perturbation determinant of the pair (A,B) as follows

Ap/a(A) = exptr(log(AI — B) —log(AI — A)).

REMARK 4. Since exptrS = detexpS for nuclear S, one can define perturbation
determinant of a pair (A,B) by the formula

Ap/a(A) = detexp(log(Al — B) —log(Al — A)).
If, in addition, A and B commute, we have for A > 0
Agja(A) =det((A1—B)(AI—A)"") =det(I+ (A—B)(AI—A) ™).

Indeed, in this case using Dyson-Phillips series (see, e.g., [10, (13.2.4)]) it is easy to
prove that

exp(y,(B)) exp(y2 (A) — w(B)) = exp(y(A))
where exp(G) denotes T (1) for a generator G of a Cy-semigroup 7. Now, putting
g(z) = ¥2() = L1(L —z)~" in definition 3, we get for 7 = 1 from the above equality,
that

exp(v (A) — i (B)) = (A1~ B)(AI—A) .
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Another approach to the definition of perturbation determinant of a pair of closed
operators on Hilbert space one can fined in [35, Section 8.1] and [14].

We shall use also the following notion of the Stieltjes transform of distributions
[29]. Let o < 1 be fixed real number. The space S, of test functions consists of all
complex-valued functions ¢ € C*(0,) such that

(t%)kw)

The topology in Sy in determined by the family of seminorms (py)kez, . For every
linear functional f from the dual space S, its Stieltjes transform F is defined by the
rule

pr(@) == sup (1+1)* < oo (k€ ZLy).

1€(0,00)

1
F(z):= t),— ), € C\ (—o0,0].
@i= (S0 ). 2eCh==0
The function F is holomorphicin C\ (—eo,0].

COROLLARY 7. (Cf. [12], and also [5, formula (3.1)]). Let X,A, and B be as in
the above corollary. Then

log8ua(4) = (E10(0) 117 ) (3> 0) (20)

the Stieltjes transformation of s . So one can compute Ea g via inversion theorems
for the Stieltjes transform (see, e.g., [28], [29]). In particular,
| diZk— l(t 1OgAB/A( )) (21)

Ean(t) = Jim Rk—2)1

(the limit is taken in the sense of distributions).

(_t)kfl d2k71

Proof. First note that by the proof of theorem 5 and corollary 6 the Laplace trans-
formation of &4 p exists. So, by definition, &4 (1) = e f(¢) for some py > 0 and
tempered distribution f supported in R.. Since e 7%'S; embeds in the Schwartz space
< (Ry4), it follows that &4 € Sj).

On the other hand, W)(me)‘ . +# oo, and
—

=

= /(es" —Du" e du.

0
Thus, by corollary 6
logAg/a(1) = tr(y (B) /5“ e gy
0
= §AB(Z)/ ut) gy Eap(t), ! (A >0).
o 1+A

Formula (21) follows from the real inversion theorem for the Stieltjes transform [29]. [J
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COROLLARY 8. (Cf. [12], and also [5, formula 3.7].) Let X,A, and B be as in the
corollary 6. The perturbation determinant of the pair (A,B) has analytic continuation
to C\ (—e0,0] and

Eun(t) = —— limlog 22AT =)

t>0); 22
271i y]0 % AB/A(_t + ly) ( ) ( )

in particular, if &a p is real-valued, formula (22) takes the form

1. .
Ea(s) = ;lvlﬁ)ﬂm(log(AB/A(—S —iy))) (s>0) (23)
(limits in (22) and (23) are taken in the sense of distributions).

Proof. Since the right-hand side of the formula (20) is holomorphicin C\ (—ee,0],
define

tog8uya(2)i= (Gnal0) - )+ 2€C\(-0) 4

Now we can apply the complex inversion theorem for the Stieltjes transform [29] and
get (22). Since for the real-valued §A7B formula (24) implies

Re(log(Ap/a(—=s+iy))) = Re(log(Ap/a(—s—iy))),
m(log(Ap/a(—s+iy))) = —Im(log(Ap s (—s —iy))),
formula (23) follows from (22). [J

A substantial part of properties of perturbation determinant of pairs of operators on
Hilbert space (see, e.g., [35, Section 8.1]) is valid for Ag /- For example, the following
formula holds.

COROLLARY 9. (Cf. [35, Section 8.1, formula (4)].) Let X,A, and B be as in
the corollary 6. Then

Apa(2)
~——— =w(R(z,B) —R(z,A)), z€ p(A)Np(B).
AB/A(Z)
Proof. Differentiating (24) we get for z € p(A) N p(B) in view of corollary 4
Ap/a(2) d 1 1
B/A\L
AB/A() <§AB() dZt+Z> <§AB() t+Z>

— <TIA7B(I), > = tr(R(z,B) —R(Z,A)). O

1+z
REMARK 5. Formula (20) implies that limy .. Ag/a(4) = 1. It follows also
from the definition 6 and corollary 8 that Ag 4 (2)Ac/p(2) = Ac/a(z) for z€ C\ (—e0,0],

and operators A, B,C € Gen(X) such that the pairs (A,B) and (B,C) satisfy all the con-
ditions of corollary 6.
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COROLLARY 10. If; in addition to the conditions mentioned in the corollary 6,
is a measure, then

It follows from the corollary 6 and Tonelli’s Theorem.
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