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BERNSTEIN FUNCTIONS OF SEVERAL SEMIGROUP GENERATORS

ON BANACH SPACES UNDER BOUNDED PERTURBATIONS, II

A. R. MIROTIN

(Communicated by V. V. Peller)

Abstract. The paper deals with multidimensional Bochner-Phillips functional calculus. In the
previous paper by the author bounded perturbations of Bernstein functions of several commut-
ing semigroup generators on Banach spaces where considered, conditions for Lipschitzness
and estimates for the norm of commutators of such functions where proved. Also in the one-
dimensional case the Frechet differentiability of Bernstein functions of semigroup generators on
Banach spaces where proved and a generalization of Livschits-Kreı̆n trace formula derived. The
aim of the present paper is to prove the Frechet differentiability of operator Bernstein functions
and the Livschits-Kreı̆n trace formula in the multidimensional setting.

1. Introduction

Yu. Daletskiı̆ and S. G. Kreı̆n pioneered the study of the problem of differentia-
bility of functions of self-adjoint operators in [8]. Differential calculus for functions of
several commuting Hermitian operators in Hilbert spaces was studied in [11]. For sur-
vey and bibliography of the theory that resulted see the article [1]. It should be stressed
that all these work deal with Hilbert spaces only. The case of Banach spaces was con-
sidered in [33], [18], and [17]. In particular, the last paper by the author was devoted
to Bernstein functions of several commuting semigroup generators on Banach spaces
(they constitute the subject matter of the so called multidimensional Bochner-Phillips
functional calculus). In [17] we gave inter alia conditions for their Lipschitzness and
showed that such functions are J perturbations preserving where J is an arbitrary
operator ideal, estimates for the norm of commutators were also obtained; in the one-
dimensional case Frechet-differentiability and a trace formula were proved. The aim of
the present paper is to prove the Frechet differentiability of operator Bernstein functions
and the Livschits-Kreı̆n trace formula in the multidimensional setting. (Apparently the
multidimensional Livschits-Kreı̆n trace formula established in the paper is also new for
Hilbert space operators.)

So this work could be considered as a contribution to the multidimensional Bochner-
Phillips functional calculus.
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As was mentioned in [17], the one-dimensional Bochner-Phillips functional cal-
culus is a substantial part of the theory of operator semigroups and finds important
applications in the theory of random processes (see, e.g., [19], [20]). The foundations
of multidimensional calculus were laid by the author in [21], [22], [23], [24], [25]. Be-
low we recall some notions and facts from [6], [21], [22], and [23], which we need for
formulating our results.

DEFINITION 1. [6] We say that a nonpositive function ψ ∈ C∞((−∞;0)n) be-
longs to the class Tn (or is a nonpositive Bernstein function of n variables) if all of
its first partial derivatives are absolutely monotone (a function in C∞((−∞;0)n) is said
to be absolutely monotone if it is nonnegative together with its partial derivatives of all
orders).

Obviously, ψ ∈ Tn if and only if −ψ(−s) is a nonnegative Bernstein function of
n variables on (0,∞)n , and Tn is a cone under the pointwise addition of functions and
multiplication by scalars. As is known [6] (see also [23], [26]), each function ψ ∈ Tn

admits an integral representation of the form (here and in what follows, the dot denotes
inner product in R

n and the expression s →−0 means that s1 →−0, . . . ,sn →−0)

ψ(s) = c0 + c1 · s+
∫

Rn
+\{0}

(es·v −1)dμ(v) (s ∈ (−∞;0)n), (∗)

where c0 = ψ(−0) := lims→−0 ψ(s) , c1 = (c j
1)

n
j=1 ∈ Rn

+ , c j
1 = lims j↓−∞ ψ(s)/s j , and

μ is a positive measure on Rn
+ \ {0} ; μ are determined by ψ .

A lot of examples of Bernstein function of one variable one can found in [34] (see
also [20], [26]).

Throughout the paper, TA1 , . . . ,TAn denote pairwise commuting one-parameter
C0 semigroups (i.e., strongly continuous semigroups on R+ ) on a complex Banach
space X with generators A1, . . . ,An respectively satisfying the condition ‖TAj(t)‖� MA

(t � 0, MA = const) (sometimes we write Tj instead of TAj ). We denote the domain of
Aj by D(Aj) and set A = (A1, . . . ,An) . We put R(t,Ai) := (tI−Ai)−1 for t in ρ(Ai) ,
the resolvent set for Ai . Hereafter, by the commutation of operators A1, . . . ,An we mean
the commutation of the corresponding semigroups. By Gen(X) we denote the set of
all generators of uniformly bounded C0 semigroups on X and by Gen(X)n , the set of
all n -tuples (A1, . . . ,An) where Aj ∈ Gen(X) . We put also M := max{MA,MB} for
the pare A,B of n -tuples from Gen(X)n . In the following L (X) denotes the algebra
of linear bounded operators on X and I , the identity operator on X . An operator-
valued function TA(u) := TA1(u1) . . .TAn(un) (u ∈ Rn

+) is an n -parameter C0 semi-
group; therefore, the linear manifold D(A) := ∩n

j=1D(Aj) is dense in X [10, Sec.
10.10].

DEFINITION 2. [23] The value of a function ψ ∈ Tn of the form (∗ ) at A =
(A1, . . . ,An) applied to x ∈ D(A) is defined by

ψ(A)x = c0x+ c1 ·Ax+
∫

Rn
+\{0}

(TA(u)− I)xdμ(u),
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where c1 ·Ax := ∑n
j=1 c j

1Ajx .

Given ψ ∈ Tn and t � 0, the function gt(z) := etψ(z) is absolutely monotone on
(−∞;0)n . It is also obvious that gt(z) � 1. By virtue of the multidimensional version
of the Bernstein-Widder Theorem (see, e.g., [6], [4]), there exists a unique bounded
positive measure νt on Rn

+ , such that, for z ∈ (−∞;0)n , we have

gt(z) =
∫

Rn
+

ez·udνt(u).

DEFINITION 3. In the notation introduced above, we set

gt(A)x =
∫

Rn
+

TA(u)xdνt(u) (x ∈ X)

(the integral is understood in the sense of Bochner).

Obviously, ‖gt(A)‖ � Mn
A . The map g(A) : t �→ gt(A) is a C0 semigroup. In

the one-dimensional case, it is called the semigroup subordinate to TA. In [27] it was
noticed that the closure of the operator ψ(A) exists and is the generator of the C0

semigroup g(A) (cf. [23].) It suggests the following final version of the definition of
the operator ψ(A) .

DEFINITION 4. [23] By the value of a function ψ ∈ Tn at an n -tuple A =
(A1, . . . ,An) of commuting operators in Gen(X) we understand the generator of the
semigroup g(A) , i.e., the closure of the operator defined in the Definition 2. This value
is denoted by ψ(A) .

The functional calculus thus arising is called multidimensional Bochner-Phillips
calculus, or Tn -calculus.

In the sequel we assume for the sake of simplicity that c0 = c1 = 0 in the inte-
gral representation (∗ ) of the function ψ ∈ Tn (otherwise one should replace ψ(s) by
ψ(s)− c0− c1 · s).

The notation and constraints introduced above are used in what follows without
additional explanations.

We shall use also the following results from [17].

THEOREM 1. [17, Theorem 1] Let ψ ∈ Tn . Then for every commuting families
A = (A1, . . . ,An) , and B = (B1, . . . ,Bn) from Gen(X)n such that the operators Ai −Bi

are bounded, D(Ai) = D(Bi) (i = 1, . . . ,n) the operator ψ(A)−ψ(B) is also bounded
and

‖ψ(A)−ψ(B)‖� − 2e
e−1

nMnψ
(
−M

2n
‖A−B‖

)
,

where ‖A−B‖ := (‖A1−B1‖, . . . ,‖An−Bn‖) .
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Below we shall assume that a (two sided) operator ideal (J ,‖ · ‖
J

) on X is
symmetrically normed in the sense that ‖ASB‖

J
� ‖A‖‖S‖

J
‖B‖ for A,B∈L (X) and

S ∈ J . The following theorem shows that Bernstein functions are J perturbations
preserving.

THEOREM 2. [17, Theorem 4] Let (J ,‖ · ‖
J

) be an operator ideal on X and

ψ ∈ Tn be such that ∂ψ
∂ si

|s=−0 	= ∞ for all i = 1, . . . ,n. For every commuting families
A = (A1, . . . ,An) and B = (B1, . . . ,Bn) from Gen(X)n such that Ai−Bi ∈ J ,D(Ai) =
D(Bi) (i = 1, . . . ,n) the operator ψ(A)−ψ(B) belongs to J , too, and

‖ψ(A)−ψ(B)‖
J

� Mn+1
n

∑
i=1

∂ψ
∂ si

∣∣∣∣∣
s=−0

‖Ai−Bi‖J
.

2. Differentiability

DEFINITION 5. (Cf. [17].) Let (J ,‖ · ‖
J

) be an operator ideal on X , ψ ∈
Tn , A be the n -tuple of pairwise commuting operators from Gen(X) . We call the
bounded linear operator ψ∇

A : J n → J (transformator) the J -Frechet derivative
of the operator function ψ at the point A , if for every n -tuple ΔA ∈ J n such that
Ai + ΔAi ∈ Gen(X) for all i and operators Ai + ΔAi pairwise commute we have

‖ψ(A+ ΔA)−ψ(A)−ψ∇
A (ΔA)‖

J
= o(‖ΔA‖

J
) as ‖ΔA‖

J
:=

n

∑
i=1

‖ΔAi‖J
→ 0.

Evidently, the Frechet derivative at the point A is unique.
Before we formulate our first result note that if ∂ψ/∂ si|s=−0 	= ∞ the derivative

∂ψ/∂ si of a function ψ ∈ Tn equals to∫
Rn

+\{0}
es·vvidμ(v) (s ∈ (−∞,0]n)

and the measure vidμ(v) is finite. So for every n -tuple A of pairwise commuting
operators Ai ∈ Gen(X) the operator

∂ψ(A)
∂ si

:=
∫

Rn
+\{0}

TA(v)vidμ(v)

exists and belongs to L (X) .

THEOREM 3. Let ψ ∈ Tn , and ∀i ωi := ∂ψ/∂ si|s=−0 	= ∞. Then for every n-
tuple A of pairwise commuting operators Ai ∈ Gen(X) the L (X)-Frechet derivative
for the operator function ψ at the point A exists and

ψ∇
A (C) =

n

∑
i=1

∂ψ(A)
∂ si

Ci (1)

for every n-tuple C ∈ L (X)n .
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Proof. The case n = 1 was considered in [17]. Now let n � 2. For the proof we
need the following generalization of Theorem 5 from [26] on divided differences.

LEMMA 1. Let the function ψ ∈Tn has the integral representation (∗ ), and ωi =
∂ψ/∂ si|s=−0 	= ∞ ( i = 1, . . . ,n). Then the function

ϕi(s,sn+1) :=

{ ψ(s)−ψ(s1,...,si−1,sn+1,si+1,...,sn)
si−sn+1

−ωi, if si 	= sn+1,
∂ψ(s)

∂ si
−ωi, if si = sn+1

(s = (s1, . . . ,sn)) belongs to Tn+1 and has the integral representation

ϕi(s,sn+1) =
∫

R
n+1
+ \{0}

(es·u+sn+1un+1 −1)dμi(u),

where dμi(u) is the image of the measure 1/2dμ(v)dw under the mapping u j = v j if
j 	= i,n+1, ui = (vi +w)/2, un+1 = (vi −w)/2 .

Proof. Assume that si 	= sn+1. Then, putting ŝi := (s1, . . . ,si−1,si+1, . . . ,sn), we
get from (∗ ) that

ψ(s)−ψ(s1, . . . ,si−1,sn+1,si+1, . . . ,sn)
si − sn+1

−ωi =
∫

Rn
+\{0}

esivi − esn+1vi

si − sn+1
eŝi·v̂idμ(v)−ωi.

(2)
Since

esivi − esn+1vi

si − sn+1
eŝi·v̂i =

1
2

vi∫
−vi

(
esi

vi+w
2 +sn+1

vi−w
2 +ŝi·v̂i −1

)
dw+ vi,

formula (2) implies that

ϕi(s,sn+1) =
1
2

∫
Rn

+\{0}

vi∫
−vi

(
esi

vi+w
2 +sn+1

vi−w
2 +ŝi·v̂i −1

)
dwdμ(v)

=
1
2

∫
Ωi

(
esi

vi+w
2 +sn+1

vi−w
2 +ŝi·v̂i −1

)
dwdμ(v),

where Ωi = {(v,w) : v ∈ Rn
+ \ {0},w∈ [−vi,vi]}.

Making the change of variables u j = v j for j 	= i,n+1, ui = (vi +w)/2, un+1 =
(vi −w)/2 in the last integral, we get

ϕi(s,sn+1) =
∫

R
n+1
+ \{0}

(es·u+sn+1un+1 −1)dμi(u), (3)

where dμi(u) is the image of the measure 1/2dμ(v)dw under the mapping u j = v j if
j 	= i,n+1, ui = (vi +w)/2, un+1 = (vi −w)/2.
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The case si = sn+1 follows from the first assertion of the lemma as sn+1 → si. �
Now we claim that for every commuting A1, . . . ,An+1 ∈ Gen(X) , and for every i

such that Ai −An+1 ∈ L (X) the following equality holds for x ∈ D(A)

ϕi(A1, . . . ,An+1)(Ai −An+1)x = ψ(A1, . . . ,An)x−ψ(A1, . . . ,Ai−1,An+1,Ai+1, . . . ,An)x

− ∂ψ
∂ si

∣∣∣∣
s=−0

(Ai−An+1)x. (4)

For the proof first note that in view of Definition 2 and formula (3) for x ∈ D(A) we
have

ϕi(A1, . . . ,An+1)(Ai −An+1)x =
∫

R
n+1
+ \{0}

(T1(u1) . . .Tn+1(un+1)− I)(Ai−An+1)xdμi(u)

(for simplicity we write Tj instead of TAj ). Let Ωi be as in the proof of Lemma 1. If
we put in the last integral v j = u j( j 	= i,n + 1), vi = ui + un+1, w = ui − un+1, then
(v,w) runs over Ωi and we get

ϕi(A1, . . . ,An+1)(Ai −An+1)x

=
1
2

∫
Rn

+\{0}
dμ(v)

vi∫
−vi

(
Ti

(
vi+w

2

)
Tn+1

(
vi−w

2

)
∏

1� j�n, j 	=i

Tj(u j)−I

)
(Ai−An+1)xdw

=
∫

Rn
+\{0}

∏
1� j�n, j 	=i

Tj(u j)
1
2

vi∫
−vi

Ti

(
vi +w

2

)
Tn+1

(
vi −w

2

)
(Ai−An+1)xdwdμ(v)

− ∂ψ
∂ si

∣∣∣∣
s=−0

(Ai−An+1)x. (5)

Because of the following identity [17, p. 211] (x ∈ D(A))

1
2

vi∫
−vi

Ti

(
vi +w

2

)
Tn+1

(
vi−w

2

)
(Ai −An+1)xdw = (Ti(ui)−Tn+1(ui))x,

formula (5) implies (4).
Now putting An+1 − Ai = ΔAi in the formula (3) (ΔAi ∈ L (X)), we have for

x ∈ D(A)
ψ(A1, . . . ,Ai−1,Ai + ΔAi,Ai+1, . . . ,An)x−ψ(A1, . . . ,An)x

= ϕi(A1, . . . ,An,Ai + ΔAi)ΔAix+
∂ψ
∂ si

∣∣∣∣
s=−0

ΔAix. (6)

By Theorem 1 the operator

αi(ΔAi) := ϕi(A1, . . . ,An,Ai + ΔAi)−ϕi(A1, . . . ,An,Ai)
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is bounded and

‖αi(ΔAi)‖ � − 2e
e−1

(n+1)Mn+1ϕi

(
− M

2n+2
(0, . . . ,0,‖ΔAi‖)

)
→

− 2e
e−1

(n+1)Mn+1ϕi(0, . . . ,0) = 0 as ‖ΔAi‖→ 0.

Thus the formula (6) entails the equality

ψ(A1, . . . ,Ai−1,Ai + ΔAi,Ai+1, . . . ,An)x−ψ(A1, . . . ,An)x

= ϕi(A1, . . . ,An,Ai)ΔAix+
∂ψ
∂ si

∣∣∣∣
s=−0

ΔAix+ αi(ΔAi)ΔAix. (7)

Let us show that

ϕi(A1, . . . ,An,Ai)x =
∂ψ(A)

∂ si
x− ∂ψ

∂ si

∣∣∣∣
s=−0

x. (8)

To this end note that the Definition 2 implies in view of Lemma 1 that for x ∈ D(A)

ϕi(A1, . . . ,An,Ai)x

=
∫

R
n+1
+ \{0}

(T1(u1) . . .Ti−1(ui−1)Ti(ui +un+1)Ti+1(ui+1) . . .Tn(un)− I)xdμi(u).

If we put here v j = u j ( j 	= i,n+1), vi = ui +un+1, w = ui−un+1, as in the proof of
the formula (5), we get

ϕi(A1, . . . ,An,Ai)x =
∫
Ωi

(T1(v1) . . .Tn(vn)− I)x
1
2
dμ(v)dw

=
1
2

∫
Rn

+\{0}
dμ(v)

vi∫
−vi

(T1(v1) . . .Tn(vn)− I)xdw

=
∫

Rn
+\{0}

T1(v1) . . .Tn(vn)vidμ(v)−
∫

Rn
+\{0}

vidμ(v) =
∂ψ(A)

∂ si
x− ∂ψ

∂ si

∣∣∣∣
s=−0

x.

This completes the proof of formula (8). Since D(A) is dense in X , formula (7) implies
in view of (8) that ( i = 1, . . . ,n )

ψ(A1, . . . ,Ai−1,Ai + ΔAi,Ai+1, . . . ,An)−ψ(A1, . . . ,An) =
∂ψ(A)

∂ si
ΔAi +o(‖ΔAi‖).

It follows that

ψ(A+ ΔA)−ψ(A) = ψ(A1 + ΔA1, . . . ,An + ΔAn)−ψ(A1,A2 + ΔA2, . . . ,An + ΔAn)+ . . .

+ ψ(A1, . . . ,An1 ,An + ΔAn)−ψ(A1,A2, . . . ,An)

=
n

∑
i=1

∂ψ
∂ si

(A1, . . . ,Ai,Ai+1 + ΔAi+1, . . . ,An + ΔAn)ΔAi +o(‖ΔA‖).
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To complete the proof it suffices to show that

∂ψ
∂ si

(A1, . . . ,Ai,Ai+1 + ΔAi+1, . . . ,An + ΔAn) =
∂ψ
∂ si

(A1, . . . ,An)+ βi(ΔA), (9)

where ‖βi(ΔA)‖→ 0 as ‖ΔA‖→ 0 (i = 1, . . . ,n).
But

∂ψ
∂ si

(A1, . . . ,Ai,Ai+1 + ΔAi+1, . . . ,An + ΔAn)

=
∫

Rn
+\{0}

TA1(v1) . . .TAi(vi)TAi+1+ΔAi+1(vi+1) . . .TAn+ΔAn(vn)vidμ(v), (10)

and it is known that ‖TAj+ΔAj(t)− TAj(t)‖ → 0 as ‖ΔAj‖ → 0 (see, e.g., [10, Theo-
rem 13.5.8]). Since all semigroups TAj are bounded and measures v jdμ(v) are finite,
formula (9) follows from Lebesgue dominated convergence theorem [7, Ch. IV, Sub-
section 3.7, Corollary of Theorem 6]. This finishes the proof of Theorem 3. �

Note that the condition ∀i ∂ψ/∂ si|s=−0 	= ∞ is also necessary for the Frechet
differentiability of the function ψ at every point A (take A = (O, . . . ,O)) but in the
case of exponentially stable semigroups the following corollary holds.

COROLLARY 1. Let ψ ∈ Tn . Then for every n-tuple A of pairwise commuting
operators from Gen(X) such that ∀i ‖TAi(t)‖ � Meωt with ω < 0, the L (X)-Frechet
derivative for the operator function ψ at the point A exists and (1) holds.

Proof. To use Theorem 3 we need the condition ∀i ∂ψ/∂ si|s=−0 	= ∞ . To bypass
it we apply Theorem 3 to the function ψ(s1+ω , . . . ,sn +ω) from Tn and to the n -tuple
(A1−ωI, . . . ,An−ωI) from Gen(X)n . �

THEOREM 4. Let (J ,‖ · ‖J ) be a symmetrically normed operator ideal on X ,
ψ ∈ Tn , and ∂ψ/∂ si|s=−0 	= ∞, ∂ 2ψ/∂ s2

i

∣∣
s=−0 	= ∞ (i = 1, . . . ,n). For every n-tuple

A of pairwise commuting operators from Gen(X) the J -Frechet derivative for the
operator function ψ at the point A exists and (1) holds for every n-tuple C ∈ J n .

Proof. As in the proof of previous theorem one can assume that n� 2. We proceed
as in the proof of Theorem 3 with ΔAi ∈ J , ‖ΔAi‖J → 0. Then Theorem 2 implies
that the operator αi(ΔAi) belongs to J , too and for ‖ΔAi‖J → 0 we have

‖αi(ΔAi)‖J � Mn+1 ∂ϕi

∂ sn+1

∣∣∣∣
s=−0

‖ΔAi‖J = Mn+1 1
2

∂ 2ψ
∂ s2

i

∣∣∣∣
s=−0

‖ΔAi‖J → 0. (11)

Indeed,
∂ϕi

∂ sn+1

∣∣∣∣
s=−0

:= lim
s→−0

∂ϕi(s1, . . . ,sn+1)
∂ sn+1
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= lim
s→−0

(ψ(s)−ψ(s1, . . . ,si−1,sn+1,si+1, . . . ,sn))− ∂ψ(s1,...,si−1,sn+1,si+1,...,sn)
∂ si

(si − sn+1)

(si − sn+1)2 .

But, by the Taylor’s formula (below ξ lies between (s1, . . . ,si−1,sn+1,si+1, . . . ,sn)
and s),

ψ(s1, . . . ,si−1,sn+1,si+1, . . . ,sn)−ψ(s) =
∂ψ(s)

∂ si
(sn+1 − si)+

1
2

∂ 2ψ(ξ )
∂ s2

i

(sn+1 − si)2.

Hence,

∂ϕi

∂ sn+1

∣∣∣∣
s=−0

= lim
s→−0

(
∂ψ(s)

∂ si
− ∂ψ(s1,...,si−1,sn+1,si+1,...,sn)

∂ si

)
(sn+1− si)− 1

2
∂ 2ψ(ξ )

∂ s2i
(sn+1− si)2

(sn+1− si)2 .

Applying the Taylor’s formula to the first summand of the numerator in the right-hand
side we deduce from the last equality that

∂ϕi

∂ sn+1

∣∣∣∣
s=−0

=
1
2

∂ 2ψ
∂ s2

i

∣∣∣∣
s=−0

and the formula (11) follows.
Now consider

βi(ΔA) =
∂ψ
∂ si

(A1, . . . ,Ai,Ai+1 + ΔAi+1, . . . ,An + ΔAn)− ∂ψ
∂ si

(A1, . . . ,An)

(see formula (9)). Since [10, Theorem 13.4.1]

TAj+ΔAj(t) =
∞

∑
m=0

Sm(t),

where

S0 = TAj ,Sm(t) =
t∫

0

TAj(t − τ)ΔAjSm−1(τ)dτ (m � 1),

we have for ‖ΔAj‖J → 0

‖TAj+ΔAj(t)−TAj(t)‖J �

⎛
⎝ ∞

∑
m=1

t∫
0

‖TAj(t − τ)‖‖Sm−1(τ)‖dτ

⎞
⎠‖ΔAj‖J → 0

(the series in the right-hand side converges, as the proof of Theorem 13.4.1 in [10]
shows). So the formula (10) implies in view of Lebesgue dominated convergence the-
orem that ‖β j(ΔA)‖J → 0 as ‖ΔAj‖J → 0. The remaining part of the proof is the
same as in Theorem 3. �

In context of Theorem 4 there is an analog of Corollary 1 for exponentially stable
semigroups, as well.
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COROLLARY 2. Let (J ,‖ · ‖
J

) be a symmetrically normed operator ideal on
X , ψ ∈ Tn . Then for every n-tuple A of pairwise commuting operators from Gen(X)
such that ∀i ‖TAi(t)‖ � Meωt with ω < 0, the J -Frechet derivative for the operator
function ψ at the point A exists and (1) holds for every n-tuple C ∈ J n .

The proof of this corollary is similar to the proof of corollary 1.

3. Trace formula

As is well known, the trace formula for a trace class perturbation of a self-adjoint
operator was proved in a special case in [13] and in the general case in [12]. A survey
of farther developments (in context of Hilbert spaces) and bibliography one can fined
in [5], [31], see also recent papers [32], [2], [14], [15], and [16].

In this section we introduce a spectral shift function and prove a Livschits-Kreı̆n
trace formula for a trace class perturbations of generators of C0 -semigroups on Ba-
nach space with approximation property if this semigroups are holomorphic in the right
half-plane and have a polynomial growth. Recall that if the Banach space X has the
approximation property there is a continuous linear functional tr of norm 1 (a trace) on
the operator ideal (S1,‖ ·‖S1) of nuclear operators on X (see, e. g., [9, p. 64]). In the
following ∂ α ψ denotes a multi-index derivative of a function ψ ,

C
n
+ := {z ∈ C

n : Re(z j) > 0, j = 1, . . . ,n}.

THEOREM 5. Let the Banach space X has the approximation property. Let A
and B be n-tuples of generators of pairwise commuting bounded C0 -semigroups TAj

and TBj respectively on X holomorphic in the half plane C+ and satisfying ‖TAj(ζ )‖,
‖TBj(ζ )‖ � M|ζ |mj for some mj ∈ Z+ (ζ ∈ C+, j = 1, . . . ,n). If ∀ j A j −Bj ∈ S1

there exists a unique distribution ηA,B supported in Rn
+ such that for every ψ ∈ Tn

with ∂ 2m+1ψ
∣∣
s=−0 	= ∞ (m = (m1, . . . ,mn)) we have

tr(ψ(A)−ψ(B)) =
∫

Rn
+\{0}

〈ηA,B(t),e−u·t〉dμ(u),

where (as above) μ stands for the representing measure of ψ and 〈ηA,B(t),e−u·t〉 de-
notes the Laplace transform of ηA,B. In particular,

tr(TA(v)−TB(v)) = 〈ηA,B(t),e−v·t〉 (v ∈ R
n
+ \ {0}).

Proof. Consider the function

F(z) := TA(z)−TB(z) (z ∈ C
n
+).

It is easy to verify that

TA(z)−TB(z) =

(
n−1

∏
i=1

TAi(zi)

)
(TAn(zn)−TBn(zn))
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+

(
n−2

∏
i=1

TAi(zi)

)
(TAn−1(zn−1)−TBn−1(zn−1))TBn(zn)

+ . . .+TA1(z1)(TA2(z2)−TB2(z2))
n

∏
i=3

TBi(zi)+ (TA1(z1)−TB1(z1))
n

∏
i=2

TBi(zi). (12)

Theorem 2 implies that TAi(zi)−TBi(zi) ∈ S1 . So, F : Cn
+ → S1 by formula (12).

But for all x ∈ D(A),Re(zi) > 0

(TAi(zi)−TBi(zi))x =
∫

[0,zi]

d
ds

(TBi(zi − s)TAi(s)x)ds

=
∫

[0,zi]

TBi(zi − s)(Ai−Bi)TAi(s)xds. (13)

Since for s ∈ [0,zi]

‖TBi(zi − s)(Ai−Bi)TAi(s)‖S1 � M2(|zi − s||s|)mi‖Ai−Bi‖S1

� M2(|zi − s|+ |s|)2mi‖Ai−Bi‖S1

= M2|zi|2mi‖Ai−Bi‖S1 , (14)

both sides in (13) are bounded, formula (13) holds for all x ∈ X , and

‖TAi(zi)−TBi(zi)‖S1 � M2|zi|2mi+1‖Ai−Bi‖S1 .

Now it follows from (12) that

‖F(z)‖S1 � Mn+1 max
i

‖Ai−Bi‖S1

n

∏
i=1

|zi|2mi+1.

Therefore if we put
f (z) := trF(z),

then

| f (z)| � const
n

∏
i=1

|zi|2mi+1. (15)

We clame that f is holomorphic in Cn
+ . In view of Hartogs Theorem it suffices to

prove that f is separately holomorphic. To simplify the notation we shall show that f
is holomorphic in z1. Indeed, formula (12) yields that

F(z) = (TA1(z1)−TB1(z1))S1(z2, . . . ,zn)+TA1(z1)S2(z2, . . . ,zn)

for some operators S1(z2, . . . ,zn) ∈ L (X) and S2(z2, . . . ,zn) ∈ S1.
Then for every z1 ∈ C+ and sufficiently small Δz1 we have

F(z1 + Δz1,z2, . . . ,zn)−F(z)
= ((TA1(z1 + Δz1)−TB1(z1 + Δz1))− (TA1(z1)−TB1(z1)))S1(z2, . . . ,zn)

+ (TA1(z1 + Δz1)−TA1(z1))S2(z2, . . . ,zn). (16)
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Formula (13) implies the equality

(TA1(z1 + Δz1)−TB1(z1 + Δz1))− (TA1(z1)−TB1(z1))

=
∫

[0,z1+Δz1]

TB1(z+ Δz1− s)(A1−B1)TA1(s)ds−
∫

[0,z1]

TB1(z1 − s)(A1−B1)TA1(s)ds

=
∫

[0,z1]

TB1(z1 + Δz1− s)(A1−B1)TA1(s)ds−
∫

[0,z1]

TB1(z1 − s)(A1−B1)TA1(s)ds

+
∫

[z1,z1+Δz1]

TB1(z1 + Δz1− s)(A1−B1)TA1(s)ds

=
(
TB1

( z1

2
+ Δz1

)
−TB1

( z1

2

)) ∫
[0,z1]

TB1

( z1

2
− s
)

(A1 −B1)TA1(s)ds

+
∫

[z1,z1+Δz1]

TB1(z1 + Δz1− s)(A1−B1)TA1(s)ds.

Taking into account formula (14) we have

‖TA1(z1 + Δz1)−TB1(z1 + Δz1))− (TA1(z1)−TB1(z1)‖S1

�
∥∥∥TB1

(z1

2
+ Δz1

)
−TB1

(z1

2

)∥∥∥M2
∣∣∣ z1

2

∣∣∣2m1 ‖A1−B1‖S1 |z1|
+M2|z1 + Δz1|2m1‖A1−B1‖S1 |Δz1| → 0 (Δz1 → 0).

Now, formula (16) shows that the map F : C
n
+ → S1, and consequently the function

f , are continuous in z1 (above we used the fact that holomorphic semigroups TA1 and
TB1 are norm continuous on C+ ).

Moreover, since z1 �→F(z1,z2, . . . ,zn) is analytic in the half plane C+ with respect
to the operator norm, we have for every closed path C located at this half plane that

∮
C

f (z1,z2, . . . ,zn)dz1 = tr
∮
C

F(z1,z2, . . . ,zn)dz1 = 0.

So by the Morera’s Theorem the function z1 �→ f (z1,z2, . . . ,zn) is analytic in the right
half plane, as well. Now, since f is analytic in C

n
+ and satisfies (15), there is a unique

distribution ηA,B supported in Rn
+ such that f (z) = 〈ηA,B(t),e−z·t〉 , the Laplace trans-

form of ηA,B (see, e.g., [28, Theorem 8.13.3]).

Since, by our hypothesis,

∂ 2m+1ψ
∣∣
s=−0 =

∫
Rn

+\{0}

n

∏
i=1

u2mi+1
i dμ(u) 	= ∞
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and (15) holds, Definition 2 and Theorem 2 imply that

tr(ψ(A)−ψ(B)) =
∫

Rn
+\{0}

tr(TA(u)−TB(u))dμ(u)

=
∫

Rn
+\{0}

f (u)dμ(u) =
∫

Rn
+\{0}

〈ηA,B(t),e−u·t〉dμ(u).

Putting μ = δv, the Dirac measure centered at v, we get the last conclusion of the
theorem. �

COROLLARY 3. Under the conditions of theorem 5

ηA,B = L−1tr(TA −TB),

where L−1 denotes the inverse of the n-dimensional Laplace transform in a distribu-
tional setting.

COROLLARY 4. Under the conditions of theorem 5 for λ ∈ Cn
+ let R(λ ,A) :=

∏n
i=1 R(λi,Ai). Then R(λ ,A)−R(λ ,B) ∈ S1 and

tr(R(λ ,A)−R(λ ,B)) =
∫

Rn
+

〈ηA,B(t),e−u·t〉e−u·λ du,

the iterated Laplace transformation of ηA,B ( the Stieltjes transform).

Proof. First note that C+ ⊆ ρ(Ai). Since

R(λi,Ai) =
∫

R+

TAi(s)e
−λisds (λi ∈ C+; i = 1, . . . ,n),

we have
R(λ ,A)−R(λ ,B) =

∫
Rn

+

(TA(u)−TB(u))e−λ ·udu. (17)

Theorem 2 with ψ(s) = es·u−1, J = S1 implies that TA(u)−TB(u) ∈ S1 and

‖TA(u)−TB(u)‖S1 � Mn+1
n

∑
i=1

ui‖Ai−Bi‖S1 . (18)

It follows that ∫
Rn

+

‖TA(u)−TB(u)‖S1e
−λ ·udu < ∞.

Therefore in view of (17) we get R(λ ,A)−R(λ ,B) ∈ S1 and

tr(R(λ ,A)−R(λ ,B)) =
∫

Rn
+

tr(TA(u)−TB(u))e−λ ·udu =
∫

Rn
+

〈ηA,B(t),e−u·t〉e−u·λ du

by theorem 5. �
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REMARK 1. For the n -dimensional Stieltjes transform of distributions see [28,
Ch.10], especially Theorem 10.8.1 therein, and [30].

REMARK 2. It was shown in [32] that Livschits-Kreı̆n trace formula holds for
arbitrary pairs of not necessarily bounded self-adjoint operators with trace class dif-
ference if and only if the corresponding function is operator Lipschitz. In [16], [15]
Livschits-Kreı̆n trace formulae (for operator Lipschitz functions) was extended to the
case of pairs of maximal dissipative (m-dissipative) operators and pairs of contractions
on Hilbert space. Since by [17, Corollary 2] (see also [34, Corollary 13.9]) every neg-
ative Bernstein function ψ in one variable such that ψ ′(−0) 	= ∞ is operator Lipschitz
in the class of generators of contractive C0 -semigroups (and, more generally, in any
class of generators of uniformly bounded C0 -semigroups with common upper bound
M ), theorem 5 (in the case n = 1) and [17, Theorem 8] are consistent with results for
Hilbert space operators mentioned above.

It should me mentioned also that when n = 1 and TA and TB are Hilbert space con-
tractive semigroups the result of previous corollary is closely related to [14, Theorem
3.14].

COROLLARY 5. Under the conditions of theorem 5 let bounded one-parameter
C0 -semigroups gt(A) = Tψ(A)(t) and gt(B) = Tψ(B)(t) satisfy ‖Tψ(A)(ζ )‖, ‖Tψ(B)(ζ )‖
� M|ζ |k for some k ∈ Z+ (ζ ∈ C+ ). Then

ηψ(A),ψ(B) = L−1
s

∫
Rn

+

〈ηA,B(t),e−u·t〉dνs(u), (19)

where L−1
s denotes the inverse of the one-dimensional Laplace transform in a distribu-

tional setting with respect to s.

Proof. First note that bounded C0 -semigroups Tψ(A) and Tψ(B) are holomorphic
in the half plane C+ by [3, Theorem 7.2]. Since ψ(A)−ψ(B) ∈ S1, we have by
corollary 3 and theorem 5 that

ηψ(A),ψ(B) = L−1
s tr(gs(A)−gs(B)) = L−1

s tr
∫

Rn
+

(TA(u)−TB(u))dνs(u)

= L−1
s

∫
Rn

+

tr(TA(u)−TB(u))dνs(u) = L−1
s

∫
Rn

+

〈ηA,B(t),e−u·t〉dνs(u)

(the first integral converges in the sense of Bochner in the S1 -norm in view of (18)). �

REMARK 3. Since gs(z) := esψ(z) =
∫
Rn

+
eu·zdνs(u), formula (19) formally can be

written as
ηψ(A),ψ(B) = L−1

s 〈ηA,B(t),esψ(−t)〉.
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COROLLARY 6. (Cf. [17, Theorem 8].) Let the Banach space X has the ap-
proximation property. Let A and B be generators of bounded C0 -semigroups TA

and TB respectively on X holomorphic in the half plane C+ and satisfying ‖TA(ζ )‖,
‖TB(ζ )‖ � M|ζ |m (m ∈ Z+,ζ ∈ C+) . If A−B ∈ S1 there exists a unique distribution

ξA,B supported in R+ such that for every ψ ∈ T1 with ψ(2m+1)
∣∣∣
s=−0

	= ∞ we have

tr(ψ(A)−ψ(B)) =
∫

(0,+∞)

〈ξA,B(t),e−ut〉udμ(u).

In particular,
tr(TA(v)−TB(v)) = 〈ξA,B(t),e−vt〉v.

Proof. Put n = 1 in theorem 5 and take for ξA,B the antiderivative of ηA,B sup-
ported in R+. �

To formulate our next corollaries we need some preparations. First note that the
function ψλ (s) := logλ − log(λ − s) (λ > 0) belongs to T1 [20, Example 3]. So, for
A ∈ Gen(X),λ > 0 we can put

log(λ I−A) := (logλ )I−ψλ (A).

Note also that for A,B ∈ Gen(X),λ > 0 such that A−B is nuclear the operator

log(λ I−B)− log(λ I−A) = ψλ (A)−ψλ (B)

is nuclear by theorem 2.

DEFINITION 6. (Cf. [5, formula (3.25)]). Let the Banach space X has the ap-
proximation property. For A,B ∈ Gen(X),λ > 0 such that A−B is nuclear define the
perturbation determinant of the pair (A,B) as follows

ΔB/A(λ ) = exptr(log(λ I−B)− log(λ I−A)).

REMARK 4. Since exptrS = detexpS for nuclear S, one can define perturbation
determinant of a pair (A,B) by the formula

ΔB/A(λ ) = detexp(log(λ I−B)− log(λ I−A)).

If, in addition, A and B commute, we have for λ > 0

ΔB/A(λ ) = det((λ I−B)(λ I−A)−1) = det(I +(A−B)(λ I−A)−1).

Indeed, in this case using Dyson-Phillips series (see, e.g., [10, (13.2.4)]) it is easy to
prove that

exp(ψλ (B))exp(ψλ (A)−ψλ (B)) = exp(ψλ (A))

where exp(G) denotes TG(1) for a generator G of a C0 -semigroup TG. Now, putting
gt(z) = etψλ (z) = λ t(λ − z)−t in definition 3, we get for t = 1 from the above equality,
that

exp(ψλ (A)−ψλ (B)) = (λ I−B)(λ I−A)−1.
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Another approach to the definition of perturbation determinant of a pair of closed
operators on Hilbert space one can fined in [35, Section 8.1] and [14].

We shall use also the following notion of the Stieltjes transform of distributions
[29]. Let α � 1 be fixed real number. The space Sα of test functions consists of all
complex-valued functions ϕ ∈C∞(0,∞) such that

pk(ϕ) := sup
t∈(0,∞)

(1+ t)α

∣∣∣∣∣
(

t
d
dt

)k

ϕ(t)

∣∣∣∣∣< ∞ (k ∈ Z+).

The topology in Sα in determined by the family of seminorms (pk)k∈Z+ . For every
linear functional f from the dual space S′α its Stieltjes transform F is defined by the
rule

F(z) :=
〈

f (t),
1

t + z

〉
, z ∈ C\ (−∞,0].

The function F is holomorphic in C\ (−∞,0].

COROLLARY 7. (Cf. [12], and also [5, formula (3.1)]). Let X ,A, and B be as in
the above corollary. Then

logΔB/A(λ ) =
〈

ξA,B(t),
1

t + λ

〉
(λ > 0), (20)

the Stieltjes transformation of ξA,B . So one can compute ξA,B via inversion theorems
for the Stieltjes transform (see, e.g., [28], [29]). In particular,

ξA,B(t) = lim
k→∞

(−t)k−1

k!(k−2)!
d2k−1

dt2k−1 (tk logΔB/A(t)) (21)

(the limit is taken in the sense of distributions).

Proof. First note that by the proof of theorem 5 and corollary 6 the Laplace trans-
formation of ξA,B exists. So, by definition, ξA,B(t) = ep0t f (t) for some p0 > 0 and
tempered distribution f supported in R+. Since e−p0tS0 embeds in the Schwartz space
S (R+), it follows that ξA,B ∈ S′0.

On the other hand, ψ(2m+1)
λ

∣∣∣
s=−0

	= ∞, and

ψλ (s) =
∞∫

0

(esu −1)u−1e−λudu.

Thus, by corollary 6

logΔB/A(λ ) = tr(ψλ (B)−ψλ (A)) =
∞∫

0

〈ξA,B(t),e−ut〉e−λudu

=

〈
ξA,B(t),

∞∫
0

e−u(t+λ )du

〉
=
〈

ξA,B(t),
1

t + λ

〉
(λ > 0).

Formula (21) follows from the real inversion theorem for the Stieltjes transform [29]. �
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COROLLARY 8. (Cf. [12], and also [5, formula 3.7].) Let X ,A, and B be as in the
corollary 6. The perturbation determinant of the pair (A,B) has analytic continuation
to C\ (−∞,0] and

ξA,B(t) =
1

2π i
lim
y↓0

log
ΔB/A(−t− iy)
ΔB/A(−t + iy)

(t > 0); (22)

in particular, if ξA,B is real-valued, formula (22) takes the form

ξA,B(s) =
1
π

lim
y↓0

Im(log(ΔB/A(−s− iy))) (s > 0) (23)

(limits in (22) and (23) are taken in the sense of distributions).

Proof. Since the right-hand side of the formula (20) is holomorphic in C\(−∞,0],
define

logΔB/A(z) :=
〈

ξA,B(t),
1

t + z

〉
, z ∈ C\ (−∞,0]. (24)

Now we can apply the complex inversion theorem for the Stieltjes transform [29] and
get (22). Since for the real-valued ξA,B formula (24) implies

Re(log(ΔB/A(−s+ iy))) = Re(log(ΔB/A(−s− iy))),

Im(log(ΔB/A(−s+ iy))) = −Im(log(ΔB/A(−s− iy))),

formula (23) follows from (22). �
A substantial part of properties of perturbation determinant of pairs of operators on

Hilbert space (see, e.g., [35, Section 8.1]) is valid for ΔB/A . For example, the following
formula holds.

COROLLARY 9. (Cf. [35, Section 8.1, formula (4)].) Let X ,A, and B be as in
the corollary 6. Then

Δ′
B/A(z)

ΔB/A(z)
= tr(R(z,B)−R(z,A)), z ∈ ρ(A)∩ρ(B).

Proof. Differentiating (24) we get for z ∈ ρ(A)∩ρ(B) in view of corollary 4

Δ′
B/A(z)

ΔB/A(z)
=
〈

ξA,B(t),
d
dz

1
t + z

〉
= −

〈
ξ ′

A,B(t),
1

t + z

〉

= −
〈

ηA,B(t),
1

t + z

〉
= tr(R(z,B)−R(z,A)). �

REMARK 5. Formula (20) implies that limλ→+∞ ΔB/A(λ ) = 1. It follows also
from the definition 6 and corollary 8 that ΔB/A(z)ΔC/B(z) = ΔC/A(z) for z∈C\(−∞,0],
and operators A,B,C ∈Gen(X) such that the pairs (A,B) and (B,C) satisfy all the con-
ditions of corollary 6.
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COROLLARY 10. If, in addition to the conditions mentioned in the corollary 6,
ξA,B is a measure, then

tr(ψ(A)−ψ(B)) =
∫

R+

ψ ′(−t)dξA,B(t).

It follows from the corollary 6 and Tonelli’s Theorem.
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